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Abstract—Anomalous sound detection (ASD) aims to detect
anomaly sounds for earlier warning. Recently, with the devel-
opment of machine learning methods for automatically detect-
ing anomalous situations, ASD has attracted much attention.
Previous work mainly focuses on finding acoustic patterns by
deep neural networks, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs). CNNs can catch
local characteristics, but are difficult to model long sequences.
RNNs are able to model long-time dependencies, but are time-
consuming for training. In this paper, we propose DPTrans, a
novel dual-path Transformer-based neural network for machine
condition monitoring in ASD. DPTrans consists of several en-
coders, in which acoustic features are modeled on time-dimension
and frequency-dimension by Transformer encoders. DPTrans
can learn temporal and frequency dependencies and model
interactive information effectively by taking advantages of self-
attention module. Finally, we evaluated DPTrans on the dataset
of DCASE2021 task2, the averaged AUC score was improved by
12% compared with official baseline systems.

I. INTRODUCTION

Anomalous sound detection (ASD) is developed to detect
anomalous cases before causing damage. For example, a pump
suffering from a small leakage might not been inspected
visually, but it can be detected acoustically through distinct
sound patterns. Therefore, ASD has attracted much attention
and been implemented in several scenarios, such as machine
condition monitoring (MCM) and surveillance of buildings in
recent years. The early detection of machinery with a reliable
ASD system can prevent problems and reduce the cost of
surveillance.

Machine learning based ASD methods aims to extract
acoustic patterns and automatically detect anomalous sound.
In general, those methods can be categorized into two classes,
i.e., supervised and unsupervised learning. In supervised meth-
ods, normal and abnormal sounds should be available and
annotated. But in fact, the abnormal samples are rare and
usually difficultly collected. On the contrary, unsupervised
methods can distinguish abnormal samples when only normal
samples are available.

Autoencoders (AEs) are a typical unsupervised learning
algorithm which have been applied for MCM [1], [2]. AEs
can learn the characteristics of input data by minimizing
the distance between reconstructed data and original data.
The acoustic features are usually presented as two-dimension
matrices, but AEs take one-dimension data as input. Therefore,
the acoustic features have to be reshaped into one dimen-
sion and the local time-frequency information may be lost.

Convolutional neural networks (CNNs) are able to extract
local invariant time-frequency features and improved the per-
formance of urban sound tagging [3] and MCM [4]. But
CNNs can not handle the problem of long-time dependencies.
Therefore, recurrent neural networks (RNNs) are used for
catching temporal dependencies. However, the disadvantage of
RNNs is that it needs many hidden cells to model sequence.
Recently, attention mechanism has been proposed to solve the
above problems. The multi-head self-attention layers are able
to catch local and global dependencies and process information
in parallel. Transformer based architectures achieved state-of-
the-art performance in computer vision and natural language
processing tasks [5], [6].

In the fields of speech separation on single-channel time-
domain audio, dual-path networks have been proposed [7],
[8]. The original dual-path architecture achieved state-of-the-
art performance, since it can catch long sequence dependencies
by alternate blocks. In this paper, we develop a novel dual-path
Transformer-based neural network for MCM. However, due
to the complexities of background noise and machine types,
a time-frequency representation is more distinguishable than
time-domain signal. Therefore, the proposed DPTrans takes
log-Mel spectrogram as sound representation. The input spec-
trogram is modeled alternately by stacked DPTrans encoders.
In each DPTrans encoder, Transformer-based encoders model
the spectrogram on time-dimension and frequency-dimension
in turn. We trained DPTrans using machine section IDs to
distinguish the section of input signal. The network outputs the
softmax anomaly score for each section, which is calculated
as the averaged negative logarithm of predicted probabilities
for the correct section. The main contribution of this work is
that we proposed a dual-path Transformer-based network to
model the sound in time-frequency domain and firstly applied
it to MCM.

The rest of this paper is organized as follows: Section
II introduces the proposed DPTrans. Section III describes
the details of experiments. Section IV gives the results and
discussion. Section V concludes this paper.

II. PROPOSED DPTRANS FOR MCM

Given a recording x, we transforms x into a time-frequency
matrix X ∈ RT×F of T frames and F frequency bins. Let us
assume the input of DPTrans is Zt = (Xt, ...,Xt+P−1) ∈
RP×F , where Xt is the tth frame of X. Zt is obtained by
concatenating consecutive P frames from X.
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Fig. 1. The overview architecture of DPTrans. DPTrans stacks several DPTrans encoders. In a single DPTrans encoder, the input spectrogram is modeled by
frame encoders and frequency encoders.

The overview architecture of DPTrans is shown in Fig.1.
The procedure of proposed DPTrans is described in the
following.

A. Transformer Encoder

Transformer is a sequence to sequence model which usually
contains an encoder and a decoder. A Transformer encoder
consists of positional encoding, multi-head attention (MHA)
and position-wise feed-forward network (FFN).

We used two types of Transformer encoders in DPTrans to
model the input spectrogram on different dimension. There-
fore, positional encoding is not suitable in DPTrans, and only
MHA and FFN are kept.

