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Abstract—P300 speller is one of the most popular appli-
cations for electroencephalography (EEG) features extraction
and classification. It is used for enabling paralyzed people to
communicate with the outer world by inputting text using
EEG signals, evoked by their brain. Classical P300 speller uses
EEG time-series classification, which does not cover all of the
frequency bands of brain activity and is very subject-dependent.
In order to make the system more stable and robust, frequency
domain spectrograms such as intertrial coherence (ITC) and
event-related spectral perturbation (ERSP) are generated from
EEG data of amyotrophic lateral sclerosis (ALS) patients. The
obtained spectrograms are further classified using a convolutional
neural network (CNN). CNN-based ensemble model is proposed
for classifying both ITC and ERSP in order to achieve more
trusted results. Classification of EEG data in the form of images
can make the whole process much more uniform, robust and
independent from the data acquisition properties.

Index Terms—Brain-Computer Interface, P300 Speller, Event-
Related Spectral Perturbation, Intertrial Coherence, Convolu-
tional Neural Network.

I. INTRODUCTION

Brain-computer interface (BCI) systems process human
brain activity signals to control some devices. The activ-
ity of a human brain can be obtained using different neu-
roimaging techniques, such as electroencephalography (EEG),
functional magnetic resonance imaging (fMRI), near-infrared
spectroscopy (NIRS), etc. However, the most popular data
acquisition technique for BCI devices is EEG, as it is non-
invasive and provides a fast response to the electrical activity
of the neurons.

Generally, BCI devices collect brain activity data, extract the
essential features from the processed data, and translate those
features into device commands. BCI systems have become a
popular application of brain signals processing in different
spheres over the last decade. Recently entertainment and
gaming industry has started using BCI devices for controlling
video games [1]. Apart from that, BCI systems are widely
used for designing brain-controlled assisting devices, such
as prosthesis [2] or wheelchair [3]. Another significant type
of BCI device is the speller system. BCI spellers enable
people to communicate with the outer world by just processing
their EEG signals. That is the only way to communicate for
people suffering from severe motor neuron disorders, such
as amyotrophic lateral sclerosis (ALS), peripheral neuropathy,
cerebral palsy, etc.

EEG-based speller system is called P300 speller, introduced
back in the 1980s [4]. P300 is a sharp positive voltage
deflection detected at about 300 ms after a human recognizes
some target visual stimulus. P300 is one of the event-related
potential (ERP) components. When using a P300 speller, a
user observes a flashing matrix of characters, intensified by
rows and columns. The user concentrates on a particular
character, which should be spelled. When the chosen character
is intensified, a sharp P300 component can be detected in the
EEG signal of the user. The classification of the EEG signals in
the P300 speller is presented as a binary classification problem
when the current EEG signal should be classified as target or
non-target.

Classically, the EEG signal is presented as a time series,
which makes its processing very dependent on the sampling
frequency, chosen periods, and other data acquisition parame-
ters. Frequency-based spectrogram representation can be used
to overcome this problem. Representing EEG signals in the
form of spectrograms enables classification of the data as
images, by using standard image-processing models, such
as convolutional neural network (CNN). In this work, inter-
trial coherence (ITC) and event-related spectral perturbation
(ERSP) spectrograms [5] are generated from ALS patients’
data and processed using a CNN-based ensemble classifier.

The remainder of this paper is organised as follows. Sec-
tion II reviews the dataset used for the experiments, the
generation of the spectrograms, and the proposed classification
models, based on CNN. Section III represents the performance
evaluation and the results obtained on validation and test.
Finally, the conclusions are presented in Section IV.

II. METHODOLOGY

A. Dataset Description

The dataset used in the experiments is an open-access
dataset provided by BCI Horizon 2020 [6]. The interface of
the P300 speller used is the classical 6 × 6 matrix graphical
user interface (GUI) for English-speaking users.

