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Abstract—In this work, we develop a novel non-autoregressive
TTS model to predict all mel-spectrogram frames in parallel.
Different from the previous non-autoregressive TTS methods,
which typically require an external aligner implemented by an
attention-based autoregressive model, our model can be opti-
mized jointly without sophisticated external aligners. Motivated
by the CTC-based speech recognition, which is a simple and
effective manner to achieve the frame-level forced-alignment
between the speech and text, our main idea is to consider the
aligner learning of TTS as a CTC-based speech recognition like
task. Specifically, our model learns the alignment generator by
adopting the CTC-loss, to provide supervision for the duration
predictor learning on the fly. In this way, we are able to
learn a one-stage TTS system by optimizing the aligner with
the feed forward transformer jointly. In inference phase, the
aligner is removed and the duration predictor is used to predict
duration sequence for synthesizing speech. To demonstrate our
method, we conduct extensive experiments on an open-source
Chinese standard Mandarin speech dataset1. The results show
that our method achieves competitive performance compared
with counterpart models (e.g. FastSpeech: a well-known non-
autoregressive with extra aligner) in terms of the synthesized
speech quality and robustness.

I. INTRODUCTION

Thanks to the success of neural network, the text-to-speech
(TTS) task has make tremendous progress recently. The cur-
rent neural network based speech synthesis methods typically
consist of two parts: the acoustic model and the vocoder. The
acoustic model aims to generate mel-spectrogram from the text
and the vocoder is used to convert the mel-spectrogram into
speech. In this work, our goal is to improve the current speech
synthesis system through a simplified and effective acoustic
model without the external aligner.

Early works focus on the autoregressive attention model [1,
2, 3], which usually use the sequence-to-sequence model with
attention mechanism [4] to generate the mel-spectrogram in a
frame-by-frame style. These methods improve the quality of
synthesized speech significantly, however, the Tacotron [1] and
Tacotron2 [2] have low training efficiency due to the recurrent
neural network, and the TranformerTTS [3] still suffers from
slow inference because of the autoregressive inference style.

More recent efforts aim to resolve the autoregressive infer-
ence problem by developing various structures. [5, 6, 7] use the
variational auto-encoder structure to gain the latent duration

‡Equal contribution
1https://www.data-baker.com/open source.html

and generate the mel-spectrogram in inference. Nevertheless,
this kind of method is difficult to control speed manually. An
alternative strategy (e.g., Fastspeech models [8, 9], DurIAN
[10], Fastpitch [11] and Parallel Tacotron [12]) introduces a
neural duration model to produce hard alignment, which could
be used to synthesize mel-spectrogram in parallel.

Several types of alignment generation strategy have been
proposed, to provide supervision for learning the duration
model. [8] extracts the alignments from a pre-trained au-
toregressive attention-based TTS model. [10], [12] generate
the alignment by learning a external HMM-based automatic
speech recognition (ASR) model. In addition, montreal forced
alignment (MFA) tool can also be used to extract phone
duration. However, these non-autoregressive TTS methods
typically have complicated pipeline and require to generate
alignments from a pre-trained model or a forced-alignment
tool.

Thus, how to get rid of the external aligner has attracted
much attention recently. JDI-T [13] trains a non-autoregressive
model jointly with an autoregressive model. AlignTTS [14]
and GlowTTS [15] utilize the statistical features and forward-
backward algorithms to get the alignment in training stage,
where [15, 16] propose a flow-based method for generating
mel-spectrogram, [14] uses the the Baum-Welch algorithm
to design an alignment loss with the goal of maximize the
likelihood, and proposes four different training stages for
different model parts, which has a complicated training process
and long training time. In this work, we propose the Simplified
Parallel Text-to-Speech (SPTTS), a non-autoregressive TTS
method which has a concise training pipeline without a pre-
trained external aligner. Specifically, to maintain the advantage
of parallel inference and controllable speed, our method adopts
a duration model to predict the alignment between phone and
mel-spectrogram. To learn the duration model, we propose a
novel alignment generator module. Inspired by the connec-
tionist temporal classification (CTC) based speech recognition
[17, 18, 19], which is a simple and effective manner to achieve
the frame-level forced-alignment between speech and text, the
alignment generator is trained by adopting the CTC-loss. It
provides the alignment of phone and mel-spectrogram, which
served as the supervision for the duration predictor training
on the fly. The overall system has a simplified pipeline and all
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components could be optimized jointly2.
The main contributions of the paper are as follows:
• We propose a recognition based module as an internal