In each MHA module, we apply multiple scaled dot product
attention modules. The attention of all heads are linearly
concatenated and computed on the elements of sequence, and
we employed residual connections and layer normalization
(LN) [9] on the output of MHA. We fed the output of MHA
into FFN followed by residual connections and LN to get
the final output of transformer encoder. We formulate the
processing as:

Z′t = LN (FFN (LN (MHA (Zt)))) , (1)

where Z′t ∈ RP×F is the output of a transformer encoder.

B. DPTrans Encoder

DPTrans stacks several DPTrans encoders, each of them
consists of two types encoders, i.e., frame encoder and fre-
quency encoder. In a single DPTrans encoder, the input Zt is
modeled on frames by the frame encoder with embedding size
of F and sequence length of P . Then the output of the frame
encoder is transposed and modeled on frequency bins by the

frequency encoder with embedding size of P and sequence
length of F . Moreover, the frame and frequency encoder can
be repeated for many times in the DPTrans encoder. The
processing of a DPTrans encoder can be expressed as:

Zt = Ef

(
Et (Zt)

T
)
= En (Zt) , (2)

where Et(·) and Ef (·) presents the frame and frequency
encoders, and Zt is the output of the nth DPTrans encoder
En(·), n ∈ {1, ..., N}. After that, Zt is fed into the next
DPTrans encoder.

At the end of DPTrans, a fully-connected (FC) layer is
applied and the time dimension is reduced on the output of
DPTrans encoders to get the final output:

z̃ = FC (EN (... E1 (Zt))) , (3)

where z̃ ∈ RS is the probability vector predicted by DPTrans,
and S is number of machine sections.

C. Loss Function

Cross entropy is used to calculate the classification loss, the
loss function L can be formulated as follows:

L = CrossEntropy (z̃, l) , (4)

where l ∈ RS is the real one-hot label of machine section
IDs. By shifting the P by L frames, we can get B = (T −
P )/L spectrograms from X. The anomaly score of the time-
frequency matrix X is calculated as:

A(X) =
1

B

B∑
b=1

log {1− p(Zt)

p(Zt)
}, (5)

where p(·) is the softmax output for the correct section.
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III. EXPERIMENTS

A. Dataset

The dataset used for evaluating DPTrans for MCM is the
official dataset of Detection and Classification of Acoustic
Scenes and Events (DCASE) 2021 task2. This dataset contains
seven types of machines, including toyCar, toyTrain, fan,
gearbox, pump, slider rail and valve. In addition, more data
are provided to solve the problem of domain shift [10], [11].

The development dataset consists of three available sections
for each machine. In each section, around 1,000 normal
recordings in source domain and 3 normal recordings in
target domain are provided for training, and around 100 clips
of normal and anomalous recordings in source and target
domain are provided for testing. Each recording is a 10-second
audio that records the running sounds of a machine and its
environmental noise. The overview of development dataset is
shown in Fig.2.

Fig. 2. The overview of the development dataset.

B. Experimental Setups

We loaded a recording x with the default sample rate of
16000Hz and applied short time Fourier transform (STFT) on
x with a Hanning window size of 1024 and hop length of 512
samples. Mel filters with bands of 128 are used to transformed
STFT spectrogram to Mel spectrogram. Mel spectrogram are
calculated by the logarithm to get log spectrogram Zt. In our
experiments, we extracted features using frequency bins F of
128 and different consecutive frames P of 64, 128 and 256.

In the training stage, we used the data of source and target
domain and trained DPTrans for 20 epochs using Adam [13]
as the optimizer. Moreover, we used a dynamic strategy to
adjust the learning rate during training with an initial learning
rate of 0.125. The learning rate increases linearly within the
warm-up steps, and then decays by 0.98 per every two epochs.

We used 3 DPTrans encoders with 1 Transformer encoder
layer and the head of MHA is set to 8. Moreover, DPTrans

takes log-Mel spectrograms as input, the embedding size and
sequence length of Transformer encoders is equal to P or F .

C. Baseline systems

To verify the performance of DPTrans, we compared the
following methods:

Baseline-1 [12]: The organizers provide an AE-based base-
line system. As shown in Table I, in this baseline, 5 con-
secutive frames of log-Mel spectrogram with bands of 128
are reshaped and taken as the input. The architecture of AE
contains total 9 dense layers, the number of units of the first
and last four layers is 128 and the number of units of the fifth
layer is 8. AE is trained to minimize the minimum reconstruct
error for normal sound, and the anomaly score is calculated
as the mean reconstruct error of the observed sound.

Baseline-2 [12]: The organizers also provide a
MobileNetV2-based baseline. As shown in Table I, this
baseline takes 64 consecutive frames of log-Mel spectrogram
with bands of 128 to identify from which section the observed
signal was generated.