The data is collected from 8 subjects suffering from ALS.
According to the statistics, ALS is one of the most common
neuron diseases. ALS is also known as Lou Gehrig’s disease.
Each year more than six thousand people are diagnosed with
ALS all over the world [7]. The dataset presents the data
collected from five male and three female subjects. The details
about the subjects are presented in Table I. There are two
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TABLE I
ALS PATIENTS INFORMATION FROM BCI HORIZON 2020 DATASET

Subject Age Sex Type of ALS
A01 56 Male Spinal
A02 59 Male Spinal
A03 43 Male Spinal
A04 75 Female Bulbar
A05 60 Female Bulbar
A06 40 Male Spinal
A07 61 Male Bulbar
A08 72 Female Bulbar

different types of ALS: spinal and bulbar. Spinal onset ALS
usually starts from paralysis of the limbs of the patients. In
bulbar onset, ALS breathing and speaking muscles are the
first to be affected and paralyzed. People older than 65 years
usually suffer from bulbar onset ALS, while younger patients
are commonly diagnosed with spinal onset ALS. This tendency
can also be noted from the table above.

The dataset was recorded using g.tec g.MOBILAB equip-
ment using g.Ladybird active electrodes. The provided EEG
signal was acquired using eight active electrodes: Fz, Cz, P3,
Pz, P4, P07, P08, and Oz.

B. Spectrograms Generation

To generate spectrogram representation of 8-channel EEG
data, independent component analysis (ICA) has been applied
to the data. ICA is a statistical tool used in blind source
separation (BSS). BSS is a problem where the mixture of
initial data is known while the mixing system and initial
data are unidentified. The main principles of ICA are the
independence and nongaussianity of the components.

There are different approaches to ICA: it can be computed
by maximizing nongaussianity, likelihood, or minimizing mu-
tual information. This paper used the Infomax ICA algorithm
using the EEGLAB toolbox [8]. The algorithm is based on the
idea of maximizing the entropy of the data [9]. The indepen-
dent component features map is further used for spectrogram
generation of two different types: ERSP and ITC. Time-
frequency transformation of the data to obtain ERSP and ITC
has been completed using EEGLAB, a toolbox that provides a
user-friendly interface for physiological data analysis. Besides
time-frequency transformation [8]. The toolbox also allows
applying ICA and filtering techniques.

Spectrograms have been generated by applying the divisive
baseline method in ERSP and FFT in both spectrograms using
the EEGLAB toolbox. The spectrograms are separated into
two classes, the first including target stimuli recording and the
second containing only non-target stimuli. The time frame of
825 ms (125 ms stimuli with 100 ms before and 600 ms after
stimuli) has been transformed to create a single spectrogram.

ERSP spectrogram is presented by Fig. 1. Baseline method
applied spectrogram that describes power (dB) at a given
time-frequency using the color. ERSP can be computed using
either Wavelet transform or fast Fourier transform (FFT)

Fig. 1. ERSP spectrogram of the EEG signal: the bottom panel represents the
ERSP envelope, where the red line indicates the most positive and the blue
line shows the most negative value at each time point; the left panel shows
the baseline log spectrum

Fig. 2. ITC spectrogram of the EEG signal: the bottom panel represents the
time-domain average of the input data; the left panel shows the frequency
means ITC

to calculate time-frequency representation. In addition, the
baseline method is required to create ERSP due to the absence
of visual patterns in ERS spectrograms that are computed
without baseline subtraction. When generating an ERSP plot,
the ERSP envelope is also usually considered. ERSP envelope
is the lowest and the highest dB values at each time i.

The generated ITC spectrogram is shown in Fig. 2. ITC
is a frequency representation that describes the consistency
of phase across trials. ITC is created by applying the time-
frequency transformation to compute phase information of the
data. For that purpose, wavelet, short-time Fourier transform
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(STFT), or Slepian multi-paper decomposition can be used in
the used EEGLAB toolbox. In addition, ITC represents good
patterns for P300 speller since it captures the power of ERP
components. The training sets consist of 1920 spectrograms
for each type. The test sets contain 656 ITC spectrograms
and 656 ERSP spectrograms. The data is perfectly balanced,
meaning that 50% of data represents the target class and 50%
is non-target.