aligner for TTS model, which can be used to provide
supervision for the duration model;

• The internal aligner can be optimized with other compo-
nents jointly, which simplifies the training pipeline of the
non-autoregressive TTS model;

• The results show that our method achieves competitive
performance compared with previous works in terms of
the synthesized speech quality and robustness.

II. MODEL ARCHITECTURE

To simplify the speech synthesis pipeline, a novel internal
alignment generator is proposed by adding a recognition-based
module in TTS model, which can obtain the correspondence
between text sequence and acoustic features. With this, a non-
autoregressive TTS model can be trained with the alignment
generated by an internal aligner in a unified framework. The
architecture of the proposed SPTTS is shown in Fig. 1,
which consists of three main components: 1) attention-based
synthesizer, 2) duration predictor and 3) alignment generator.
The details of each component are below.

A. Attention-based Synthesizer

The input of attention-based synthesizer is phone sequence
and the output is mel-spectrogram. It is based on a Feed-
Forward Transformer (FFT) like [8]. The synthesizer contains
five parts: 1) phone embedding layer, 2) lower FFT blocks,
3) length regulator, 4) higher FFT blocks and 5) linear layer.
The structure of FFT block is shown in Fig. 2(a).

Assuming that the input phone sequence is C =
(c1, c2, . . . , cL), ci ∈ R1×v , v represent the number of
symbols, L is the phone sequence length.

First, the phone embedding layer embeds the phone se-
quence to embedding features, followed by the lower FFT
blocks, which map the embedding features to phone-level
hidden states, which is denoted as Hpho = {h1, . . . ,hL} ∈
RL×d, d is the number of hidden units.

Then, the length regulator expands the hidden states Hpho

with the phone duration sequence D = {d1, . . . ,dL} ∈ RL×1
predicted by duration predictor in repeat way, then the ex-
panded hidden states Hmel = {h1,h1, . . . ,hT } ∈ RT×d
is generated, where T is the length of mel-spectrogram. For
example, let L = 3 and the duration sequence D = {1, 2, 2},
the output of length regulator is {h1,h2,h2,h3,h3}.

Finally, the higher FFT blocks and the linear layer decode
the Hmel to predict mel-spectrogram M ′ = {m′1, . . . ,m′T },
m′i ∈ R1×n, n is the dimension of mel features.

B. Duration Predictor

Inspired by [8, 10], we adopt the duration model to generate
the duration sequence to regulate the length of phone. In
this way, we are able to generate the mel-spectrogram in

2Synthesized audio samples are available at the following URL:
https://zhaozeqing.github.io/SPTTS/

parallel and control the speed of speech easily. The duration
predictor takes hidden states generated by the lower FFT
blocks as inputs, and predicts the duration sequence D′ for
each phone. The duration predictor is typically implemented
by two sequential 1D convolution and a linear layer, which is
illustrated in Fig. 2(c).

C. Alignment Generator

To learn the duration model, we propose a novel alignment
generator. Inspired by the CTC-based speech recognition [17,
18, 19], which is a simple and effective manner to achieve
the frame-level forced-alignment between speech and text.
We introduce a CTC-based recognition module as the in-
ternal alignment generator to provide the alignment of mel-
spectrogram and phone sequence, served as the supervision
for the duration predictor learning on the fly.