D. Data Augmentation Methods

Mixup: Data augmentation is an effective way to improve
generalization and prevent overfitting of neural networks. In
our system, we employ mixup as the data augmentation
method in training stage [14]. The mixup operations on the
training samples are expressed as follows:

x̃ = λxi + (1− λ)xj (6)

ỹ = λyi + (1− λ)yj , (7)

where xi and xj are the input features, yi and yj are the
corresponding target labels and λ ∈ [0, 1] is a random number
drawn from the beta distribution.

SpecAugment: SpecAugment [15] is a simple but effective
method which was proposed for augmenting speech data for
speech recognition. SpecAugment contains frequency masking
and time masking applied on spectrogram. The frequency bins
and time frames are randomly masked by random number of
masks with random width.

E. Evaluation

The evaluation metric used in our experiments is Area
Under Curve (AUC) of the receiver operating characteristic
curve. The AUC for each machine type and domain of all
sections are calculated to compare the performance.

To determine the anomaly detection threshold, we assume
that A(·) follows a gamma distribution. The parameters of the
gamma distribution are estimated from the histogram of A(·),
and the anomaly detection threshold is determined as the 90th
percentile of the gamma distribution.

IV. RESULTS AND DISCUSSION

Experimental results are given in the following Table II. In
Table II, we present AUC results for each machine type of
baseline and the proposed DPTrans.
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TABLE I
SETTINGS OF EXPERIMENTAL METHODS.

Methods Frames (P) Frequency bins (F) Network Encoders Encoder layers Heads
Baseline-1 5 128 AE - - -
Baseline-2 64 128 MobileNetV2 - - -
DPTrans-1 64 128 DPTrans 3 1 8
DPTrans-2 128 128 DPTrans 3 1 8
DPTrans-3 256 128 DPTrans 3 1 8

TABLE II
AUC SCORES OF EXPERIMENTAL METHODS.

Machine ToyCar ToyTrain Fan Gearbox Pump Slide rail Valve Averaged
Domain source target source target source target source target source target source target source target

Baseline-1 0.68 0.58 0.72 0.54 0.66 0.62 0.63 0.71 0.71 0.56 0.78 0.6 0.55 0.53 0.63
Baseline-2 0.60 0.6 0.68 0.5 0.65 0.64 0.71 0.65 0.68 0.6 0.74 0.51 0.56 0.58 0.62
DPTrans-1 0.49 0.56 0.79 0.44 0.64 0.67 0.79 0.72 0.72 0.66 0.88 0.65 0.83 0.71 0.68
DPTrans-2 0.55 0.55 0.79 0.50 0.7 0.67 0.75 0.71 0.8 0.65 0.81 0.58 0.9 0.81 0.70
DPTrans-3 0.59 0.58 0.82 0.47 0.68 0.71 0.70 0.73 0.71 0.66 0.81 0.54 0.86 0.76 0.69

A. Comparison of Methods

The proposed method is compared with two official baseline
systems in Table II, our DPTrans achieves state-of-the-art
performance and significant improvements for most of the
machine types. For toyCar, AE based baseline system achieves
the best AUC scores in source domain, AE-based baseline and
DPTrans-3 achieves the best AUC scores in target domain. For
toyTrain, DPTrans-3 achieves the best AUC scores in source
domain, AE-based baseline achieves the best AUC scores
in target domain. For other machine types, DPTrans based
methods perform better than two baseline systems. Compared
with AE and MobileNetV2 based methods, the AUC score
averaged on all machine types is improved by 11.1% and
12.9%, respectively.

B. Comparison of Frame Length

From Table II, longer frame length, which also equals
to embedding size of the first Transformer encoders, can
significantly improve the performance of toyTrain, fan, pump
and valve. Specially, the AUC scores of valve are improved
to 0.9 and 0.81 in source and target domain. This can be
interpreted that valve sound happens in extreme short frames.
If shorter P is used for generating feature, there will be more
irrelevant spectrograms in training data. Therefore, longer
frame length may contain more relevant sounds and it is better
for extracting distinguishable acoustic patterns.

However, shorter frames length achieves better performance
for the machine types of gearbox and slider rail. The sound of
slider rail could happen in relative short frames, it is explained
that proper frame length is critical for recognizing machine
sounds. Two example spectrograms are presented in Fig.3 to
show the characteristics of valve and slider rail sound.

V. CONCLUSIONS

In this paper, we proposed DPTrans, a novel dual-path
Transformer-based neural network, for anomalous machine
sounds monitoring. In our approach, the log-Mel spectrogram
of normal sound is modeled by consecutive DPTrans encoders,

(a) valve

(b) slider rail

Fig. 3. Two example spectrograms of valve and slider rail sound.

where Transformer encoders are implemented for sequentially
modeling the spectrogram on frames and frequencies. We
averaged the predicted probabilities for the correct section
across all spectrograms generated from the log-Mel spectro-
gram to get the anomaly scores. Experiments of comparing
methods are conducted on the latest development dataset of
DCASE2021 task2, and our proposed method outperformed
the two official baseline systems. It can be seen from the
experimental results that DPTrans can catch local and global
interactive relationship on time-dimension and frequency-
dimension. Moreover, the length of frame is important for
detecting anomaly sounds of different machine types.
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