C. Convolutional Neural Network

The classification of the generated spectrograms is per-
formed using a CNN-based model. Over the last years, CNN
has started being applied for brain signals classification. For
instance, a CNN-based classifier can be used for successful
seizure prediction when processing multi-channel EEG sig-
nal [10].

Identification of target P300 components can also be per-
formed using a CNN-based model. For instance, a P300
speller with applied CNN along with batch normalization,
achieved 96.77% of accuracy for one subject and 93.3% for
another [11]. This result, however, shows that the classification
was subject-dependent, and both training and test datasets
should be collected from the same user. In this work, to
achieve the subject-independency of the proposed classifier, it
is trained on the merged dataset from all of the eight subjects.

The proposed classifier is based on a classical 2D CNN
architecture. The proposed structure has been inherited from
the classical image-processing CNN model AlexNet [12]. The
spectrograms are compressed to the size of 51 × 46 RGB
images, which are fed to the CNN. The CNN is presented in
Fig. ??. The first layer of the network is a convolution layer,
which is followed by the maximum pooling layer. Each hidden
convolutional layer has uses rectified linear unit (ReLU) as an
activation function. The ReLU is calculated as

ReLU(X̃i) = max(0, X̃i), (1)

where X̃i is the feature map resulted from the previous layer.
Each layer extracts features simultaneously on time and

frequency. The first convolution layer uses 32 kernels of size
26 × 26 and a padding P = 1 for calculating the height of
the output feature map. As a result, the output of the first
convolution layer is a feature map of size 26× 23× 32. The
pooling layers use 2×2 kernel to reduce the dimension of the
feature map.

There are two combinations of convolution and pooling
layers, which are connected sequentially for efficient dimen-
sionality reduction. The second convolution layer uses 7 × 7
kernel. The kernel size is decided to be of equal width and
height for minimizing the loss of information in both time and
frequency dimensions.

The second pooling layer is followed by the linear fully-
connected layers, which transform the feature map as a single
vector. The last layer’s activation function is a softmax func-
tion, calculated as

softmax(X̃i) =
exij∑K
k=1 e

xik

, (2)

where exponential of each data point xij is normalized by
the sum of exponentials of all K data points of the feature
map X̃i. The softmax normalizes the output of the last layer,
translating the output values into a probability distribution.
As a result, the network outputs a vector of two elements,
where each element represents the probability of the input
EEG specrtogram either containing the target P300 component
or not. When the spectrogram is defined to be a target response
to the stimulus, the following condition is met:

P (X|y = 1) > P (X|y = −1), (3)

where X denotes the current spectrogram and y is the label,
showing whether it contains target P300 component (y = 1)
or not (y = −1).

The same CNN architecture is used for two models: CNN-
1 and CNN-2. CNN-1 is trained on the training set of ERSP
spectrograms, while CNN-2 is trained on ITC spectrograms.

The training sets consist of data collected from six subjects,
which are A01, A02, A03, A04, A05, A07. Thus, 50% of the
training data was collected from bulbar onset ALS patients,
and the same amount was provided from spinal onset ALS
patients (see Table I). The rest two subjects (A06, A08) are
used for the test.

D. Ensemble Voting

Over the last years, ensemble learning has become a popular
technique for features classification in BCI research. The
designed CNN models are combined in one ensemble voter.
This is done to achieve more trusted results. Ensemble learning
can combine different types of classifiers in one model.
For instance, support vector machine (SVM), stepwise linear
discriminant analysis (SWLDA), and CNN can be combined
for features classification in P300 speller [13]. Apart from
that, a fusion of the same type of classifiers with different hy-
perparameters also provides more trusted results. Combining
several CNN models in one ensemble voter can provide high
accuracy for P300 component recognition [14]. In this work,
two CNN models with the same architecture are trained on
different types of spectrograms. Both types (ERSP and ITC)
are obtained from the same EEG time-series data. The models
are combined in an ensemble voting classifier CNN-ENS, as
presented in Fig 3.

