
A Reconfigurable Parallelization of Generative

Adversarial Networks based on Array Processor

Xiaoyan Xie*, Miaomiao Chai *, Zhuolin Du *, Kun Yang*, Shaorun Yin*

*Xi'an University of Posts and Telecommunications, Xi’an, China

E-mail: chaimiaomiao@stu.xupt.edu.cn Tel: +86-29-18232726200

Abstract— Aiming at the intensive calculations of convolution

and the invalid calculations caused by “zero” inserted of

deconvolution in Generative Adversarial Network (GAN), which

makes difficulties of accelerated by hardware. Through

analyzing of network structure and calculation flows of GAN, a

paralleling scheme of reconfiguration for convolution and

deconvolution is proposed in this paper. Based on the Dynamic

Programmable Reconfigurable Array Processor (DPRAP), on a

4×4 processing elements (PEs) array, the flexible switching of the

two convolution modes are driven by a H-tree controlled

reconfiguration mechanism. The proposed scheme is verified

based on the DPRAP. The experimental results show that,

compared with other FPGA schemes, the resource occupation

can be reduced by up to 90% at a working frequency of 150MHz.

Performance has been significantly improved.

Keywords— Generative Adversarial Network; Parallelization;

Array Processor; Reconfigurable

I. INTRODUCTION

GAN [1] are widely used in deep learning and have made

great progress in image generation, such as style transfer,

image super-resolution generation, text-to-image synthesis etc.

Deep neural networks usually have the characteristics of high

throughput and require a higher calculation amount and

memory access frequency. To meet the growing demands for

real-time applications, there requires running neural network

with hardware accelerator strongly. Recently, various high-

performance hardware schemes of accelerating of

convolutional neural network (CNN) have been discussed,

including the distributed GPUs and special accelerators based

on FPGAs or ASIC. Among them, FPGA-based accelerators

have lower latency and lower power consumption than GPUs,

more flexible and configurable than ASICs [2].

Reconfigurable accelerators based on Field Programmable

Gate Array (FPGA) have attracted the attention of more and

more researchers due to their better performance, high energy

efficiency, rapid development cycle and reconfigurability. In

[3], a reconfigurable and efficient accelerator is proposed.

Which achieve dual mapping of convolution and

deconvolution layers but needs to introduce additional

hardware to handle deconvolution. Nowadays, the research on

hardware acceleration of pure convolution has been very deep,

but the effective solutions to the cooperative design of

convolution and deconvolution is still lack of mention. To

map the deconvolution algorithm on a unified architecture, it

is usually necessary to insert "zero" between the input feature

maps, and then treat it as a convolution operation for

calculation. However, these cause more than 75% of invalid

calculations [4]. For this, reference [5] proposed an end-to-

end FPGA accelerator for GAN, which combines MIMD and

SIMD models, and separates the data retrieval and data

processing units with the best computational granularity, but

the MIMD control adds locally buffered instruction storage,

resulting in additional resource overhead and area cost.

Reference [6] proposed an FPGA-based deconvolution

accelerator, but it treated the convolution and deconvolution

with separate functional unit, resulting in the larger

consumption of area overhead, and the lower utilization of on-

chip resources. Reference [7] proposed a reverse loop method

that supports convolution and deconvolution, but the pixel

address needs to be recalculated in each iteration, which

increases the communication overhead with the main

processor.

In summary, although there has solved some difficulties,

there are still challenges to high resource overhead and

inflexible switching of convolution and deconvolution in

accelerating GAN with hardware. Within the convolution and

deconvolution, the calculations in each individual layer are

independent of each other. In the process of convolution, the

calculation of the innermost layer only involves intra-block

addition, but in the process of deconvolution, the calculation

of the innermost layer involves the addition among blocks.

Compared to the convolution, the parallelization is relatively

complicated. The challenge to balance the isomeric structure

of deconvolution and the cost of area and power consumption

is not to be ignored. In this paper, we focus on the latent

parallelism of DCGAN, based on the DPRAP, a dynamic

programmable reconfigurable array processor developed by

author’s team. Which has a H-Tree based reconfigurable

controlled communication network on chip, can effectively

support functional switching between convolution and

deconvolution on the same PE group. By analyzing the

parallelism of the convolution and deconvolution flows, a

reconfigurable paralleling scheme of reconfiguration for

convolution and deconvolution is given, based on the 4×4 PEs

array. By verified with DPRAP, the experimental results show

that the resource occupation can be reduced by up to 90% at a

working frequency of 150MHz.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

127978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

II. RELATED WORKS

A. Structure of GAN

GAN are composed of two parts, a generative model and a

discriminant model, as shown in Figure 1. The generator

includes a deconvolutional layers, which is used to capture the

real data distribution. The discriminator is usually a

convolutional layer, which aims to distinguish whether it is a

sample synthesized by the generator or an original sample.

