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Abstract—Microphone array speech separation in high 
reverberant and low signal-to-noise ratio (SNR) environments, is 
still a challenge. This paper utilizes a deep neural network (DNN) 
and spatial information of a microphone array to train ideal 
binary masks and ideal ratio masks of target signals, then utilizes 
these masks to separate the target speech signals in a noisy and 
reverberant environment.  In sound localization, SRP-PHAT is 
robust to noise and reverberation, while the SRP-PHAT 
computation is time-consuming in real application.  To alleviate 
this problem, GSRP-PHAT which combines SRP-PHAT with 
Gammatone filter banks is proposed.  GSRP-PHAT implying 
spatial information is applied as the input feature for the DNN. 
The simulation results show that the proposed algorithm achieves 
better performance in terms of source-to-distortion ratio, source-
to-interference ratio, and short-time objective intelligibility in low 
signal to noise ratio (SNR) and high reverberant environments for 
omnidirectional speech separation.  Also, the proposed method 
can still maintain the performance under the untrained conditions. 

I. INTRODUCTION 

Speech separation is to separate target signal from the mixed 
signal with noise and reverberation, which is widely applied in 
various scenarios, such as intelligent assistant and hearing aids 
[1].  Multi-channel speech separation methods with spatial 
characteristics are superior to monaural methods [2].  Also, in 
speech separation, deep neural networks (DNNs) is utilized to 
estimate the spectrum masks or directly map to spectrum or 
waveform of the clean speech [3, 4]. 

Discriminative features are essential for the mask estimation 
and spectrum mapping in separation. However, traditional 
features, such as the logarithm power spectrum (LPS) and the 
Mel-frequency cepstral coefficient (MFCC), are lack of spatial 
information, which is insufficient for microphone array signals.  
Time difference of arrival (TDOA) can be conveniently 
inferred by a generalized cross-correlation (GCC) function in 
array signals processing [5].  Among various weight functions 
used to calculate GCC, phase transform (PHAT) achieves 
excellent results in noisy environments.  Steered-response 
power phase transform (SRP-PHAT) is a classical approach 
that utilizes GCC weighted by PHAT to obtain a robust TDOA 
[6].  However, this method is time consuming and impractical 
in real applications.  Some methods, such as LEMSalg [7] and 
GS [8], have been introduced to solve this problem.  
Unfortunately, the speech quality obtained using the 
aforementioned methods is inferior to SRP-PHAT.  Besides, 
some improvements of SRP-PHAT have been proposed.  SVD-
PHAT is a real-time method for SRP-PHAT based on the fast-

singular value decomposition, and the calculation of SVD-
PHAT can be divide into two parts: off-line part calculating for 
the microphones array only, and online part calculating for 
received signals and executing search algorithm [9].  Hoang Do 
[10] proposed a real-time computation method for SRP-PHAT 
utilizing the stochastic region contraction. 

Human's hearing system has the exceptional ability to extract 
interested sound source in chaotic environments.  Inspired by 
this auditory property, computational auditory scene analysis 
(CASA) was proposed [11].  CASA simulates the perception 
process of human auditory system in two stages.  The first stage 
is segmentation, dividing original speech signal into Time-
Frequency (TF) units.  And the second stage is grouping, 
aggregating the TF units which are from the same sound source.   

Supervised learning is frequently applied in CASA for 
speech separation.  Jiang [12] combines DNN with the binaural 
separation task, training Inter-aural time difference (ITD), 
Inter-aural level difference (ILD) and Gammatone-frequency 
cepstral coefficient features in each TF units to obtain the 
estimated ideal binary mask (IBM).  The simulation result 
shows that DNN has generalization to spatial structure of 
source signals.  Erdogan [13] associates masks with 
beamforming.  The algorithm firstly estimates monaural masks 
for each microphone, then separates signals with minimum 
variance distortion less response—one of optimization criteria 
of adaptive beamforming. 

Training target is an indispensable part of the network.  
Training targets can be speech’s waveform [14-16], masks and 
parameters of filters or beam-formers [17-20].  Among these 
targets, Ideal ratio mask (IRM) and phase sensitive mask 
(PSM) are widely used. Though IRM is the essentially optimal 
mask and generally attains a higher source-to-distortion ratio 
(SDR) [21], IRM is inferior to PSM in terms of speech 
intelligibility, such as short-time objective intelligibility 
(STOI) and perceptual evaluation of speech quality (PESQ) 
[22].  PSM is a real number, while complex IRM (cIRM) has 
complex part which contains amplitude and phase information 
[23].  However, cIRM is hard to be exploited through common 
DNN [24]. 