The inputs of the alignment generator are ground truth mel-
spectrogram M = {m1, . . . ,mT }, mi ∈ R1×n. The outputs
are frame-level posterior probability Y = {y1, . . . ,yT }, yi ∈
R1×(v+1) with an extra label. The label is a special token
without pronunciation. To compute the CTC loss, there defines
a many-to-one map B: B (a, , a, b, ) = B ( , a, , , a, b, b) =
(a, a, b), the repeated labels and all labels are removed. For
given phone sequence C = (c1, c2, . . . , cL), we can use the
map B define the conditional probability as Eq. 1, where B−1
is the set of all paths whose B mapping result is C.

p(C |M) =
∑

π∈B−1(C)

p(π |M) (1)

The CTC loss is defined as a negative log likelihood in
Eq. 2.

Lctc = −log (p(C |M)) (2)

We can calculate the conditional probability directly follow-
ing Eq. 1, but there are always a large number of path corre-
sponding to given labeling, which could be more complicated
when computing the gradient. For efficient computing, the
problem can be solved by CTC forward-backward algorithm,
which applies dynamic programming ideas.

For each sequence q of length r, can be split to q1:p and
qr:p. Considering the label, the sequence C is expanded
to C ′ = ( , c1, , c2, , . . . , , cL, , ). Then for sequence C ′,
the forward variable αt(s) is defined to represent the total
probability of C ′1:s at time t, which can be calculated using the
previous α. The initialisation is defined as Eq. 3. yt represents
the posterior probability of the at time t, and ytci represents
the posterior probability of ci at time t. The variable s is the
index of C ′, and the range of s is [1, 2× L+ 1].

α1(1) = y1

α1(2) = y1c1
α1(s) = 0, ∀s > 2

(3)

And the recursion process is shown in Eq. 5. When current
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αt(s) =

{
ᾱt(s)y

t
1′s
, if C ′s = or C ′s−2 = C ′s

(ᾱt(s) + αt−1(s− 2))ytC′s , otherwise
(4)

ᾱt(s)
def
= αt−1(s) + αt−1(s− 1) (5)

Similarly, the backward variables βt(s),

βT (|C ′|) = yT

βT (|C ′| − 1) = yTcL

βT (s) = 0, ∀s < |C ′| − 1

(6)

βt(s) =

{
β̄t(s)y

t
C′s
, if C ′s = or C ′s+2 = C ′s

(β̄t(s) + βt+1(s+ 2))ytC′s , otherwise
(7)

β̄t(s)
def
= βt+1(s) + βt+1(s+ 1) (8)

p(C |M) =

|C′|∑
s=1

αt(s)βt(s)

ytC′s
(9)

With the forward-backward algorithm, redundant calcula-
tions are removed. After the forward variables and backward
variables are calculated,it’s easier to compute loss values and
gradients. Using the Viterbi algorithm, we are able to find the
maximum likelihood path as the alignment. If the alignment
is like [ , c1, c1, , , c2, , c3, c3, c3, ], we choose the location
of the next token appear firstly as the end time of the token.
So the extracted duration sequence is [5, 2, 4].

The alignment generator is implemented by stacking the
Pre-Net (two sequential 1D convolution), multiple FFT blocks,
and a classifier (one linear layer and softmax), as shown in
Fig. 2(b).

D. Training and Inference

For training, our model consists of three loss terms.
The first term is mel loss Lmel, which can be computed as

Eq. 10.

Lmel = MAE
(
M ,M

′
)

(10)

The second term is the duration model loss Ld, which is
the logarithmic domain MSE loss as Eq. 11. Same with [9],
the outputs of the duration predictor D

′
is the phone duration

sequence in the logarithmic domain. Same with [15], we stop
gradient of the duration loss.

Ld = MSE
(
log (D + 1) ,D

′
)

(11)

The last term is the CTC loss LCTC used for learning the
alignment generator as Eq. 2.

The total loss L can written as Eq. 12. And the length
regulator used the duration sequence generated by alignment
generator.