The generator and discriminator compete to each other to

produce a more powerful pair, to generates more realistic

samples.

Random

Vector
Generator

Discriminator

Generate

Fake Samples

Real

Samples

T

or

F

Real

Image

Figure 1: Schematic diagram of Generative Adversarial Network (GAN)

B. Parallelism of Convolutional

In the GAN, the convolutional layer is used for feature

extraction. The operation flow is shown in Algorithm 1,

which contains four cycles. Each of cycles can be parallelized

according to its data correlation to improve the parallelism of

its execution.

algorithm 1 Convolution algorithm

Input:input feature map I of shape Nif ∗Xi ∗Yi ;

Input:A coefficient matrix K of shape K ∗ K;

Output: output feature map of shape Nof ∗X0 ∗Y0;

1：while i<=n do

2：LOOP1：Traverse Nof output feature maps；

3： LOOP2：Traverse Nif input feature maps；

4： LOOP3：The convolution window slides through the input feature

graph of size XI * YI

5： LOOP4：K*K multiplication and accumulation MAC operations in

a convolution window

7：end while

10: return output

According to the above algorithm, we analyze the

parallelism of each cycle. Figure 2 (a) shows the expansion of

the innermost loop LOOP4. The internal parallelism of the

convolution window is the parallelism of the operation

between the single convolution window of the feature map

and the single convolution kernel. The size of the convolution

kernel is 3×3, and the convolution calculation with the

convolution window of the feature graph requires a total of 9

multiplication calculations, which can be carried out in

parallel. Figure 2(b) shows the parallel process of LOOP3, the

same convolution kernel interacts at different positions on the

same feature graph. Because the data of each convolution

window is independent, these convolution operations can be

calculated in parallel. Figure 2(c) is an extension of LOOP2.

The output feature map is the result of superimposing

multiple input feature maps and corresponding convolution

kernels after convolution calculation. Because each feature

map is independent, the convolution calculation of each

feature map can be performed independently. The feature

mapping is obtained by the accumulation and addition of two

feature maps. The convolution calculation of the two feature

maps is performed in parallel, and then the final result is

accumulated by accumulation. Figure 2(d) expand LOOP1.

Each input feature map will participate in the generation of all

output feature maps. The convolution calculation of the

convolution window of the feature map and the convolution

kernel of different output feature maps is independent, so the

calculation can be performed in parallel.

× × × × × × × × ×

Input feature

Kernel

(a) Internal parallelism of the convolution window

Input feature

Kernel Output

(b) Parallelism between convolution Windows

Input feature

kernel

Output

(c) Internal parallelism of the input feature map

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

128

Input feature

kernel Output

(d) Internal parallelism of the output feature map

Figure 2 Convolution calculation parallel graph

C. Parallelism of Deconvolution

It is the most basic unit of the generation network, and used

for up-sampling the image from low resolution to high

resolution. Algorithm 2 describes the deconvolution algorithm.

algorithm 2 Deconvolution algorithm

1.Input: input feature map I of shape NC ∗ H ∗W;

2. Input: A coefficient matrix K of shape k ∗ k;

3. Output: output feature map of shape NF ∗ HO ∗WO;

4. while i<=n do

5. LOOP1: Traverse NFoutput feature maps

6. LOOP2: Traverse Nif input feature maps

 LOOP3: Implement deconvolution operation

7. end while
8. return output

Figure 3: Schematic diagram of deconvolution process

The specific implementation process of the deconvolution

algorithm is shown in Figure3.There are four steps to achieve

deconvolution. Step 1 is to multiply the single input by the

(K×K) convolution kernel, step 2 is to add the results of step 1

to the local area in the output feature maps. As shown in the

Figure2, if the first pixel and the second pixel are multiplied

by the weight, the multiplication result will be divided into

two parts, one is the blue part, the other is the red part, the

light-yellow part is overlaps. Step 3 is to repeat steps 1 and 2

until calculating all input pixels. The fourth step is to remove

the border of the output image, the gray part in the figure. For

the deconvolution layer with a span of s, when s=k, the output

of the multiplication results of each pixel does not overlap.

