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Abstract—Greedy pursuit methods are widely used for 
compressive sensing (CS) and sparse signal recovery due to their 
low computational complexity. In this paper an adaptive 
matching pursuit is proposed, which is based on the 
backtracking-based adaptive orthogonal matching pursuit 
(BAOMP) and uses auxiliary residual to make correlation test to 
add more correct atoms per iteration. The proposed method can 
be regarded as an improved BAOMP. The simulation results 
show that it has better performance to those of some other 
greedy pursuit methods. Finally the experiment of CS-based 
ISAR imaging verifies the effectiveness of the proposed method.  

I. INTRODUCTION 

Compressive sensing (CS) theory is a novel data sampling 
and compression approach, which can recover sparse or 
compressive signals with lower rates than their Nyquist rates 
[1-3]. Consider a K -sparse signal NR∈x that has at most 

K ( K N ) nonzero entries. { }0, 1,2, ,iS i x i N= ≠ =   

denotes the support of x . Using a M N×  ( M N< ) 
measurement matrix Φ , we can get a 1M ×  compressed 
measurement vector 

y = Φx                                       (1) 

where 1 2[ , , , ]N=Φ φ φ φ  and the column iφ  is also called an 

atom. Since M N< , the reconstruction of x  from y  is 

generally ill-posed. According to CS theory, if Φ  satisfies the 
restricted isometry property (RIP), then the K -sparse signal 
x  can be reconstructed from only ( log )M O K N=  

measurements through some non-linear recovery methods [2].  
Among the existing recovery methods, greedy pursuit 

algorithms [4-15] have received significant attention due to 
their low complexity and competitive reconstruction 
performances. The main idea of greedy algorithms is to 
estimate the support of the sparse signal iteratively and 
construct an approximation on the estimated support until a 
certain stopping condition is satisfied. The classical greedy 
algorithms include orthogonal matching pursuit (OMP) [4], 
stagewise OMP (StOMP) [5], regularized OMP (ROMP) [6], 
generalized OMP (GOMP) [7], compressive sampling 
matching pursuit (CoSaMP) [8], subspace pursuit (SP) [9], 
sparsity adaptive matching pursuit (SAMP) [10], 
backtracking-based adaptive OMP (BAOMP) [11], and 

randomly enhanced adaptive SP (REASP) [12] etc.. Recently 
some improved greedy algorithms have also been proposed in 
[13-15]. The adaptive reduced-set matching pursuit (ARMP) 
algorithm in [13] adaptively chose some atoms by setting 
appropriate thresholds. Maximum a posterior (MAP) support 
detection [14] and global optimization searching technique 
[15] are respectively used in the greedy algorithm to estimate 
the support of the sparse signal.  

In the above greedy algorithms, backtracking-based greedy 
algorithms are more attractive, which can remove unreliable 
atoms after adding several correlative atoms into the 
estimated support set per iteration. Backtracking-based greedy 
algorithms have superior performance. According to the 
atoms addition and deletion techniques, the backtracking-
based greedy algorithms can be divided into two types. The 
first one takes fixed number of atoms, such as CoSaMP and 
SP. If the sparsity K is known a prior, SP adds K atoms into 
the estimated support and then deletes K atoms from the 
estimated support [9]. The other one uses adaptive techniques 
to add and delete atoms with preset parameter thresholds, 
such as BAOMP [11] and ARMP[13]. The ARMP algorithm 
needs the information of sparsity and the BAOMP does not 
require such a priori knowledge. It has shown that the 
BAOMP is better than those of some other greedy algorithms.  

Combining different greedy pursuit algorithms can improve 
the recovery performance. In this paper, based on the adaptive 
technique in BAOMP and fixed scale technique in SP, we 
propose a modified BAOMP called auxiliary residual based 
adaptive matching pursuit (AR-AMP). The main idea of AR-
AMP is to compute auxiliary residual to make correlation test 
to add more correct atoms per iteration. The above two 
different atoms’ addition and deletion techniques are used in 
each iteration. The AR-AMP can be treated as a generalization 
of BAOMP. The experimental results demonstrate that the 
AR-AMP is superior to some other greedy pursuit methods. 
Finally we apply it to CS-based ISAR imaging to verify its 
reconstruction performance. 

