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Abstract— Speech enhancement aims to suppress the additive
noise from noisy speech signals to improve the speech quality. It
is believed that multi-scale temporal information learned from
the speech inputs strengthens the mask prediction or noise sup-
pression especially for the encoder-mask-decoder like structure
in time-domain speech enhancement techniques. In this paper,
we propose a multi-scale encoding and decoding scheme that
captures multiple temporal resolutions for improving speech
quality. We also propose an attention module to capture
the global temporal information of each-scale embedding in
the encoding layer. The experiments show that the proposed
approach achieves 9.0% and 2.9% relative improvements over
the best baseline in terms of perceptual evaluation of the
speech quality (PESQ) and signal-to-distortion ratio (SDR),
respectively.

I. INTRODUCTION

Speech enhancement improves speech intelligibility and
quality by reducing noise from noise-corrupted speech signal
[1]. It is widely applied as a pre-processing module in many
real-world applications, such as automatic speech recognition
(ASR) [2][3], teleconferencing [4], and hearing-aids [5][6].

Speech enhancement methods can be generally grouped
into frequency-domain techniques [7][8][9] and time-domain
techniques [10][11][12]. Frequency-domain methods usually
utilize short-time Fourier transform (STFT) to convert raw
audio signals into frequency-domain features. These features
are then enhanced and finally reverted back to signals by
the inverse short-time Fourier transform (iSTFT). Phase
information is usually ignored in this processing [13]. Unlike
frequency-domain approach, time-domain methods attempt
to address this problem with a convolution encoder to
extract spectrum-like features and a convolutional decoder
to reconstruct signals from the processed features, which
avoids decomposing the signals into magnitude and phase
[14]. The encoding and decoding scheme is key to improving
the speech quality for time-domain approaches [15].

Speech has a rich temporal structure over multiple time
scales to realize the various phonemic, prosodic and linguis-
tic content [16][17]. The speech encoder and decoder with
a single window or filter length captures only one specific
feature [18], this restricts the model to learn the multi-scale
temporal structure from the input speech. To overcome this,
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previous work [19] explored STFT analyses with different
window lengths to obtain multi-resolution acoustic features
for the speech recognition task. Likewise, recent works [20]
proposed a multi-scale octave convolution layer to learn
robust representations from the input speech signal. These
two works produced significant improvement over the single-
resolution-based baselines on the speech recognition task.
Additionally, it was shown that speech analysis of multiple
temporal resolutions leads to better speech understanding
[21]. The prior studies are the source of inspiration for this
work.

To learn the rich temporal structure of speech, in this
paper, we propose an attentive multi-scale time-domain
speech enhancement approach (AMS-SE) to improve the
mask prediction. Specifically, AMS-SE is composed of three
network components: an attentive multi-scale speech en-
coder that encodes the time-domain speech signals into
different scaled spectrum-like feature representation [22]
with attention weights we named as attentive coefficients,
a mask predictor to estimates a receptive mask for each
attentive embedding coefficient, and a speech decoder that
reconstructs the enhanced speech by modulating the recep-
tive mask with the attentive embedding coefficients of the
noisy inputs. Experimental results show that the proposed
AMS-SE outperforms Conv-TasNet baseline [23] in terms
of perceptual evaluation of the speech quality (PESQ) and
signal-to-distortion ratio (SDR).

The rest of this paper is organized as follows. In section 2,
we describe the proposed AMS-SE architecture. In section
3, experimental settings and results are presented. Section 4
concludes the study.

II. AMS-SE ARCHITECTURE

Suppose that a noisy signal y(t) is the mixture of the clean
speech s(t) and the background noise n(t), we have

y(t) = s(t)+n(t), t = 1, . . . ,T (1)

where T is the numbers of the samples of the noisy signal
y(t). During the inference at run-time, given a noisy signal
y(t), the speech enhancement approach is expected to esti-
mated ŝ(t) that is close to s(t) subject to an optimization
criterion.

A. AMS-SE network
We now introduce the proposed AMS-SE network, which

consists of three modules: the attentive multi-scale speech
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encoder, the mask predictor and the speech decoder, as
illustrated in Figure 1.

1) The attentive multi-scale speech encoder: As shown in
Figure 1(b), the proposed speech encoder includes multiple
parallel 1-D convolutional layers followed by the rectified
linear unit (ReLU) activation functions and the corresponding
self-attention module. In this work, we utilize three par-
allel 1-D convolutional layers with short (l1), middle (l2),
long (l3) filter lengths, respectively, to extract the multi-
scale embedding coefficients from the noisy waveforms y(t).
Specifically, the convolutional filters with long filter length
can learn the course-grained feature of speech, while the
convolutional filters with short filter length can capture the
fine-grained features. To concatenate the embeddings across
different scales, we align them by keeping the same stride,
l1/2, and the numbers of filters are set to N.