Step 2 is not needed in this case. and only multiply each input

pixel by the k*k convolution kernel. When s <k, this

computing manner needs to deal with the overlap of columns

and rows in the output.

According to the above deconvolution algorithm, analyze

the parallelism of the deconvolution algorithm. Figure4(a)(b)

is the expansion of LOOP3. The internal parallelism of the

deconvolution means that each pixel is multiplied by the

entire convolution kernel. Each multiplication operation is

independent of each other, so it is the parallelism of the

internal deconvolution window. Each pixel in the input

feature map is independent of each other, so their

multiplication with the deconvolution window is also

independent of each other. These operations can be

implemented in parallel. Figure4 (c) is the expansion of

LOOP2. Since each feature map is independent of each other,

the deconvolution calculation of each feature map is also

independent of each other. Figure4 (d) is the expansion of

LOOP1.The deconvolution window and the convolution

calculation of different output feature maps are independent.

Input feature
kernel

Ouput feature

×

(a) parallelism of the internal deconvolution window

Input feature

kernel

Output blocks for

different images

(b) Parallel between deconvolution windows

Input feature
kernel

Output blocks for

same images

(c) Input feature map parallelism

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

129

Input feature

kernel

Output blocks for

different images

(d) Ouput feature map parallelism

Figure 4 Parallel graph for deconvolution calculation

III. DYNAMIC RECONFIGURE DESIGN OF DCGAN

According to the conclusion of Section II, the DCGAN

mapping can be reconfigurable paralleled with DPRAP.

Which is indicated as shown in Fig.5. The global controller is

the core of the reconfigurable mechanism. the upper layer is

the host interface. the lower layer is multiple process element

group (PEG). Each PEG contains 16 PEs. The global

controller forms an H-Tree hierarchical communication

network between the host interface and the array. While

ensuring that every instruction can reach the PE at the same

time, it realizes the control and management of array

resources. When the host interface accesses the array, the

global controller receives bus information from the host

interface. The bus information includes address, flag, and

instruction. They are used to determine the specific

instruction executed by each PE at a certain time.

Global Controller

Host Interface

PEPE

PE PE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PE PE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PE PE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PE PE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

Instruction

Storage

O
u
tp

u
t m

em
o
ry

In
p

u
t m

em
o
ry

Global instruction memory

Data

Storage

Figure 5 Dynamic reconfigurable array

When the processor resources are limited but multiple type

of algorithms need to be mapped, instruction flows of each

algorithm are initialized to different instruction stores of the

same PE, the function switching between algorithms is

controlled by configuration information derived from H-Tree

and global controller. This reconfiguration mechanism based

on context switching can switch between multiple algorithms

according to application’s needs.

With the DPRAP, a reconfigurable DCGAN scheme can be

planed as follows. Firstly, the data is preprocessed, the

original data and the convolution kernel are stored in DIM in

columns, and the generated intermediate data is stored in

DOM. Secondly, the different algorithm instructions are

initialized in different instruction stores of the same PE, and

the call instructions are issued through the H-Tree network to

complete the flexible switching between the two parts of the

configuration. When it is necessary to update the information

of a certain configuration store, the H-tree configuration

network can directly send the required configuration

information to the corresponding configuration store without

affecting the normal execution of the PE. Through the H-Tree

configuration network, the instructions flow of DCGAN

issues different configuration instructions to the PEs, the

switching is realized continually between convolution and

deconvolution. As shown in Figure 6.

Begin

Reconstruct the

PE array

Configuration

complete

End

Y

N

N

Y

Send configuration

information

Instruction initialization

Parallel Computing

Calculation complete

Command

switch

Figure 6 The reconfigure flows of DCGAN

The reconfiguration of DCGAN shown in Figure 4 can be

deployed on a PEG. The instructions of deconvolution and

convolution are all initialized in different configuration

storage positions of the same PE. Different configurations are

called in the same PEG to realize the switch between the two

algorithms of convolution and deconvolution.