II. ALGORITHM DESCRIPTION  

In this section, we will introduce the BAOMP briefly and 
then the proposed AR-AMP will be presented in detail. 

A. Review of the BAOMP 
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Firstly, some notations used in this paper are given below. 

ΛΦ  represents a sub-matrix of Φ  with columns indexed by 

Λ .  Similarly Λx is the sub-vector of x containing the entries 

indexed by Λ . Superscripts *  and † refer to the transpose and 
Moore-Penrose pseudo inverse of a matrix. ⋅  and ,⋅ ⋅ denote 

the absolute value and inner product, respectively. 

( )card ⋅ computes the cardinality of a set. 

The BAOMP algorithm use preset parameter thresholds  

1μ  and 2μ  to add and delete atoms, its each iteration (e.g., the 

k -th iteration) is composed of three major steps. 
1) Atoms’ addition: choose several atoms that have the 

largest absolute correlation with the residual 1k −r , i.e., 
compute the candidate set kC , whose element i satisfies: 

1 1
1

{1,2,..., }
, max ,− −

∈
≥ ⋅k k

i j
j N

ϕ μ ϕr r  , and then add them into 

the estimated support set to obtain 1k kT C− ∪ . 

2) Atoms’ deletion: compute 1 1

†
k k k k

k

T C T C− −∪ ∪
=x Φ y  and find 

some entries in 1k k

k

T C− ∪
x which satisfies 2 max k

k k
b C

x μ< ⋅ x , 

then delete the corresponding indices   from  1k kT C− ∪ and 

obtain the estimated support set kT . 
3) Update estimate and residual: calculate the new solution 

k

k

T
x as well as its residual  k k

k k

T T
= −r y Φ x . 

In the BAOMP algorithm, k

k

C
x  represents the sub-vector of 

1k k

k

T C− ∪
x  containing the entries indexed by kC . Step 2 uses the 

backtracking strategy to discard the atoms whose coefficients 
are smaller than that of the currently chosen atoms. 

B. The proposed AR-AMP 

From the estimated support set kT  in the BAOMP, the 
atoms having the largest elements of k

k

T
x  may be correct with 

high probability, thus we can choose them and construct a 
subset of kT , called auxiliary estimated support set kΓ , then 
compute the corresponding auxiliary residual to make 
correlation test, therefore we can obtain a complementary 
candidate set k

aC , which can include some penitential correct 

atoms. Thus we propose an auxiliary residual based adaptive 
matching pursuit (AR-AMP), which can produce two 
correlative sets and add them into the estimated support set to 
identify more potential correct atoms. The flow chart of the 
propose AR-AMP algorithm is shown in Fig.1. The detailed 
description of its procedure is given below.  

 

Auxiliary residual based adaptive matching pursuit  
(AR-AMP) 
Input: measurement matrix Φ , measurement vector y , 

atom-adding constant threshold [ ]1 0,1μ ∈ , atom-deleting 

constant threshold [ ]2 0,1μ ∈ , halting threshold ε , number 

of maximum iterations maxk .  

Initialization: estimated signal 0 =x 0 , residue 0 =r y , 

estimated support set 0T = ∅ , iteration number 1k = , 

auxiliary residue 0 0
a =r r . 

Iteration: 
1  Atoms’ selection: compute the candidate set kC , whose 

element i satisfies: 1 1
1

{1,2,..., }
, max ,− −

∈
≥ ⋅k k

i j
j N

ϕ μ ϕr r  and 

complementary candidate set k

aC  by using 1−k
ar  (see (3)). 