Then, such multi-scale embedding coefficients are fed into
the self-attention module [24] to learn the attention map for
each-scale embedding coefficient. As shown in Figure 2, the
three 1×1 convolutional layers are first applied to transform
the embedding coefficients to the latent representations,
which is named Q, K and V respectively. We compute the
attention map as:

Attention(Q,K,V ) = so f tmax(QKT )V (2)

where the softmax activation function is performed along the
product of Q and KT . Such three attentive embedding coeffi-
cients are then concatenated along the channel dimension and
fed into the mask predictor for receptive mask estimation.

2) The mask predictor: The TCN-based mask predictor is
designed to suppress the additive noise in attentive embed-
ding coefficients. Similar to Conv-TasNet [23], the mask pre-
dictor module consists of a temporal convolutional network
(TCN) [25]. As shown in Figure 3, the concatenated attentive
embedding coefficients is firstly normalized by its mean and
variance on channel dimension scaled by the trainable bias
and gain parameters. Then, a 1 × 1 convolutional layer
with B filters adjusts the number of channels for the inputs
as a bottleneck layer. To capture the long-range temporal
information of the speech with a manageable number of
parameters, dilated depth-wise convolutional layers "d-conv"
are stacked in several temporal convolutional blocks (TCB)
by exponentially increasing the dilation factor [20, . . . ,2X−1].
In this work, we form X TCBs as a batch and repeat the batch
for R times in the TCN-based mask predictor. To keep the
TCN-based mask in a consistent dimension with the input
features, three 1 × 1 convolutional layer (with N filters and
1 × 1 kernel size) are applied with a sigmoid activation
function for ensuring that the estimated mask ranges within
[0, 1]. We obtained the enhanced attentive embedding coef-
ficients Êi for each scale i = 1,2,3 by applying the receptive
mask Mi on the attentive embedding coefficients Ei of the
noisy signal in each scale,

Êi = Mi
⊗

Ei, i = 1,2,3 (3)

where
⊗

is an operator for element-wise multiplication. Ei
is the multi-scale attentive embedding coefficients.

3) The speech decoder: The decoder reconstructs the
time-domain speech signal from the enhanced attentive em-
bedding coefficients. Attentive embedding coefficients at
each scale lead to a corresponding enhanced output. We
reconstruct the multi-scale attentive enhanced embedding
coefficients into time-domain signals (ŝ1, ŝ2, ŝ3) with the
multi-scale de-convolutional layers in the speech decoder.

B. The optimization strategy

During training, we calculate a multi-scale scale-invariant
signal-to-distortion ratio (SI-SDR) [23] loss, defined as L,
that aims to minimize the signal reconstruction error,

L = α1ρ(ŝ1,s)+α2ρ(ŝ2,s)+α3ρ(ŝ3,s) (4)

where s is the clean speech. ŝ1, ŝ2, ŝ3 are the reconstructed
time-domain signals from each-scale enhanced attentive em-
bedding coefficient. α1, α2, and α3 denote the respective
weights for each reconstructed signals. We use the SI-SDR
loss, denoted as ρ(), as the measure of reconstruction error.

ρ(ŝ,s) = 10log10(
‖ 〈ŝ,s〉〈s,s〉 s‖

2

‖ 〈ŝ,s〉〈s,s〉 s− ŝ‖2
) (5)

where ŝ and s are the enhanced and clean signals of the noisy
inputs, respectively. 〈,〉 is the inner product. To ensure scale
invariance, the signals ŝ and s are normalized to zero-mean
prior to the SI-SDR calculation.

The calculation of multi-scale SI-SDR L loss is required
only during training and not at run-time inference. At run-
time inference, we evaluate the quality of the signals re-
constructed at multiple scales individually, i.e., ŝ1, ŝ2, ŝ3, and
collectively as a weighted summation as ŝ = α1ŝ1 +α2ŝ2 +
α3ŝ3.

III. EXPERIMENT

A. Database

We conduct experiments on a publicly available database
[26] that is widely used in speech enhancement. Specifically,
the noisy set includes 11,572 utterances from 28 speakers and
is mixed by 10 different types with four SNRs levels [0 dB,
5 dB, 10 dB, 15 dB] at sampling rate of 16 kHz. The test set
contains 5 type of unseen noise in SNRs range [2.5 dB, 7.5
dB, 12.5 dB, 17.5 dB]. The unseen noise represents a major
source of mismatch between training and test data.