The mapping scheme is shown as in Figure7. Different

calculation configurations are set for different algorithms. The

default configuration is in PC1, which performs

deconvolution calculation. After the deconvolution

calculation is completed, and the reconfiguration instruction is

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

130

to be called, performing the convolution calculation

configured in PC2.

PE00 PE01 PE02 PE03

PE10

PC1:DeconOp

PC2:Coninte

PE11

PC1:DeconOp

PC2:ConOp+

Coninte

PE12

PC1:DeconOp

PC2:Coninte

PE13

PC1:Deconinte

PC2:Coninte

PE20

PC1:DeconOp

PC2:ConOp

PE21 PE22

PC1:Deconinte

PE23

PE30 PE32 PE33PE31

DIM Original

Data

Send Results

PC1:DeconOp

PC2:ConOp+

Coninte

Db

PC1:DeconOp

PC2:ConOp

PC1:DeconOp

PC2:ConOp
PC1:Deconinte

PC2:Coninte
PC1:DeconOp

PC2:ConOp

PC1:DeconOp

PC2:ConOp

PC1:DeconOp

PC2:ConOp+

Coninte DOM

Adjacency

interconnection

Shared Memory

Routing

transmission

PC1:DeconOp

PC2:ConOp+

Coninte
PC1:Deconinte

Figure 7: The reconfigure flow chart of DCGAN. Db: Data distribution;

ConOp: Convolution operation; Coninte: Convolutional integration;

DeconOp: Deconvolution operation; Deconinte: Deconvolution integration;

The deconvolution operation multiplies each pixel by a k×k

convolution kernel, where the input data can be reused for

filter. The deconvolution integration sums the results of

deconvolution operation where the outputs overlap. The

convolution operation multiplies input image by convolution

kernel. The convolution integration accumulates the result of

the multiplication. The reconfiguration process is shown as in

Algorithm 3.
Algorithm 3 DCGAN reconfigurable parallelization algorithm

Input：Preprocessed data：deconv_xl-1；Deconvolution kernel：K×K

Output：Convolution calculation result：conv_xl

1：PE00 loads data in blocks from DIM

2：while i<=n do

3： LOOP1:

4： Data distribution：After PE00 loads the data, it sends data to PE01 and

PE10 in blocks. After sending the data, PE00 sends handshake signals to the

two PEs.

5： Deconvolution calculation process：After PE01 and PE10 receive the

handshake signal, each PE starts to perform deconvolution calculations at the
same time.

6： Results saving process：The deconvolution calculation result is passed

into PE33, and PE33 finally writes all the results into the DOM.

7： end LOOP1

8：end while

9: return Store the deconvolution calculation result in the DOM

10：A configuration call instruction is issued to switch between

deconvolution and convolution calculation reconfiguration.

11：PE33 loads the convolution result data from the DOM and blocks the

result.

12：while i<=n do

13： LOOP2:

14： Data distribution：PE33 loads the result data of the deconvolution

calculation from the DOM and divides the result into blocks. PE33 sends

handshake signals to PE01 and PE10 respectively

15： Convolution calculation process：After PE01 and PE10 receive the

handshake signal, each PE starts to perform convolution calculation at the

same time.

16： Results saving process：The convolution calculation result is

transferred from PE23 and PE32 to PE33, and PE33 finally writes all the

results into the DOM.

17： end LOOP2

18：end while

19: return Store convolution calculation results in DOM

IV. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

To verify the feasibility of the reconfigurable scheme

proposed in Section 3, the verification is based on the DPRAP

shown as in Figure 5. Firstly, the pictures being tested are

converted into binary sequences and stored in off-chip storage.

Secondly, the instructions to initialize of the convolution and

deconvolution algorithms are stored into the instruction

memory. Finally, functional simulation verification through

Questasim10.1d are performed on the DPRAP. The design is

synthesized through Xilinx's ISE14.7. The FPGA platform is

Vertex-6 series XC6VLX760 devices, and the operating

frequency can reach 150 MHz.