Inspired by the recent progress, this paper proposes a 
microphone array speech separation algorithm based on DNN 
and improved SRP-PHAT.  In our studies, the modified SRP-
PHAT is proposed to reduce computational complexity.  Also, 
these features contain the spatial information of SRP-PHAT 
and frequency information of Gammatone filter banks.  Two 
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different masks, IBM and IRM are introduced as the DNN 
training target.  Simulation is conducted in the noisy and 
reverberant environment.  The results indicate that the 
proposed algorithm effectively separates target signal, even in 
the high reverberant environment and untrained conditions. 

The remainder of this paper is organized as follows.  Section 
II presents an overview of the proposed array speech separation 
system, including feature extraction and analysis.  The 
structure of DNN is described in section III. Section IV 
presents simulation results and analysis.  The conclusion is 
drawn in section V. 

II. SYSTEM OVERVIEW 

This paper introduces a modified SRP-PHAT named GSRP-
PHAT as the training feature of DNN to estimate the masks.  
GSRP-PHAT combines SRP-PHAT with Gammatone filter 
banks.  Here in our study, IBM and IRM are selected as the 
training targets.  The dimension of each training target is 37, 
including masks of the noise and the signals from 36 azimuths.  
The GSRP-PHAT is to estimate the IBM and IRM for each TF 
unit through DNN, then these masks are utilized to separate and 
reconstruct the target speech signals.  

The structure of the proposed algorithm is shown in the Fig.1. 
Assuming that the number of microphones and speakers are 

M and N respectively, the received signal of the mth 
microphone in a noisy and reverberant environment can be 
expressed as: 

1

( ) [ ( ) ( )] ( ) ( ), 1,2,...,
N

m pm pm pm p m
p

x t a t h t s t v t m M 


      (1) 

where terms apm and τpm denote attenuation coefficient and 
rectilinear propagation latency from the pth speaker to the mth 
microphone respectively.  hpm(t) represents the impulse 
response of the reverberation.  sp(t) is the source signal of the 
pth speaker.  vm(t) represents the white noise received by the 
mth microphone and it is assumed to be uncorrelated with 
speech signals.  Symbol ‘*’ stands for linear convolution 
operation. 
 

 
Fig. 1   The block diagram of the proposed algorithm 

A. Feature Extraction 

After preprocessing, the received signal from each 
microphone has been separated into frames.  The traditional 
SRP-PHAT feature of each TF unit is formulated as: 
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where k and l denote the indexes of the kth frame and the lth 
subband respectively.  Xu

l(k,ω) and Xv
l(k,ω) denote the 

spectrum of temporal signals through the lth Gammatone filter.  
Superscript ‘*’ stands for conjugation operation.  τ(θ,u,v) 
represents the rectilinear propagation latency between the uth 
and vth microphone given the azimuth of the sound source θ, 
which can be expressed as (3) if the microphone array is 
circular and the radius of the array is R. 

cos( ) cos( )
( , , ) u vR R

u v
c

   
 

  
                 (3) 

where φu and φv represent the azimuths of the microphones 
relative to the center of the array respectively.  Term c 
represents acoustic velocity. 

According to (2), amplitude suppression introduced by 
Gammatone filter is removed because of PHAT [25].  This 
problem severely degrades the performance of Gammatone 
filter banks.  To alleviate this problem, this paper proposed 
GSRP-PHAT which combines SRP-PHAT with Gammatone 
filter banks.   

The GSRP-PHAT feature contains both frequency 
information of Gammatone filter banks and phase information 
of SRP-PHAT, which are be formulated as follows: 
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       (4) 

where the frequency range of the lth Gammatone filter is from 
ω1

l to ω2
l, the corresponding amplitude range is [-20, 0]dB.  

Xu(k,ω) is the spectrum of kth frame.  
The advantages of the GSRP-PHAT are described as 

follows: 
1. Speech signals of all microphones do not need to be 

filtered by Gammatone filter, according to (4). Assuming the 
length of signal at each channel is L, the length of each filter is 
F, and the number of Gammatone filter is G.  Then, the 
reduction of computation are MLFG multiplications and 
M×G×max(F,L) additions. 

2. The frequency range of SRP-PHAT in (2) is larger than 
that of GSRP-PHAT in (4), which reduces the computation of 
GSRP-PHAT extraction.  

In this paper, each frame is divided into 32 subbands 
corresponding 32 GSRP-PHAT values, and GSRP-PHAT has 
360 dimensions. 

B. Analysis of GSRP-PHAT 
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GSRP-PHAT are analyzed in certain acoustic environment 
to verify the effectiveness.  A planar and uniform circular array 
consisting of six omnidirectional microphones is selected.  
Clean speech of a male and a female, are randomly chosen from 
TIMIT corpus, and the speech sources are located on the 
azimuth of 60 and 120 respectively.  Also, Gaussian white 
noise is added to each microphone and SNR is 20dB.  GSRP-
PHATs of various subbands are extracted for each frame, 
which are displayed in Fig. 2. 