B. Experimental setup

1) Network configuration: During the training stage, the
noisy waveform was cut into several segments with a du-
ration of 1 second each for batch training. The detailed
configuration is listed in Table I. To concatenate the attentive
embedding coefficients, we set l1/2=10 as common stride
across different scales and we align three scale attentive em-
bedding coefficients by zero-padding operation. The network
was optimized by the Adam algorithm [27]. The learning rate
started from 0.001 and was halved when the loss increased on
the development set for at least 3 epochs. An early stopping
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Fig. 1. The block diagram of (a) the proposed AMS-SE structure, that consists of (b) the attentive multi-scale speech encoder, the mask predictor and
the decoder. “1-D Conv" is the 1-D convolutional operation and “1×1 Conv" is the convolutional operation with 1×1 convolutional filters. ⊗ refers to
the element-wise multiplication. “relu" and “sigmoid" are the rectified linear unit (ReLU) and sigmoid functions. The structure “TCB" block is similar to
Conv-TasNet as shown in Figure 3.
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Fig. 2. Block diagram of the self-attention module. “1× 1 Conv" is the
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element-wise multiplication, and
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Fig. 3. Block diagram of the temporal convolutional block (TCB). “d-conv"
is the dilated depth-wise convolutional layers stacked in several TCBs to
exponentially increase the dilation factors.

⊕
is the residual connection.

scheme was applied as soon as the loss increased on the
development set for 5 epochs.

2) Evaluation metrics: We report the performances in
terms of the following metrics. PESQ [28] stands for per-
ceptual evaluation of the speech quality, ranging from -
0.5 to 4.5. Three objective metrics that approximate mean
opinion scores (MOSs) [29]: CSIG, CBAK, and COVL.
They are designed for signal distortion evaluation, noise
distortion evaluation, and overall quality evaluation, respec-
tively. Signal-to-distortion ratio (SDR) is also conducted for
measuring speech quality. Short-time objective intelligibility
(STOI) [30] reflects the improvement of speech intelligibility.
Higher scores are better for all metrics.

TABLE I
THE NETWORK CONFIGURATION FOR THE PROPOSED AMS-SE

ARCHITECTURE.

Symbol Description Numbers
l1 short filter length of the speech encoder and decoder 20
l2 middle filter length of the speech encoder and decoder 80
l3 long filter length of the speech encoder and decoder 160
N Number of filters in encoder and decoder 256
B Number of channels in bottleneck 256
H Number of channels in TCNs 512
P Kernel size in TCN block 3
X Number of TCBs in each repeat 8
R Number of repeats 4

IV. RESULTS

A. Effect of the multi-scale speech encoder and decoder

We first analyze and summarize the performances with
the proposed multi-scale speech encoder and decoder. The
self-attention module is not utilized in this experiment in
the Table II. We observe that the proposed AMS-SE with
α1 = 0.8,α2 = 0.1,α3 = 0.1 achieves 3.4% and 1.4% relative
improvement in terms of PESQ and SDR. We obtain the best
performances of AMS-SE with α1 = 0.4,α2 = 0.3,α3 = 0.3.

We also observe that the parameters of AMS-SE are not
increased significantly. Learning the multi-scale temporal
information in the speech encoder and decoder has improved
the quality of the speech.

TABLE II
PESQ, COVL, CBAK, CSIG, AND SDR(DB) IN A COMPARATIVE

STUDY OF THE MULTI-SCALE SPEECH ENCODER AND DECODER.
“#PARAS" DENOTES THE NUMBER OF PARAMETERS IN THE MODEL. α1 ,

α2 , AND α3 DENOTE THE RESPECTIVE WEIGHTS FOR EACH

RECONSTRUCTED SIGNALS.

Model Param (α1,α2,α3) PESQ COVL CbAK CSIG SDR
Noisy - - 1.97 2.63 2.44 3.34 8.54

Conv-TasNet [23] 7.62M - 2.67 3.30 3.31 3.94 19.68

AMS-SE
8.01M (0.8,0.1,0.1) 2.76 3.40 3.47 4.04 19.95
8.01M (0.6,0.2,0.2) 2.77 3.40 3.41 4.01 19.97
8.01M (0.4,0.3,0.3) 2.80 3.41 3.45 4.03 19.97
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Fig. 4. The spectrograms of a set of samples (p252_396.wav) in the test set for (a) noisy input, (b) the best baseline Conv-TasNet, (c) enhanced result
of AMS-SE and (d) clean signal (ground-truth).