Table 1 Comparison of resource occupation

 Chip
Freq

(MHZ)

LUTs

（K）

FFs

(K)

[5] XCVU13P 190 1325 ——

[8]
Xilinx Virtex7

485T
100 142 151

[9]
Kintex-7

XC7K410T
130 94 107

[10]
Kintex-

7 XC7K410T
130 167 158

This

work
Vertex-6 150 126 34

Use Xilinx's ISE14.7 development environment is used to

synthesize the design. Table 1 list the frequency and resource

utilization, including LUTs and FFs. Literature [5] aims to

separate data retrieval and data processing units to greatly

reduce the on-chip cache. Although its frequency is higher

than that of ours, we reduce hardware resource consumption

(LUTs) by 90%. Literature [8] Propose a method of using fast

algorithm to implement deconvolution on hardware, its

frequency is lower than ours, and the resource consumption

(LUTs and FFs) is 45% higher than ours. Literature [9]

proposes a method to convert the deconvolution layer into a

convolution layer. Literature [8] adopted the method of

literature [9], and its frequency was slightly lower than this

paper, and the resource consumption (LTS and FFS) was

20.3% higher than our study. literature [10] proposes a

method to optimize data flow to improve performance, but its

resource consumption (LUTs and FFs) has increased by

50.7% compared to this paper.

V. CONCLUSIONS

In the process of GAN operation, the calculation process of

deconvolution is more complicated than that of convolution.

This paper proposes a reconfigurable implementation scheme

that takes into account high parallelism and low on-chip

resource overhead. By using a reconfigurable mechanism, two

type of convolution functions can be flexibly switched on the

same PEG, and the utilization of on-chip resources can be

improved. The results show that at 150MHz operating

frequency, it has obvious advantages compared with other

FPGA platform implementations.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

131

ACKNOWLEDGMENT

This research is supported by the National Natural Science

Foundation of China (No.61834005, 61772417, 61802304,

61602377, 61874087, 61634004), and the Shaanxi province

key R&D plan (NO.2021GY-029, 2021KW-16).

REFERENCES

[1] I.Goodfellow, J.Pouget-Abadie, M.Mirza, B.Xu, D.Warde-

Farley, and S.Ozair, “Generative Adversarial Nets,” In

Advances in Neural Information Processing Systems 27, no.27,

2014, pp.2672–2680.

[2] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,

“Optimizing fpga-based accelerator design for deep

convolutional neural networks,” in Proceedings of the 2015

ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. ACM, 2015, pp. 161–170.

[3] J.L.Yan, S.Y.Yin, F.B.Tu, L.B.Liu, and S.J.Wei, “GNA:

Reconfigurable and efficient architecture for generative

network acceleration,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol.37, no.11, 2018,

pp. 2519-2529.

[4] D.W.Xu, K.J.Tu, Y.Wang, C.Liu, B.S.He, and H.W.Li, “FCN-

engine: accelerating deconvolutional layers in classic CNN

processors,” the International Conference. IEEE, 2018.

[5] A.Yazdanbakhsh, M.Brzozowski, B.Khaleghi, S.Ghodrati, and

K.Samadi, “Flexigan: An end-to-end solution for FPGA

acceleration of generative adversarial networks,” 2018 IEEE

26th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM). IEEE,2018, pp.65-72.

[6] S.L.Liu, H.X.Fan, X.Y.Niu, and H.C.Ng, “Optimizing CNN-

based segmentation with deeply customized convolutional and

deconvolutional architectures on FPGA,” ACM Transactions

on Reconfigurable Technology and Systems, vol.11,no. 3,

2018, pp.1-22.

[7] X.Y.Zhang, S.Das, O.Neopane, and K.Kreutz-Delgado, “A

Design Methodology for Efficient Implementation of

Deconvolutional Neural Networks on an FPGA,” ArXiv

Preprint ArXiv:1705.02583, 2017.

[8] J.W.Chang, S.Ahn, K.W.Kang, and S.J.Kang, “Towards design

methodology of efficient fast algorithms for accelerating

generative adversarial networks on FPGAs,” 2020 25th Asia

and South Pacific Design Automation Conference (ASP-DAC).

IEEE, 2020, pp.283-288.

[9] J.W.Chang, and S.J.Kang, “Optimizing FPGA-based

convolutional neural networks accelerator for image super-

resolution,” 2018 23rd Asia and South Pacific Design

Automation Conference (ASP-DAC). IEEE, 2018, pp.343-348.

[10] J.W.Chang, K.W.Kang, and S.J.Kang, “An energy-efficient

FPGA-based deconvolutional neural networks accelerator for

single image super-resolution,” IEEE Transactions on Circuits

and Systems for Video Technology, vol.30, no.1, 2018, pp.

281-295.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

132