L = Lmel + Ld + LCTC (12)
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Fig. 1. The overview architecture of SPTTS. The left part is attention-based
synthesizer, the right part is alignment generator and duration predictor. The
dotted line means D is only used for training process.
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Fig. 2. (a) The Feed-Forward Transformer block. (b) The alignment generator.
(c) The duration predictor. The dotted line means it is only used during
training.

In the training stage, the duration sequence D is extraced by
the alignment generator. Simultaneously, the duration model is
trained by D as the ground truth. While inference, the duration
sequence is predicted by the duration predictor.

III. EXPERIMENTS

In this section, we conduct a series of comprehensive
experiments to validate the effectiveness of SPTTS. Below we
first present the experimental configuration in Sec. III-A and
Sec. III-B, followed by the evaluation in Sec. III-C. We also
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吴云宝#1奶奶#2挑选#1枇杷。

wu2 yun2 bao2 #1 nai3 nai5 #2 tiao1 xuan3 #1 pi2 pa2 。

UW2/YU2 EH2 N/B AW2/#1N AY3/N AY5/#2T IY1 AW1/X YU3 AE3 N/#1P IY2/P AH2/。

Fig. 3. An illustration of text process. #1 represents the boundary of prosodic
words, #2 represents the boundary of prosodic phrases, / represents the
boundary of syllables.

report the alignment analysis in Sec. III-D.

A. Datasets

The Baker dataset is a Chinese standard Mandarin speech
synthesis dataset, which includes 10000 sentences, about 12
hours. All sentences in the dataset are spoken by a single
female speaker. We sample the raw audio to 24 kHz, and
extracted the 80 dimension mel-spectrogram feature using
fmin = 80, fmax = 7600. The hop size is 300, the windows
size is 1200 and the FFT points is 2048. We split the dataset
into train set and valid set, which contain 9500 and 500 audios
respectively. We use the International Phonetic Alphabet (IPA)
standard to convert pinyins to phones, and the prosody label in
dataset is also used for modeling. An example of text process
is illustrated in Fig. 3.

B. Model Configuration

The configuration of each component of SPTTS is in Tab. I.
MHA means Multi-Head Attention.

TABLE I
MODEL CONFIGURATION DETAILS

Components Structure

Phone Embedding Linear(131,384)

Lower FFT Block


LayerNorm()

MHA(head = 2, units = 384)
LayerNorm()

Conv1D(384, 1024, kernel = 3)
Conv1D(1024, 384, kernel = 3)

 × 4

Higher FFT Block


LayerNorm()

MHA(head = 2, units = 384)
LayerNorm()

Conv1D(384, 1024, kernel = 3)
Conv1D(1024, 384, kernel = 3)

 × 4

Alignment Generator

Pre-Net
[

Conv1D(80, 320, kernel = 3)
Conv1D(320, 320, kernel = 3)

]

FFT Block


MHA(head = 4, units = 320)

LayerNorm()
Linear(320, 320)
Linear(320, 320)

LayerNorm()

 × 6

Classifier Linear(320, 132)

Duration Predictor

Conv1D(384, 384, kernel = 3)
Conv1D(384, 384, kernel = 3)

Linear(384, 1)



We train the SPTTS model on 1 NVIDIA V100 GPU, with
a batch size of 32. We use the Adam optimizer with β1 =
0.9, β2 = 0.98, ε = 10−9 and the same learning rate schedule
as [4]. We train the alignment generator with 8k warm-up
steps, the attention-based synthesizer with 12k warm-up steps,
and duration predictor with 12k warm-up steps. Specially, the
model is trained with 120k steps in total (about 32 hours).

C. Evaluation

We present the audio quality comparison of different meth-
ods. Specifically, we use the mean opinion score (MOS) on
the valid set as the evaluation metric. We randomly choose 50
samples and invite 20 native speakers for subjective evaluation.