B. Effect of the attentive multi-scale speech encoder

We report the effect of the attentive multi-scale speech en-
coder shown in Table III. We apply the self-attention module
(SA) for the proposed AMS-SE with the different config-
urations of α1,α2,α3. We observe that the proposed self-
attention module significantly improves the speech quality
without approximate similar parameters of the models. We
obtain the best performances with α1 = 0.6,α2 = 0.2,α3 =
0.2 in terms of the PESQ and SDR.

TABLE III
PESQ, COVL, CBAK, CSIG, AND SDR(DB) IN A COMPARATIVE

STUDY OF THE ATTENTIVE MULTI-SCALE SPEECH ENCODER AND

DECODER. “#PARAS" DENOTES THE NUMBER OF PARAMETERS IN THE

MODEL. α1 , α2 , AND α3 DENOTE THE RESPECTIVE WEIGHTS FOR

RECONSTRUCTED SIGNAL. “SA" DENOTES THE SELF-ATTENTION

MODULE.

Model SA Paras (α1,α2,α3) PESQ COVL CBAK CSIG SDR

AMS-SE

× 8.01M (0.8,0.1,0.1) 2.76 3.40 3.47 4.04 19.95√
8.20M (0.8,0.1,0.1) 2.81 3.48 3.48 4.10 20.08

× 8.01M (0.6,0.2,0.2) 2.77 3.40 3.41 4.01 19.97√
8.20M (0.6,0.2,0.2) 2.91 3.52 3.45 4.13 20.25

× 8.20M (0.4,0.3,0.3) 2.80 3.41 3.45 4.03 19.97√
8.20M (0.4,0.3,0.3) 2.86 3.51 3.51 4.15 20.12

TABLE IV
PESQ, COVL, CBAK, CSIG, AND STOI IN A COMPARATIVE STUDY OF

OTHER COMPETITIVE TECHNIQUES.

Method Domain PESQ STOI COVL CBAK CSIG
Noisy - 1.97 0.91 2.63 2.44 3.34
Winer - 2.22 - 2.67 2.68 3.23

SEGAN [31] T 2.16 0.93 2.80 2.94 3.48
MMSE-GAN [32] F 2.53 0.93 3.14 3.12 3.80
Conv-TasNet [23] T 2.67 0.93 3.30 3.31 3.94

AMS-SE T 2.91 0.94 3.52 3.45 4.13

C. AMS-SE vs. other competitive methods

Table IV summarizes the comparison between the pro-
posed AMS-SE and other competitive techniques in terms
of PESQ, CSIG, CBAK, COVL, and STOI. We observe
that the proposed AMS-SE obtained the best performances.
Comparing with the best baseline Conv-TasNet method, the
AMS-SE achieves the 9.0% relative improvements over the
best baseline Conv-TasNet in terms of PESQ.

To further show the contribution of the AMS-SE approach,
we select a set of samples from the test set, which contains
noisy signal, clean signal, enhanced signal by Conv-Tasnet
baseline, and enhanced signal by AMS-SE. The respective

0.2 0.4 0.6 0.8 1.0

0.19

0.71

0.10Conv-Tasnet

AMS-SE

No
Perference

0

Preference Score
Fig. 5. The A/B preference test result of the enhanced speech between the
proposed AMS-SE and the best baseline Conv-TasNet. We conducted t-test
using a significance level of p < 0.05, which is depicted with error bars.

magnitude spectrograms are shown in Figure 4. We can see
that the AMS-SE can produce more clear spectrum under
same conditions.

D. Subjective evaluation

Since the Conv-TasNet presents the best baseline per-
formances in the objective evaluation as shown in Table
IV, we only conduct an A/B preference test between the
Conv-TasNet and the proposed AMS-SE to evaluate the
signal quality and intelligibility by subject listening. We
randomly selected 20 pairs of listening examples and invited
10 subjects to choose their preference.

The percentage of the preferences is shown in Figure 5.
We observe that the listeners clearly preferred the proposed
AMS-SE with a preference score of 71% to the best baseline
Conv-TasNet with a preference score of 10%. Most subjects
significantly preferred the enhanced waveforms by AMS-
SE with a significance level of p < 0.05. Some listening
examples are available at Github 1.

V. CONCLUSIONS

We propose an attentive multi-scale time-domain speech
enhancement framework (AMS-SE) to learn the rich multiple
temporal resolution information from the speech. Experiment
results show that AMS-SE outperforms the best baseline
Conv-TasNet in terms of all evaluation metrics. The proposed
self-attention module also improves the speech quality by
capturing the long-range dependencies of the attentive em-
bedding coefficients. Furthermore, the subjective evaluation
shows that the AMS-SE is significantly preferred over the
Conv-TasNet.

1https://chrisole.github.io/APSIPA-2021/
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