In Fig. 2, brightness represents the amplitude.  Abscissa is 
the frames index, and ordinate represents azimuth.  It can be 
seen from the Fig. 2 that the highest value appears around 
degree of 60 and 120 in most frames.  Moreover, GSRP-PHAT 
changes in different subbands, which indicates that in the same 
TF unit, there is usually only one sound source.  To testify this 
phenomenon, IRM is calculated for each TF unit shown in 
Table 1.  From the Table 1, GSRP-PHAT conforms to IRM 
label, demonstrating that GSRP-PHAT is able to distinguish 
energy distribution at various azimuths and TF units. 

 

 
Fig. 2   GSRP-PHATs of different subbands 

Table 1   IRM label of the simulated signal 

Subband 60° 120° Noise 

17 0.6539 0.2619 0.0841 

18 0.7255 0.1650 0.1095 

23 0.0098 0.9843 0.0059 

24 0.0221 0.9730 0.0049 

 

III. DNN BASED SPEECH SEPARATION 

A. Training Targets 

In this paper, IBM and IRM are applied as training targets 
respectively, and the corresponding algorithms are called 
DNN-IBM and DNN-IRM.  In our algorithm, intervals of 
azimuths is set to 10, and IBM is a vector with 37 dimensions, 
representing masks on noise and signals from 36 azimuths.  
IBM vector for target source can be described as IBM=(IBM0, 
IBM1,…, IBM36), where IBM0 indicates the mask on the noise 
and is defined as: 

0

1, ( , ) 0
( , )

0,

SNR k l
IBM k l

otherwise


 


                        (5) 

where (k,l) denotes the TF unit of the kth frame and the lth 
subband.  

The remainder scalars of IBM vector indicate masks on the 
assumed sound source at nth azimuth and can be formulate as: 

2 2 21,    ( , ) max( ( , ), ( , )), 1,...,36
( , )

0,   
n i

n

s k l s k l v k l i
IBM k l

otherwise

   


(6) 
where sn

2(k,l) and si
2(k,l) are the energy of the assumed sound 

source at nth azimuth and the rest azimuths respectively.  v2(k,l) 
is the noise energy of TF unit.  The loss function of IBM-DNN 
algorithm is 

36
'

0

ln( )IBM n n
n

J IBM IBM


                     (7) 

where IBMn is the ideal value, and IBMn
’ is the output of the 

network.  

Similar to IBM, IRM of each TF unit is a 37-dimentional 
vector which can be calculated as follows: 
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The loss function of IRM-DNN algorithm is 

21

2IRMJ  'IRM - IRM                       (9) 

where IRM=(IRM0, IRM1,…,IRM36) is the ideal value, and 
IRM' is the output of the network. 

B. Speech Reconstruction 

Since the speech signals have time correlation, the moving 
average filter is applied to masks, which is expressed as 
follows: 

'

'( , )

( , )
2 1

d

k d

k k l

k l
d








 M

M                      (10) 

where M(k,l) stands for IBM(k,l) or IRM(k,l).  d denotes the 
number of moving frames.  In this paper, d is set to 2.  

Target signal is reconstructed by the mixed signal and the 
masks as follows: 

( , ) ( , ) ( , )nns k l M k l x k l                      (11) 

where x(k,l) denotes the mixed signal, M̅n(k,l) is the mask at nth 
azimuth.  
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C. Architecture of DNN 

The architecture of DNN is shown in Fig. 3.  Five hidden 
layers with 512 neurons are utilized.  Batch Normalization 
(BN) is utilized and the LReLU is applied as the activation 
function. 

D. Network Training  

Kaiming initialization and adaptive moment estimation 
optimizer are utilized to train the network.  Initial learning rate 
is set to 0.001.  Validation set is employed to avoid over fitting.  
During the training, the loss function of the validation set is 
calculated at the end of each iteration.  And if it does not 
decline for the first time, the learning rate will be reduced to 
1/10 of the original.  And the training stage will stop when the 
loss function of validation set doesn’t decline for the second 
time. 

IV. SIMULATION AND RESULT ANALYSIS 

A. Simulation Setup 

The microphone array is comprised of six omnidirectional 
microphones uniformly arranged along a circle as shown as in 
Fig. 4.  Radius of the array is 10 cm.  The array horizontally 
locates in the center of a cube-shape chamber with the size of 
7m×6m×3m.   

Clean speech signals are randomly selected from TIMIT 
corpus.  The room impulse response is generated by Image 
method [26], the clean speech signal convolves with room 
impulse response to generate reverberant environment.  
Gaussian white noise is added and is uncorrelated with signals. 

