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Abstract— Aiming at the intensive calculations of convolution 

and the invalid calculations caused by “zero” inserted of 

deconvolution in Generative Adversarial Network (GAN), which 

makes difficulties of accelerated by hardware. Through 

analyzing of network structure and calculation flows of GAN, a 

paralleling scheme of reconfiguration for convolution and 

deconvolution is proposed in this paper. Based on the Dynamic 

Programmable Reconfigurable Array Processor (DPRAP), on a 

4×4 processing elements (PEs) array, the flexible switching of the 

two convolution modes are driven by a H-tree controlled 

reconfiguration mechanism. The proposed scheme is verified 

based on the DPRAP. The experimental results show that, 

compared with other FPGA schemes, the resource occupation 

can be reduced by up to 90% at a working frequency of 150MHz. 

Performance has been significantly improved. 

Keywords— Generative Adversarial Network; Parallelization; 

Array Processor; Reconfigurable 

I. INTRODUCTION 

GAN [1] are widely used in deep learning and have made 

great progress in image generation, such as style transfer, 

image super-resolution generation, text-to-image synthesis etc. 

Deep neural networks usually have the characteristics of high 

throughput and require a higher calculation amount and 

memory access frequency. To meet the growing demands for 

real-time applications, there requires running neural network 

with hardware accelerator strongly. Recently, various high-

performance hardware schemes of accelerating of 

convolutional neural network (CNN) have been discussed, 

including the distributed GPUs and special accelerators based 

on FPGAs or ASIC. Among them, FPGA-based accelerators 

have lower latency and lower power consumption than GPUs, 

more flexible and configurable than ASICs [2].  

Reconfigurable accelerators based on Field Programmable 

Gate Array (FPGA) have attracted the attention of more and 

more researchers due to their better performance, high energy 

efficiency, rapid development cycle and reconfigurability. In 

[3], a reconfigurable and efficient accelerator is proposed. 

Which achieve dual mapping of convolution and 

deconvolution layers but needs to introduce additional 

hardware to handle deconvolution. Nowadays, the research on 

hardware acceleration of pure convolution has been very deep, 

but the effective solutions to the cooperative design of 

convolution and deconvolution is still lack of mention. To 

map the deconvolution algorithm on a unified architecture, it 

is usually necessary to insert "zero" between the input feature 

maps, and then treat it as a convolution operation for 

calculation. However, these cause more than 75% of invalid 

calculations [4]. For this, reference [5] proposed an end-to-

end FPGA accelerator for GAN, which combines MIMD and 

SIMD models, and separates the data retrieval and data 

processing units with the best computational granularity, but 

the MIMD control adds locally buffered instruction storage, 

resulting in additional resource overhead and area cost. 

Reference [6] proposed an FPGA-based deconvolution 

accelerator, but it treated the convolution and deconvolution 

with separate functional unit, resulting in the larger 

consumption of area overhead, and the lower utilization of on-

chip resources. Reference [7] proposed a reverse loop method 

that supports convolution and deconvolution, but the pixel 

address needs to be recalculated in each iteration, which 

increases the communication overhead with the main 

processor. 

In summary, although there has solved some difficulties, 

there are still challenges to high resource overhead and 

inflexible switching of convolution and deconvolution in 

accelerating GAN with hardware. Within the convolution and 

deconvolution, the calculations in each individual layer are 

independent of each other. In the process of convolution, the 

calculation of the innermost layer only involves intra-block 

addition, but in the process of deconvolution, the calculation 

of the innermost layer involves the addition among blocks. 

Compared to the convolution, the parallelization is relatively 

complicated. The challenge to balance the isomeric structure 

of deconvolution and the cost of area and power consumption 

is not to be ignored. In this paper, we focus on the latent 

parallelism of DCGAN, based on the DPRAP, a dynamic 

programmable reconfigurable array processor developed by 

author’s team. Which has a H-Tree based reconfigurable 

controlled communication network on chip, can effectively 

support functional switching between convolution and 

deconvolution on the same PE group. By analyzing the 

parallelism of the convolution and deconvolution flows, a 

reconfigurable paralleling scheme of reconfiguration for 

convolution and deconvolution is given, based on the 4×4 PEs 

array. By verified with DPRAP, the experimental results show 

that the resource occupation can be reduced by up to 90% at a 

working frequency of 150MHz.   