1) Audio Quality: We compare the MOS of generated
audios by SPTTS with other methods and report the re-
sult in Tab. II. Our model outperforms the Fastspeech and
AlignTTS, and achieves competitive performance compared
with Tacotron2. Moreover, we also train GlowTTS [15] with
its open-source code, but couldn’t get the idea audio quality,
thus we only report its results on the demo webpage rather
than adding it in subjective evaluations.

In addition, we also compute the real time factor (RTF)
on 80 Intel(R) Xeon(R) Gold 6230 CPU of different models.
For the RTF metric, our SPTTS can achieve 26x speed up
compared with the Tacotron2 (with the highest audio quality),
and on the par with Fastspeech and AlignTTS.

TABLE II
THE PERFORMANCE COMPARISON OF DIFFERENT TTS MODELS. GT

MEANS GROUND TRUTH. MB MEANS MULTIBAND MELGAN [20]
VOCODER.

Method MOS RTF

GT 4.69 -
GT (Mel+MB) 4.52 0.033

Tacotron2 (Mel+MB) 4.46 1.271
Fastspeech (Mel+MB) 4.16 0.046
AlignTTS (Mel+MB) 4.25 0.055

SPTTS (Mel+MB) 4.39 0.049

2) Training Strategy: We also conduct experiments based
on our proposed SPTTS to investigate the influence of different
training strategies. Specifically, our method does not require
an extra aligner, thus we can train the whole system in
parallel. We denote this kind of training strategy as SPTTS.
Moreover, we also follow AlignTTS and adopt a multi-stage
training pipeline to learn each component sequentially, which
is denoted as SPTTS-separate.

The performance of two strategies is in Tab. III. From
the table, we find that the parallel training strategy achieves
superior performance than the multi-stage training strategy. In
our model, the alignment generator, duration predictor and the
synthesizer are optimized jointly, which enable the model to
achieves better speech quality.

TABLE III
THE MOS OF SPTTS AND SPTTS-SEPARATE

Method MOS

SPTTS (Mel+MB) 4.39
SPTTS-separate (Mel+MB) 4.27

D. Alignment Analysis

1) Alignment Accuracy: To illustrate the accuracy of align-
ment quantitatively, we choose one sentence from the valid
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UW2 / YU2 EH2 N / B AW2 / #1 N AY3 / N AY5 / #2 T IY1 AW1 / X YU3 AE3 N / #1 P IY2 / P AH2 / ~
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Fig. 4. The phone duration sequence extracted with SPTTS, Tacotron2 and the Ground Truth.

set randomly, and plot its alignments predicted by SPTTS
and Tactron2. Because there is no duration label for phone
sequence in the dataset, we manually marked one as the
ground truth. The phone duration comparison is illustrated in
Fig. 4. The figure shows that our proposed alignment generator
tends to allocate more duration to vowels and less to syllable
boundaries, which may help to learn a better speech synthesis
model.

2) Robustness of Speed Control: We also evaluate the audio
quality when speed is controlled in inference. We first multiply
the duration sequence by 0.8 or 0.9 to speed up the speech, and
then multiply the duration sequence by 1.1 or 1.2 to slow down
the speech. We find that our SPTTS shows more robustness
of speed control. The supervision provided by the alignment
generator for the duration predictor is changed dynamically
during the training process, which improves the generalization
ability of the duration predictor and robustness of speech
quality when controlling speed. The synthesized samples are
all available on the demo webpage.

IV. CONCLUSIONS

In this work, we introduce a simplified parallel non-
autoregressive TTS (SPTTS) method. We develop a novel
alignment generator, implemented by a recognition-based
module to extract the alignment on the fly, and can be opti-
mized with other components in parallel. To demonstrate our
method, we evaluate our model on a single speaker Mandarin
TTS task. The performance result is competitive compared
with previous works, while our method has a simplified
structure and training strategy. In addition, we also conduct
the alignment analysis, it shows that the duration sequence
generated by SPTTS has high accuracy and the synthesized
speech has good robustness of speed control.
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