There are 9 acoustic environments simulated in both training 
and testing stage, including reverberation time RT60 (0, 200ms 
and 600ms) and SNRs (0 10dB and 20dB).  For the testing, 
besides above-mentioned conditions, other SNRs (3dB, 5dB, 
7dB 9dB and 15dB) with higher RT60 (800ms) are included to 
investigate the generalization.  Here, T0, T200 and T600 mean 
that the reverberation time RT60 are 0ms, 200ms and 600ms 
respectively. 

 
Fig. 4   Arrangement of microphone array 

SDR, source-to-interference ratio (SIR) and STOI are treated 
as the performance measures.  SDR estimates general 
distortion of the signal.  SIR assesses the effects of interference 
signals on the target signal.  STOI, ranging between 0 and 1, 
quantifies the intelligibility of the speech. 

B. Evaluation and Analysis 

First, we evaluated the performance of the algorithm in the 
same acoustic environments as the training stage.  The metrics 
for different algorithms is shown in Fig. 5, Fig. 6 and Fig. 7. 

According to Fig. 5, in high SNR and low reverberation 
conditions, DNN-IBM has a slight advantage over SDR.  
However, with the increase of reverberation, DNN-IRM 
performance are comparable with DNN-IBM.  According to 
Fig. 6, DNN-IBM exhibits a poor performance on SIR, because 
the energy in each TF unit is from different sound source 
signals.  When the locations of different sound source signals 
are closer, IBM labels will distribute interference signals’ 
energy to the target signal.  According to Fig. 7, in 

Fig. 5   SDR comparison of different algorithms 

 
Fig. 6   SIR comparison of different algorithms 

Fig. 7   STOI comparison on of different algorithms 
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Fig. 3   Architecture of DNN 
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environments with no reverberation and high SNR, DNN-IRM 
is slightly inferior to DNN-IBM.  However, with the increase 
of reverberation and noise, DNN-IRM has better STOI than 
DNN-IBM.   

According to Fig. 5, Fig. 6 and Fig. 7, in different 
reverberation environments, noise has weak effect on above-
mentioned three metrics, indicating that the proposed algorithm 
is robust to the noise.  The reasons are described as follows: 

1. Application of Gammatone filter in CASA brings more 
robust features to distinguish noise and speech in TF unites.   

2. IBM/IRM has addition noise label to suppress noise. 
The performance of the DNN-IRM is further evaluated in the 

environments with SNRs are different from those of the 
training stage.  The reverberation time is 800ms.  The results 
are shown in Table 2. 

From the Table 2, these three performance measures, SIR, 
SDR and STOI, change smoothly.  Although the SNR and 
reverberation time in the testing stage differ from that of the 
training stage, there is no obvious performance degradation, 
which means that even if the testing acoustic environment does 
not match the training acoustic environment, the proposed 
algorithm can still achieve good separation result, and maintain 
stable speech intelligibility.  

Also, we compare the IRM-DNN performance in matched 
environment and unmatched environment, which are shown in 
Fig. 8, Fig. 9 and Fig. 10. 

Table 2   The performance of IRM-DNN in 800ms reverberation 
environments 

SNR(dB) SDR(dB) SIR(dB) STOI 

0 0.495  7.316  0.52  

3 0.921  8.170  0.53  

5 1.168  8.650  0.54  

7 1.378  9.009  0.55  

9 1.549  9.302  0.55  

10 1.635  9.429  0.55  

15 1.878  9.839  0.56  

20 1.951  9.967  0.56  

 
 

 
Fig. 8   SDR of DNN-IRM in 200ms, 600ms and 800ms reverberation and 

0dB, 10dB and 20dB SNR environments 

 
Fig. 9   SIR of DNN-IRM in 200ms, 600ms and 800ms reverberation and 

0dB, 10dB and 20dB SNR environments 

 
Fig. 10   STOI of DNN-IRM in 200ms, 600ms and 800ms reverberation and 

0dB, 10dB and 20dB SNR environments 

 
According to Fig. 8, Fig. 9 and Fig. 10, the performance 

degradation trend is reasonable from T200 to T800, which 
indicates that DNN-IRM can still maintain the good 
performance under the unmatched environments.  The results 
demonstrate the generalization of the proposed algorithm.   

V. CONCLUSION 

This paper proposes a microphone array speech separation 
based on DNN and GSRP-PHAT.  The GSRP-PHAT is the 
modified version of SRP-PHAT, which combines spatial 
information of SRP-PHAT and frequency information of 
Gammatone filter.  The utilization of GSRP-PHAT obviously 
reduce the computational amount.  The stimulation results 
indicate that the proposed algorithm based on DNN and GSRP-
PHAT can achieves high separate performance and 
generalization in noisy and reverberant environments. 
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