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

127978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



II. RELATED WORKS 

A. Structure of GAN 

GAN are composed of two parts, a generative model and a 

discriminant model, as shown in Figure 1. The generator 

includes a deconvolutional layers, which is used to capture the 

real data distribution. The discriminator is usually a 

convolutional layer, which aims to distinguish whether it is a 

sample synthesized by the generator or an original sample. 

The generator and discriminator compete to each other to 

produce a more powerful pair, to generates more realistic 

samples. 
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Figure 1: Schematic diagram of Generative Adversarial Network (GAN) 

 

B. Parallelism of Convolutional  

In the GAN, the convolutional layer is used for feature 

extraction. The operation flow is shown in Algorithm 1, 

which contains four cycles. Each of cycles can be parallelized 

according to its data correlation to improve the parallelism of 

its execution. 

 
algorithm 1 Convolution algorithm 

Input:input feature map I of shape Nif ∗Xi ∗Yi ; 

Input:A coefficient matrix K of shape K ∗ K; 

Output: output feature map of shape Nof ∗X0 ∗Y0; 

1：while i<=n do 

2：LOOP1：Traverse Nof output feature maps； 

3： LOOP2：Traverse Nif input feature maps； 

4：  LOOP3：The convolution window slides through the input feature 

graph of size XI * YI 

5：    LOOP4：K*K multiplication and accumulation MAC operations in 

a convolution window 

7：end while 

10: return output 

 

According to the above algorithm, we analyze the 

parallelism of each cycle. Figure 2 (a) shows the expansion of 

the innermost loop LOOP4. The internal parallelism of the 

convolution window is the parallelism of the operation 

between the single convolution window of the feature map 

and the single convolution kernel. The size of the convolution 

kernel is 3×3, and the convolution calculation with the 

convolution window of the feature graph requires a total of 9 

multiplication calculations, which can be carried out in 

parallel. Figure 2(b) shows the parallel process of LOOP3, the 

same convolution kernel interacts at different positions on the 

same feature graph. Because the data of each convolution 

window is independent, these convolution operations can be 

calculated in parallel. Figure 2(c) is an extension of LOOP2. 

The output feature map is the result of superimposing 

multiple input feature maps and corresponding convolution 

kernels after convolution calculation. Because each feature 

map is independent, the convolution calculation of each 

feature map can be performed independently. The feature 

mapping is obtained by the accumulation and addition of two 

feature maps. The convolution calculation of the two feature 

maps is performed in parallel, and then the final result is 

accumulated by accumulation. Figure 2(d) expand LOOP1. 

Each input feature map will participate in the generation of all 

output feature maps. The convolution calculation of the 

convolution window of the feature map and the convolution 

kernel of different output feature maps is independent, so the 

calculation can be performed in parallel. 
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(a) Internal parallelism of the convolution window 
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(c) Internal parallelism of the input feature map 
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(d) Internal parallelism of the output feature map 

 

Figure 2 Convolution calculation parallel graph 

 

C. Parallelism of Deconvolution 

It is the most basic unit of the generation network, and used 

for up-sampling the image from low resolution to high 

resolution. Algorithm 2 describes the deconvolution algorithm. 

 
algorithm 2 Deconvolution algorithm 

1.Input: input feature map I of shape NC ∗ H ∗W;  

2. Input: A coefficient matrix K of shape k ∗ k;  

3. Output: output feature map of shape NF ∗ HO ∗WO;  

4. while i<=n do 

5. LOOP1: Traverse NFoutput feature maps 

6.  LOOP2: Traverse Nif input feature maps 

      LOOP3: Implement deconvolution operation 

7. end while 
8. return output 

 
 

Figure 3: Schematic diagram of deconvolution process 

 

The specific implementation process of the deconvolution 

algorithm is shown in Figure3.There are four steps to achieve 

deconvolution. Step 1 is to multiply the single input by the 

(K×K) convolution kernel, step 2 is to add the results of step 1 

to the local area in the output feature maps. As shown in the 

Figure2, if the first pixel and the second pixel are multiplied 

by the weight, the multiplication result will be divided into 

two parts, one is the blue part, the other is the red part, the 

light-yellow part is overlaps. Step 3 is to repeat steps 1 and 2 

until calculating all input pixels. The fourth step is to remove 

the border of the output image, the gray part in the figure. For 

the deconvolution layer with a span of s, when s=k, the output 

of the multiplication results of each pixel does not overlap. 