The classification result of the ensemble-averaged voting
model is the average value of the inner CNN classifiers, which
is computed as

P (X|y = 1) =
PCNN-1(X|y = 1) + PCNN-2(X|y = 1)

2
,

(4)
where PCNN-1(X|y = 1) is the prediction of CNN-1 and
PCNN-2(X|y = 1) is the prediction of CNN-2. It is assumed
that the proposed CNN-ENS model can provide more stable
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Fig. 3. CNN-ENS ensemble voting model’s architecture

and trusted results compared to the standalone classifiers
(CNN-1 and CNN-2).

III. RESULTS AND DISCUSSIONS

A. Performance Evaluation

The proposed models are compared by using several met-
rics. The first one is the accuracy, which is calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)

where TP and TN are the numbers of true positives and
true negatively predicted spectrograms respectively. The pre-
dictions which have been done wrong are false positive (FP )
and false negative (FN ) results.

In order to evaluate models independently from the distri-
bution of the dataset, F-score is calculated as

F-score =
TP

TP + 1
2 (FP + FN)

. (6)

F-score is also called F-measure or F1-score. The meaning
of this metric can be understood if it is represented in terms
of recall and precision values as their harmonic mean:

F-score =
2(Precision ∗ Recall)
Precision + Recall

. (7)

Precision value indicates that the spectrogram labelled as
target response is target response indeed. It is computed as

Precision =
TP

TP + FP
. (8)

The recall value shows whether the number of FN is low,
and it is calculated as

Recall =
TP

TP + FN
. (9)

The proposed models are compared with the baseline
method. Classical linear discriminant analysis (LDA) [15]

model has been chosen as a baseline method. LDA is one
of the most popular classifiers in BCI research, as it is
computationally efficient and provides robust results. It can be
applied to either supervised or unsupervised P300 speller [16].

It is assumed that the covariance matrices of each class
are identical and full rank matrices in LDA, which results in
a linear structure when using Bayes’ rule. Different solving
methods can be applied for LDA implementation, such as sin-
gular value decomposition (SVD), eigenvalue decomposition
(ED), or least-squares solution (LSS). SVD is more preferrable
for a large number of features, thus in addition to LDA, SVD
was applied for our data.

Another baseline method chosen is stepwise linear discrimi-
nant analysis (SWLDA). SWLDA is more efficient for feature
dimension reduction than LDA when applied to single-trial
data in P300 speller [17]. SWLDA uses ordinary least squares
regression to weight input features in order to predict labels
of two classes.

B. Validation and Test Results

There are three proposed models compared. The first one
is CNN-1, which is trained on the set of ERSP spectrograms.
CNN-2 is trained and tested on ITC plots. The third model
is the ensemble voter CNN-ENS, which combines both of the
above-mentioned models.

There are 30 training epochs used for training and validation
of the proposed models. The models are validated using K-
fold validation. K is chosen to be equal to 10.

The loss function chosen for the given binary classification
problem is the log loss. Before calculating the loss, the output
labels are re-scaled from −1, 1 to 0, 1, where 0 indicates the
non-target spectrogram, while 1 still indicates target class. As
a result, the new labels are obtained as

ŷ ∈ {0, 1}. (10)

The log loss for each spectrogram Xi is calculated as
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TABLE II
VALIDATION AND TEST RESULTS

Model Data
Validation Test

Accuracy (%) F-score (%) Accuracy (%) F-score (%)
LDA time-series EEG 83.36 82.64 77.45 76.99
SWLDA time-series EEG 84.59 84.95 78.03 77.54

CNN-1 ERSP 87.34 88.02 81.98 81.69
CNN-2 ITC 85.61 84.97 78.84 78.36
CNN-ENS ERSP + ITC 88.05 88.11 81.98 81.55

Fig. 4. Training loss provided by CNN-1, CNN-2, CNN-ENS

Lossi = ŷi log(P (Xi|ŷi) + (1− ŷi) log(1− P (Xi|ŷi), (11)

where ŷi is the re-scaled true label of the spectrogram Xi.
Due to the fact that the network processes spectrograms in

batches, the final loss function is calculated as

LogLoss =
1

N

N∑
i=1

Lossi, (12)

where N is the number of spectrograms in each batch. In this
paper, N = 64, meaning that there are 64 spectrograms used
at each epoch for training and validation.

