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Abstract—Spectral estimation performance determines that of
speech processing. Linear Prediction (LP) is the most successful
speech analysis method commonly introduced worldwide of a
smartphone, LINE, Skype to realize CELP speech coding to
extract the spectral features with a small amount of computation
and fewer parameters. Besides the CELP coding, the LP performs
better on the F0 estimation since the LP residual contains fewer
formant structures. We have already proposed a time-varying
complex AR (TV-CAR) speech analysis for an analytic signal
that estimates the time-varying complex AR parameters from a
speech signal. We recently proposed the TV-CAR analysis based
on ℓ2-norm regularized LP and evaluated the effectiveness of the
performance on the F0 estimation using the IRAPT algorithm.
On the other hand, bone-conducted (BC) speech is robust against
additive noise since it provides a stable harmonic structure in
low frequencies and cannot be easily affected by the noise. In
this paper, we introduce a pre-filter that simulates BC speech to
improve the performance of the F0 estimation. The experimental
results show that the BC filter improves the performance for the
high level of noise corrupted female speech.

I. INTRODUCTION

Speech analysis, extracting the spectral features from a

speech signal, is a dominant technique in speech process-

ing. The Linear Prediction (LP) proposed in the 1960s[1]

is commonly used in CELP speech coding implemented in

a smartphone, SKYPE, LINE, ZOOM, or TEAMS. In the

CELP coding, the LP residual is predicted using an adaptive

codebook, and the resulting residual signals are quantized

using the codebook such as a VQ codebook or an Algebraic

sparse codebook with several pulses having the value of

±1[2][3]. Furthermore, in ALS(audio lossless coding)[4], the

LP is used to compute the residual quantized using entropy

coding. The LP is also applied in speech processing, including

F0 estimation, speech enhancement, robust automatic speech

recognition (ASR), and speech synthesis. The LP residual is

applied to compute the criterion on F0 estimation. The LP

residual is used instead of the speech signal since the LP

residual provides fewer formant elements. As a result, it can

avoid error estimation such as double pitch, half-pitch and

first formant F1. The auto-correlation of the LP residual is

sometimes called the modified auto-correlation method[5]. As

a speech enhancement, iterative Wiener Filter(IWF)[6] is being

used in which the Wiener filter is designed using the estimated

LP spectrum. On the other hand, an augmented Kalman filter

(AKF) is applied to suppress the additional noise in which the

LP filter is used to estimate the spectrum[7][8][9]. The LP also

plays a vital role to improve speech dereverberation[10][11]

and Glottal Closure Instant (GCI) detection[12]. In the robust

ASR, the IWF reduces the additional noise in ETSI Advanced

FrontEnd(AFE)[13]. Although the FFT spectrum is introduced

to design the IWF in the AFE, we have already shown that

the LP spectrum performs better than the FFT spectrum[14].

Even in the speech synthesis, the LP is embedded. Recently the

development of the WaveNet[15] brings a new era to speech

synthesis and dramatically improved speech quality. Several

improved WaveNet methods have been proposed including

GlotNet[16][17], ExcitNet[18], FFTNet[19], LPCNet[20], LP-

WaveNet[21] and so on. The GlotNet generates the excitation

using a glottal excitation estimated by a glottal inverse fil-

tering. The ExcitNet generates the excitation using the LP

residual estimated by the LP inverse filter. The ExcitNet

provides more rich excitation, including the noise elements

besides glottal excitation, improving speech quality.

The expansion of the LP has been examined in more

than a half-century. One approach is to expand the ARMA

analysis[22]. These are not so effective since the speech signal

does not provide a strong anti-resonance, and the excitation

cannot be estimated accurately. The other approach is to

expand time-varying analysis[23][24], estimating time-varying

spectral features from speech signals by representing the AR

coefficients using the basis expansion. The other approach

is to expand complex analysis for an analytic signal that

can estimate a more accurate speech spectrum due to the

nature of the signal. The other approach is to introduce robust

criterion instead of the ℓ2-norm, viz. MMSE estimation. For

example, ℓ0-norm optimization is being introduced in [27].

While ℓ1-norm optimization is being introduced in [28], com-

press sensed (CS) ℓ1-norm optimization is being introduced

in [29]. As a ℓ2 regularized LP, B.Kleijn et.al. proposed RLP

(Regularized LP)[30] and P.Alku et.al. proposed TRLP (Time-

RLP)[31]. The RLP suppresses rapid changes in the frequency

domain to avoid pitch related bias, and The TRLP suppresses

rapid changes in the time domain.