Step 2 is not needed in this case. and only multiply each input 

pixel by the k*k convolution kernel. When s <k, this 

computing manner needs to deal with the overlap of columns 

and rows in the output. 

According to the above deconvolution algorithm, analyze 

the parallelism of the deconvolution algorithm. Figure4(a)(b) 

is the expansion of LOOP3. The internal parallelism of the 

deconvolution means that each pixel is multiplied by the 

entire convolution kernel. Each multiplication operation is 

independent of each other, so it is the parallelism of the 

internal deconvolution window. Each pixel in the input 

feature map is independent of each other, so their 

multiplication with the deconvolution window is also 

independent of each other. These operations can be 

implemented in parallel. Figure4 (c) is the expansion of 

LOOP2. Since each feature map is independent of each other, 

the deconvolution calculation of each feature map is also 

independent of each other. Figure4 (d) is the expansion of 

LOOP1.The deconvolution window and the convolution 

calculation of different output feature maps are independent. 
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(a) parallelism of the internal deconvolution window 
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(d) Ouput feature map parallelism 

 

Figure 4 Parallel graph for deconvolution calculation 

III. DYNAMIC RECONFIGURE DESIGN OF DCGAN 

According to the conclusion of Section II, the DCGAN 

mapping can be reconfigurable paralleled with DPRAP. 

Which is indicated as shown in Fig.5. The global controller is 

the core of the reconfigurable mechanism. the upper layer is 

the host interface. the lower layer is multiple process element 

group (PEG). Each PEG contains 16 PEs. The global 

controller forms an H-Tree hierarchical communication 

network between the host interface and the array. While 

ensuring that every instruction can reach the PE at the same 

time, it realizes the control and management of array 

resources. When the host interface accesses the array, the 

global controller receives bus information from the host 

interface. The bus information includes address, flag, and 

instruction. They are used to determine the specific 

instruction executed by each PE at a certain time. 
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Figure 5 Dynamic reconfigurable array 

 

When the processor resources are limited but multiple type 

of algorithms need to be mapped, instruction flows of each 

algorithm are initialized to different instruction stores of the 

same PE, the function switching between algorithms is 

controlled by configuration information derived from H-Tree 

and global controller. This reconfiguration mechanism based 

on context switching can switch between multiple algorithms 

according to application’s needs. 

With the DPRAP, a reconfigurable DCGAN scheme can be 

planed as follows. Firstly, the data is preprocessed, the 

original data and the convolution kernel are stored in DIM in 

columns, and the generated intermediate data is stored in 

DOM. Secondly, the different algorithm instructions are 

initialized in different instruction stores of the same PE, and 

the call instructions are issued through the H-Tree network to 

complete the flexible switching between the two parts of the 

configuration. When it is necessary to update the information 

of a certain configuration store, the H-tree configuration 

network can directly send the required configuration 

information to the corresponding configuration store without 

affecting the normal execution of the PE. Through the H-Tree 

configuration network, the instructions flow of DCGAN 

issues different configuration instructions to the PEs, the 

switching is realized continually between convolution and 

deconvolution. As shown in Figure 6. 
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Figure 6 The reconfigure flows of DCGAN 

 

The reconfiguration of DCGAN shown in Figure 4 can be 

deployed on a PEG. The instructions of deconvolution and 

convolution are all initialized in different configuration 

storage positions of the same PE. Different configurations are 

called in the same PEG to realize the switch between the two 

algorithms of convolution and deconvolution. 

The mapping scheme is shown as in Figure7. Different 

calculation configurations are set for different algorithms. The 

default configuration is in PC1, which performs 

deconvolution calculation. After the deconvolution 

calculation is completed, and the reconfiguration instruction is 
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to be called, performing the convolution calculation 

configured in PC2.  
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Figure 7: The reconfigure flow chart of DCGAN. Db: Data distribution; 

ConOp: Convolution operation; Coninte: Convolutional integration; 

DeconOp: Deconvolution operation; Deconinte: Deconvolution integration; 

The deconvolution operation multiplies each pixel by a k×k 

convolution kernel, where the input data can be reused for 

filter. The deconvolution integration sums the results of 

deconvolution operation where the outputs overlap. The 

convolution operation multiplies input image by convolution 

kernel. The convolution integration accumulates the result of 

the multiplication. The reconfiguration process is shown as in 

Algorithm 3.  
Algorithm 3 DCGAN reconfigurable parallelization algorithm 

Input：Preprocessed data：deconv_xl-1；Deconvolution kernel：K×K 

Output：Convolution calculation result：conv_xl 

1：PE00 loads data in blocks from DIM 

2：while i<=n do 

3：  LOOP1: 

4：  Data distribution：After PE00 loads the data, it sends data to PE01 and 

PE10 in blocks. After sending the data, PE00 sends handshake signals to the 

two PEs. 