2 Atoms’ addition and detection: let 1k k k k
aS T C C−= ∪ ∪ , 

compute †
k k

k

S S
= Φx y . 

3 Update: obtain the estimated support set  kT , whose 

element j  satisfies: 2 max≥ ⋅ k

k k
j C

x μ x  , and update 

estimated signal †
k k

k

T T
=x Φ y and residue k k

k k

T T
= −r y Φ x . 

4 if 
2

k ε<r or maxk k= , quite the iteration, otherwise 

compute auxiliary estimated support set kΓ (see (2)) and 
corresponding residual †

k k

k
a Γ Γ

= −r y Φ Φ y , then let 

1k k= +  and go to step 1.  

Output: estimated support set kT  and estimated signal 
† on the support set  

ˆ
elsewhere

k

k

T
T= 



Φ y
x

0
 

 

 
Fig. 1  Flow chart of AR-AMP algorithm. 
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In the proposed AR-AMP algorithm, we still use the 
backtracking strategy of the BAOMP to discard the atoms 
whose coefficients are smaller than that of the currently 
chosen atoms, which has the largest correlation with current 
residual. This proposed algorithm can be regarded as an 
improved BAOMP algorithm, which utilizes auxiliary 
residual to choose penitential correct atoms. 

Consider the construction of auxiliary estimated support set 
kΓ and complementary candidate set k

aC , here their sizes are 

set by the fix scale technique of SP. Since the sparsity is 
unknown, we use the OMP’s strategy and let the sizes of the 
two sets be equal to iteration number, which implies that it 
will grow with the increase of iteration. With grow of 

iteration, the sizes of kΓ and k

aC  will become large and more 

atoms will be added. Consider this point, to maintain the 

advantage of the BAOMP, if the size of kΓ  is bigger than that 

of the estimated support set kT , the former is required to be 
equal to the latter. That is to say, the auxiliary estimated 

support set  kΓ is  

( ) ( )2
†

1
( ) 2

{ ,..., }=arg max if  <

elsewhere

k

k
k k T Icard I k

k

i i k card T

T

=


Γ = 


Φ y
   (2) 

At the same time, the complementary candidate set  k
aC  is 

( )

1 1

2
* 1

1
( ) 2

if  

{ ,..., }=arg max elsewhere

− −

−

=

 =
= 


k k k
a

k
a k

k a Jcard J k

C
C

j j

r r

Φ r
 

      (3)

 

It can be seen that the AR-AMP will reduce to the BAOMP 
when the number of iteration is large enough. 

III. EXPERIMENTAL RESULTS 

A. Simulation for Synthetic Data  

In this subsection some experiments are made to 
demonstrate the performance of the AR-AMP and comparison 
with the OMP, SP, BAOMP is also given. The OMP uses K  
iterations. In the SP, max 100k = . The parameters of the 

BAOMP and AR-AMP are the same, i.e., 1 20.4, 0.6μ μ= = , 
610ε −= , max 100k = . In the experiment, the signals of 

interests are Gaussian or binary sparse signals. The support 
set is selected uniformly at random and each nonzero value is 
generated from a standard Gaussian distribution or one for the  
binary signal. The measurement matrix Φ  is generated 
randomly from the standard i.i.d. Gaussian distribution in 
each trial, and all of its columns are scaled to unit norm. 

To evaluate the reconstruction performances of different 
algorithms, the probabilities of exact recovery are calculated. 
The reconstruction is considered to be exact when the 
magnitude difference between the original signal x and the 
reconstructed one x̂  is smaller than 310− , that is, 

( ) 3

1,2, ,
ˆmax 10i i

i N
x x −

=
− <


. 

 
   (a) Gaussian sparse signal 
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(b) Binary sparse signal 

Fig. 2  Probability of exact reconstruction vs. signal sparsity. 

The length of x is 256N =  and the size of Φ  is 
128 256× . The probabilities of exact recovery at different 
sparsity are calculated and 500 independent simulations are 
performed for each sparsity. The experiment result is given in 
Fig. 2 and it shows that AR-AMP is better than other greedy 
algorithms, especially for the binary sparse signals.  