We have proposed a Time-Varying Complex AR (TV-

CAR) speech analysis based on MMSE (Minimizing Mean

Squared Error)[32] that is the combination of time-varying
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analysis and complex analysis. Moreover, we have pro-

posed GLS(Generated Least Square), ELS(Extended Least

Square)[33], LASSO(Least Absolute Shrinkage and Selec-

tion Operator)[36], RLP(Regularized LP)[34], TRLP(Time-

Regularized LP), and RLP-based & TRLP-based hybrid

method[35] are ℓ2-norm regularized methods while LASSO-

based method[36] is the ℓ1-norm regularized method. We have

evaluated the proposed TV-CAR analysis with the IWF[37]

in robust ASR[38] and robust F0 estimation [39]. The IWF

is implemented using the ETSI AFE, and F0 estimation is

implemented using the IRAPT (Instantaneous RAPT)[40].

Recently, a bone-conducted (BC) headset has been com-

monly used because it offers no earphones and noise robust-

ness. The BC speech cannot be affected by additive noise since

it provides a stable harmonic structure in low frequencies.

The feature can be utilized to improve the performance of

the F0 estimation. A simple AR filter can simulate the BC

since it provides low pass filter characteristics. This paper aims

to improve the F0 estimation based on the TV-CAR speech

analysis using the IRAPT by introducing the BC filter. The first

order of AR filter realizes the BC filter, and it is combined

with the pre-emphasis filter. The F0 estimation is operated

by using the pre-filtered speech, and the complex residual

is computed with the pre-filtered speech. We conducted the

objective evaluation on F0 estimation using the Keele pitch

database[41]. The experimental results show that the BC filter

makes it possible to improve the performance for female

speech, although it does not make it worse for male speech.

II. REGULARIZED LP

A. LP Analysis

LP analysis is based on an ℓ2-norm optimization estimating

an ith auto-regressive (AR) coefficient ai(i = 1, 2, ..., I) to

minimize the Mean Squared Error (MSE) for the AR model

shown in Eq.(1).

1

A(z−1)
=

1

1 +
I

∑

i=1

aiz
−i

(1)

The power spectrum of the AR model is represented by Eq.(2).

S(ω,a) = 1/|A(ejω)|2 (2)

In the LP analysis, the ℓ2-norm criterion is shown in Eq.(3).

D = E
[

e2(t)
]

= aTRa+ 2aT r+ r0 (3)

where E[] is an expectation, e(t) is the residual signal at

time t, R is the symmetric Toeplitz matrix whose elements

are the auto-correlation function ri(i = 0, 1, ..., I − 1), a is

[a1, a2, ..., aI ]
T , r is [r1, r2, .., rI ]

T and T means Transpose.

Minimizing Eq.(3) viz., ∂D/∂aT = 0 results in the following

linear equation called Yule-Walker equation.

Râ = −r (4)

B. Time-Regularized LP(TRLP) Analysis[31]

The TRLP analysis sets ℓ2-norm for the difference between

current parameter vector a and the previous one apr, shown

as in Eq.(5), as the ℓ2-norm regularization term.

Lreg =
1

2
λ1 (a− λ2apr)

T
(a− λ2apr) (5)

where λ1 and λ2 are regularization factor. Lreg means the

penalty term that suppresses rapid spectral changes between

adjacent frames. The criterion of the TRLP is D+Lreg , thus,

from ∂(D + Lreg)/∂a
T = 0, one can obtain

r+Ra+ λ1a− λ1λ2apr = 0. (6)

As a result, we derive the following linear equation shown in

Eq.(7).

(R+ λ1I) â = −r+ λ1λ2apr (7)

TRLP can be realized by solving Eq.(7). It is worth noting

that if λ2 is 0, the TRLP analysis is equal to Ridge analysis.

C. Regularized LP (RLP) Analysis[30]

LP analysis suffers from pitch-related bias to estimate the

unnaturally sharp peak of the F1 for high pitch speech. To

solve the problem, the RLP analysis introduces an ℓ2-norm

regularization term shown in Eq.(8) that means ℓ2-norm of

the AR spectral changes in the frequency domain.

R(S(ω,a)) =
1

2π

∫ π

−π

[

d

dω
logS(ω,a)

]2

dω (8)

The criterion of the RLP is D + λ3R. λ3 is called the

regularization constant that controls the contribution for the

regularized term. The second term means the penalty one

that suppresses rapid spectral changes in the frequencies.