5：  Deconvolution calculation process：After PE01 and PE10 receive the 

handshake signal, each PE starts to perform deconvolution calculations at the 
same time. 

6：  Results saving process：The deconvolution calculation result is passed 

into PE33, and PE33 finally writes all the results into the DOM. 

7：  end LOOP1 

8：end while 

9: return Store the deconvolution calculation result in the DOM 

10：A configuration call instruction is issued to switch between 

deconvolution and convolution calculation reconfiguration. 

11：PE33 loads the convolution result data from the DOM and blocks the 

result. 

12：while i<=n do 

13：  LOOP2: 

14：  Data distribution：PE33 loads the result data of the deconvolution 

calculation from the DOM and divides the result into blocks. PE33 sends 

handshake signals to PE01 and PE10 respectively 

15：  Convolution calculation process：After PE01 and PE10 receive the 

handshake signal, each PE starts to perform convolution calculation at the 

same time. 

16：  Results saving process：The convolution calculation result is 

transferred from PE23 and PE32 to PE33, and PE33 finally writes all the 

results into the DOM. 

17：  end LOOP2 

18：end while 

19: return Store convolution calculation results in DOM 

IV. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 

To verify the feasibility of the reconfigurable scheme 

proposed in Section 3, the verification is based on the DPRAP 

shown as in Figure 5. Firstly, the pictures being tested are 

converted into binary sequences and stored in off-chip storage. 

Secondly, the instructions to initialize of the convolution and 

deconvolution algorithms are stored into the instruction 

memory. Finally, functional simulation verification through 

Questasim10.1d are performed on the DPRAP. The design is 

synthesized through Xilinx's ISE14.7. The FPGA platform is 

Vertex-6 series XC6VLX760 devices, and the operating 

frequency can reach 150 MHz.  

 
Table 1 Comparison of resource occupation 

 Chip 
Freq 

(MHZ) 

LUTs 

（K） 

FFs 

(K) 

[5] XCVU13P 190 1325 —— 

[8] 
Xilinx Virtex7 

485T 
100 142 151 

[9] 
Kintex-7 

XC7K410T 
130 94 107 

[10] 
Kintex-

7 XC7K410T 
130 167 158 

This 

work 
Vertex-6 150 126 34 

 

Use Xilinx's ISE14.7 development environment is used to 

synthesize the design. Table 1 list the frequency and resource 

utilization, including LUTs and FFs. Literature [5] aims to 

separate data retrieval and data processing units to greatly 

reduce the on-chip cache. Although its frequency is higher 

than that of ours, we reduce hardware resource consumption 

(LUTs) by 90%. Literature [8] Propose a method of using fast 

algorithm to implement deconvolution on hardware, its 

frequency is lower than ours, and the resource consumption 

(LUTs and FFs) is 45% higher than ours. Literature [9] 

proposes a method to convert the deconvolution layer into a 

convolution layer. Literature [8] adopted the method of 

literature [9], and its frequency was slightly lower than this 

paper, and the resource consumption (LTS and FFS) was 

20.3% higher than our study. literature [10] proposes a 

method to optimize data flow to improve performance, but its 

resource consumption (LUTs and FFs) has increased by 

50.7% compared to this paper. 

V. CONCLUSIONS 

In the process of GAN operation, the calculation process of 

deconvolution is more complicated than that of convolution. 

This paper proposes a reconfigurable implementation scheme 

that takes into account high parallelism and low on-chip 

resource overhead. By using a reconfigurable mechanism, two 

type of convolution functions can be flexibly switched on the 

same PEG, and the utilization of on-chip resources can be 

improved. The results show that at 150MHz operating 

frequency, it has obvious advantages compared with other 

FPGA platform implementations.  
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