To demonstrate computation complexity of the AR-AMP, 
for binary sparse signals, Fig.3 compares the average running 
time of these greedy algorithms versus the signal sparsity, 
where all algorithms are tested by Matlab R2018b with Intel 
Core i7 processor, 8 GB memory and Windows 7 
environment. It can be seen that the proposed AR-AMP is a 
litter more time-consuming than the BAOMP when the 
sparsity is small, this is due to the additional computation of 
auxiliary residual. When the sparsity is from 35 to 50, the 
time-consuming of AR-AMP is a little less than that of the 
BAOMP while having better success reconstruction rate. 
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Fig. 3  Comparison of average running time of different greedy algorithms. 
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   (a) Gaussian sparse signal 
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(b) Binary sparse signal 

Fig. 4  Probability of exact reconstruction vs. the number of measurements. 

Then given the sparsity, the relationship between the 
number of measurements and the probability of exact 
reconstruction is observed. The number of measurements 
M is chosen from 80 to 160 and 500 trial are proceeded for 
each M . Fig. 4 demonstrates the simulation results, where 
the signal sparsity  70K =  for Gaussian signal and 40K =  
for binary sparse signal. It is shown that if the reconstruction 
rate is the same, AR-AMP needs minimum number of 
measurements compared with other greedy algorithms when 
the original signal is not sparse enough. 

From simulations it can be seen that, no matter Gaussian 
signal or binary signal, the performance of the AR-AMP is 
better than that of other greedy algorithms. 

B. Simulation for CS-based ISAR Imaging  

Recently CS-based radar imaging techniques which utilize 
the sparsity of targets have been demonstrated to be 
promising methods for high-resolution radar imaging. Some 
sparse transforms have been used, such as the Fourier 
transform [16-18] and fractional Fourier transform (FrFT) 
[19]. Here, to further demonstrate the performance of the AR-
AMP algorithm in practical application, inverse synthetic 
aperture radar (ISAR) imaging is considered within the sparse 
signal recovery framework.  

In this experiment we use the simulated MIG-25 data. The 
stepped frequency radar operates at 9GHz and has a 
bandwidth of 512MHz. For each pulse, 64 complex range 
samples were saved. The pulse repetition frequency is 15KHz. 
Consider the characteristic of the echo signal which can be 
modeled as the linear frequency modulated (LFM) signal 
[20,21], the FrFT matrix is used as the sparsifying matrix. The 

parameters of the AR-AMP are 1 20.5, 1= =μ μ , 
610ε −= , max 16=k . Image entropy is utilized to measure the 

quality of ISAR images. 
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(a) RD with entropy=6.8900 
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(b) AR-AMP with entropy=6.0296 

Fig. 5   ISAR images by different algorithms with full pulses.  
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(a) RD with entropy= 8.3478 
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(b) AR-AMP with entropy=5.7987 

Fig. 6   ISAR images by different algorithms under sub-sampling.  
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Fig. 5 and Fig. 6 give the images obtained by the RD 
method and AR-AMP algorithm with full 256 pulses and 
randomly sampled 76 pulses, respectively. From these 
imaging results, it can be seen that the image produced by 
traditional RD technique will deteriorate under sub-sampling, 
while the AR-AMP algorithm can still generate good images.  

IV. CONCLUSIONS 

In this paper, an auxiliary residual based adaptive matching 
pursuit (AR-AMP) algorithm is proposed, which is based on 
BAOMP and can choose possible correct atoms in each 
iteration by using auxiliary residual to make correlation test. 
Simulations have showed that the AR-AMP has improved 
recovery performance. In AR-AMP, design of auxiliary 
estimated support set and complementary candidate set can 
use other techniques, future work will focus on finding better 
design methods to further improve the performance of such an 
auxiliary residual based greedy method.  
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