To estimate the parameter, a, with no iteration, Eq.(8) is

approximated to be Eq.(9).

1

2π

∫ π

−π

∣

∣

∣

∣

d

dω
logA(ejω)

∣

∣

∣

∣

2

dω =
1

2π

∫ π

−π

∣

∣

∣

∣

∣

A′
(

ejω
)

A (ejω)

∣

∣

∣

∣

∣

2

dω

(9)

By using Eq.(9), Eq.(8) turns to be Eq.(10).

R̂(S(ω,a)) =
1

2π

∫ π

−π

∣

∣

∣

∣

∣

A′
(

ejω
)

W (ω)

∣

∣

∣

∣

∣

2

dω (10)

where |W (ω)|
2

is a crude estimation of |A(ω)|
2
.

A′(ejω) = −

M
∑

k=0

jkake
jkω (11)

As a result, Eq.(10) reduces to Eq.(12).

I
∑

k=0

I
∑

m=0

kakmam
1

2π

∫ π

−π

e−jω(k−m)

|W (ω)|2
dω (12)
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Since the integral term in Eq.(12) is an inverse discrete

transform of |1/W (ω)|
2
, Eq.(10) reduces to Eq.(13).

R̂(S(ω,a)) =

I
∑

k=0

I
∑

m=0

kakmamh(m− k) (13)

where

h(x) =
1

2π

∫ π

−π

ejωx

|W (ω)|2
dω (14)

that is the inverse Fourier transform of the power spectrum so

that it is the auto-correlation function. Finally, Eq.(13) reduces

to Eq.(15).

R̂(S(ω,a)) = aTDTFDa (15)

where D is a diagonal matrix whose element is d(i, i) = i, F
is a Toeplitz auto-covariance matrix. From Eq.(3) and Eq.(15),

the criterion of RLP, D + λ3R is as follows.

aT (R+ λ3D
TFD)a+ 2aT r+ r0 (16)

Minimizing Eq.(16), ∂(D + λ3R)/∂aT = 0 results in the

following linear equation.

(R+ λ3D
TFD)â = −r (17)

The RLP analysis can be realized by solving Eq.(17). It is

worth noting that if λ3 is 0, the RLP analysis is the same as

the LP analysis in Eq.(4).

III. REGULARIZED TV-CAR METHOD

A. TV-CAR model

Eq.(18) defines the TV-CAR model.

YTV CAR(z
−1) =

1

A(z−1)
=

1

1 +

I
∑

i=1

aci (t)z
−i

=
1

1 +

I
∑

i=1

L−1
∑

l=0

gci,lf
c
l (t)z

−i

(18)

where aci (t), L, gci,l and f c
l (t) are ith complex AR coefficient

at time t, an order of complex basis expansion, complex

parameter and complex basis function, respectively. Eq.(19)

denotes the input-output relationship for Eq.(18).

yc(t) = −

I
∑

i=1

aci (t)y
c(t− i) + uc(t)

= −
I

∑

i=1

L−1
∑

l=0

gci,lf
c
l (t)y

c(t− i) + uc(t) (19)

where yc(t) is the target analytic signal at time t and uc(t)
is a complex input signal at time t. The analytic signal is a

complex-valued signal whose real part is the speech signal,

and the imaginary part is the Hilbert transformed signal of the

real one. Since the analytic signal yields the spectrum only

over positive frequencies, the signal can be decimated by a

factor of two; consequently, the complex analysis can estimate

a more accurate spectrum in low frequencies. Moreover, the

TV-CAR analysis is a time-varying analysis that introduces

complex basis expansion of the AR parameter to represent

the parameter as a function of time, enabling the parameter

estimation in every sample.

Alternatively, Eq.(19) can be formulated by the following

vector-matrix representation.

yf = −Φfθ + uf (20)

θ̄T = [gT
0 ,g

T
1 , · · · ,g

T
l , · · · ,g

T
L−1]

gT
l = [gc1,l, g

c
2,l, · · · , g

c
i,l, · · · , g

c
I,l]

yT
f = [yc(I), yc(I + 1), yc(I + 2), · · · , yc(N − 1)]

uT
f = [uc(I), uc(I + 1), uc(I + 2), · · · , uc(N − 1)]

Φf = [Sf
0 ,S

f
1 , · · · ,S

f
l , · · · ,S

f
L−1]

S
f
l = [sf1,l, s

f
2,l, · · · , s

f
i,l, · · · , s

f
I,l]

s
f
i,l = [yc(I − i)f c

l (I), y
c(I + 1− i)f c

l (I + 1),

· · · , yc(N − 1− i)f c
l (N − 1)]T

where N is analysis length, yf is (N − I, 1) column vector

whose element is the analytic signal, θ̄ is (L · I, 1) column

vector whose element is the complex parameter, Φf is (N −
I, L · I) matrix whose element is the weighted analytic signal

by a complex basis.