The log loss obtained during the training process is pre-
sented in Fig. 4. It is observable that the loss decreases with
the number of epochs, meaning that all of the models are
learning properly. It is seen that the loss provided by CNN-
ENS is something between the result of CNN-1 and CNN-2,
as it considers both types of spectrograms.

The results obtained during the validation and training are
presented in Table II. It is seen that the proposed models
generally achieve about 80% of accuracy on test data. The
proposed model provides high performance if compared with
other EEG spectrogram classification methods. For instance,

the CNN model for STFT-based spectrograms for P300 Speller
achieved only 75.86% of accuracy, requiring averaging 500
reference EEG signals [18]. Our methodology does not require
signal averaging, which makes it more applicable for online
P300 spellers in the future.

In addition to that, the proposed methodology is compared
to the time-series data classification using LDA and SWLDA
as seen from Table II. Spectrogram representation turns out
to be more efficient on both validation and test. SWLDA
provides slightly better results than LDA, but still, it reaches
only 77.54% of F-score on a test, while the classification of
ITC and ERSP spectrograms using standalone CNN achieves
78.36% and 81.69% respectively.

According to the experimental results, ERSP seems to be
more representative than ITC, as CNN-1 reaches almost 82%
on training data, while CNN-2 with the same architecture
achieves less than 79% of accuracy when tested on ITC
spectrograms.

Slightly better results on validation were provided by an
ensemble of two models. Usage of both spectrograms enables
to achieve 88.05% of accuracy. The validation for ERSP
reaches 87.34%, while ITC provides only 85.61%. Thus, it
can be assumed that ensemble learning may be more efficient
for some data distributions. Nevertheless, it is observable
that the test accuracy provided by the CNN-ENS does not
outperform CNN-1, meaning that there have been no test cases,
on which ITC recognition has positively influenced the final
result. Nevertheless, the results show that the ensemble voting
model can be more efficient for P300 component identification.

Even though ensemble learning provides only a slight
improvement, it evokes the idea of using dual-input CNN ar-
chitecture with a fusion of features in the future. Such method-
ology has been applied for different spectrograms classification
in various areas, such as sound signals classification [19] etc.

IV. CONCLUSIONS

In this paper, two different spectrogram types have been
generated from 8-channel EEG data of ALS patients. ERSP
and ITC spectrograms have been fed to two identical CNN
models (CNN-1 and CNN-2) and the ensemble model (CNN-
ENS). By comparing the results provided by CNN-1 and
CNN-2, it turned out that ERSP provides better features
representation than ITC. The ensemble classifier achieved
slightly better results on validation, meaning that the usage of
both ERSP and ITC may provide better classification results.
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Nevertheless, to summarize, results show that spectrogram
representation of EEG can be efficiently used for subject-
independent P300 speller for ALS patients. In addition to
that, both bulbar onset and spinal onset type ALS patients’
EEG signals can be efficiently represented as ERSP and ITC
spectrograms for the same classification model.

One of the limitations of the given study is that the CNN-
ENS model requires more computational resources to generate
and process two different spectrograms. Parallel computing
may be effectively applied for generating both ERSP and ITC
at the same time to overcome this problem. Apart from the
possible usage of parallel computing, the further direction of
the proposed topic considers dataset extension. It is planned
to use data from patients with cerebral palsy or peripheral
neuropathy to verify the proposed methods for other types of
patients. The improvement of the CNN architecture is also
planned to be completed by adding residual blocks [20] and
features fusion. It is assumed that using both feature maps
from ERSP and ITC in a single dual-input architecture may
provide better results than the ensemble model.
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