B. MMSE algorithm

The MMSE algorithm is an ℓ2-norm optimization realized

by Minimizing the MSE for the equation error.

θ̂ = argmin
θ̄

‖yf +Φf θ̄‖
2
2 (21)

Minimizing the MSE for the equation error leads to the

following MMSE algorithm.
(

ΦH
f Φf

)

θ̂ = −ΦH
f yf (22)

where H is an Hermite operator, it is the time-varying,

complex and covariance analysis version of the conventional

LP, Eq.(4).

C. RLP-based TV-CAR analysis[34]

Since the TV-CAR analysis is the complex, time-varying

and covariance type of LP analysis, Eq.(23) can be derived by

integrating the RLP onto the TV-CAR analysis. The ℓ2-norm

regularized term, the power spectrum at the center sample of

the frame, N/2, is applied.
(

ΦH
f Φf + λ3D

H
tvFDtv

)

θ̂ = −ΦH
f yf (23)

where λ3 is the regularization factor that controls the contri-

bution for the regularized term, and Dtv is defined as follows.

Dtv = [d0,d1, ...,dl, ...,dL−1] (24)

dl = diag[f c
l (N/2), 2f c

l (N/2), ..., If c
l (N/2)] (25)

dl is (I, I) diagonal matrix and Dtv is (I, L · I) matrix that

is generated by aligning L number of dl(l = 0, 1, ..., L− 1).
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D. TRLP-based TV-CAR method

The TRLP-based TV-CAR algorithm is realized as follows.

θ̂ = argmin
θ̄

‖yf +Φf θ̄‖
2
2 +

1

2
λ1‖θ̄ − λ2θ̂pr‖

2
2 (26)

where θ̂pr is the parameter estimated in the previous frame.

The linear equation can be easily derived as the TRLP-based

TV-CAR method.

(

ΦH
f Φf + λ1I

)

θ̂ = −ΦH
f yf + λ1λ2θ̂pr (27)

E. RLP and TRLP-based Hybrid TV-CAR analysis

Furthermore, by combining Eq.(23) and Eq.(27), we can

easily derive the following hybrid approach of the RLP and

TRLP.

(

ΦH
f Φf + λ1I+ λ3D

H
tvFDtv

)

θ̂ = −ΦH
f yf + λ1λ2θ̂pr (28)

IV. PRE-OPERATION

In speech processing, the input speech from a microphone

is air-conducted (AC) sound. The sound we hear with our ears

contains many bone-conducted (BC) components transmitted

through the skull. Unlike AC sound, the BC component is

not easily affected by noise, so it is thought that utilizing

the BC characteristics lead to improve the noise reduction

performance. As a filter with BC characteristics, we introduce

the ARMA filter in Eq(29).

H(z) =
β(1− γz−1)

1− αz−1
(29)

The ARMA filter represented by Eq.(29) is applied as pre-

processing, TV-CAR analysis is performed, an inverse filter

calculates complex residuals, and IRAPT performs F0 esti-

mation using the residuals. Fig.1 shows the spectrogram for

AC and BC filtered female speech corrupted by -5[dB] Pink

noise. According to informal listening, the BC filtered speech

contains fewer noise components. Fig.1 demonstrates that the

lower spectral components are emphasized in the BC filtered

speech compared to the AC speech. It can be thought that the

BC filter is effective for the F0 estimation.

V. EXPERIMENTS

The proposed RLP and TRLP-based hybrid TV-CAR

method with the pre-filter is compared with conventional

methods using the F0 estimation in noisy environments. The

following signals are applied in the performance comparison,

(1)The real residual computed by the LP with the IRAPT.

(2)The complex residual computed by the MMSE-based

TV-CAR has shown in Eq.(22)[32] with the IRAPT.

(3)The complex residual computed by the RLP-based

TV-CAR has shown in Eq.(23)[34] with the IRAPT.

(4)The complex residual computed by the hybrid approach

of the RLP and TRLP-based TV-CAR shown in Eq.(28) with

the IRAPT.

(5)Proposed method. The complex residual computed by the

hybrid approach of the RLP and TRLP-based TV-CAR

shown in Eq.(28) for the BC speech resulting from the

pre-filtering using Eq.(29).

Keele pitch database[41] added by white Gauss or Pink

noise[42] is applied for evaluation. The noise-corrupted signal

is filtered by the IRS filter[43] for speech coding applications.

Gross Pitch Error(GPE) and Fine Pitch Error(FPE) are adopted

as the objective criterion. The pitch database provides the

true F0. If the estimation error is smaller than p-percent

of the true F0, the estimation is regarded as SUCCEED.

Otherwise, the estimation is regarded as FAILURE. The GPE

is a percentage of FAILURE frames, and the FPE is a

variance of the estimation error at the SUCCEED frames.

The experimental conditions are shown in Table 1. Figures

2 and 3 show the experimental results for Male and Female

speech, only Female speech, respectively. In the figures,

(a) and (c) mean 10[%] of GPEs and (b) and (d) mean

10[%] of FPEs. The five lines indicate as follows. The solid

black line with lozenge means (1)LPC IRAPT2 with the

IRAPT. The blue line means (2)TVC IRAPT2C with the

IRAPT. The red line means (3)TVC RLP IRAPT2 with the

IRAPT. The green line means (4)TVC HTRLP IRAPT2

with the IRAPT. The solid black line with square means

(5)Proposed TVC HTRLPBC IRAPT2 for BC speech. Fig.3

demonstrates that the BC improves a high level of noise

corrupted female speech on GPE. Fig.2 demonstrates that the

BC improves a high level of white Gauss noise corrupted

speech on GPE. The GPE is more critical than FPE since

the GPE means fatal estimation error such as double pitch or

half-pitch, leading to low performance on speech processing.

Fig.2 also demonstrates that the performance is down for the

pink noise corrupted speech for male and female speech. The

reason is that the performance for male speech is down by

introducing the BC pre-filter. It is worth noting that the original

IRAPT for speech signal is omitted since the performance is

much lower than real and complex residual signals[34][39].

(a) AC (non BC filtered) speech

(b) BC filtered speech

Fig.1: spectrogram of the BC filtered speech

Table 1: Experimental Conditions
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Speech data Keele Pitch Database[41]

5 long Male sentence

5 long Female sentence

Sampling 10kHz/16bit

Analysis window Window Length: 25.6[ms]

Shift Length: 10.0[ms]

TV-CAR I = 7, L = 2(Time-Varying)

Basis f c
l (t) = tl/l!

Pre-emphasis Eq.(29)

TRLP/RLP λ1 = 0.02, λ2 = 0.99 / λ3 = 0.0001
Noise White Gauss or Pink noise[42]

Noise Level 30,20,10,5,0,-5[dB]

VI. CONCLUSIONS

We have proposed the improved F0 estimation based on

the regularized LP-based TV-CAR speech analysis method, a

hybrid approach of the TRLP and RLP[34] that introduces

ℓ2-norm regularized LP in the time and frequency domain.

The ℓ2-norm regularized terms penalize the rapid changes of

the estimated spectrum in the time-domain and frequency-

domain, making it possible to suppress pitch-related bias,

overestimation of the first formant. We have already evaluated

the speech analysis on the F0 estimation and have shown that

it leads to better performance. This paper introduces the BC

filter as the pre-operation combined with the pre-emphasis

filter to improve the performance. The BC components provide

more stable harmonics in low frequencies so that it can

be expected that it is robust against additional noise. The

first order AR filter realizes the BC characteristics, and it

improves the F0 estimation performance. The objective eval-

uation is compared with the conventional methods employing

F0 estimation using the estimated complex residual for IRS

filtered Keele pitch database added by white Gauss or Pink

noise. The experimental results illustrate that the BC performs

better than the conventional method, especially for female

speech. Although the performance for male speech is down,

we found out that the performance is not so bad for the other

pre-filter coefficients—the poor performance results from the

simplest AR filter. We are convinced that a more appropri-

ate pre-filter can bring better performance. The investigation

of more complicated and precise pre-filter is a continuous

way. PEFAC[44][45] is more popular and more accurate F0

estimation and it is open sourced on VOICEBOX[46]. We

intend to adopt PEFAC instead of IRAPT as the F0 estimation.

Moreover, we aim to evaluate the proposed methods on a

front-end of robust ASR[14][47]. Besides, sparse TV-CAR

analysis based on the LASSO[36][48][49], or Elastic Net will

be proposed and be evaluated on speech processing.
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Fig.3: F0 estimation performance for only Female speech
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