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Abstract—Epileptic focus localization based on intracranial
electroencephalogram (iEEG) signal is a key task before the
patient’s surgery, which is time-consuming by visual diagnosis of
clinical experts and its accuracy directly affects the effectiveness
of surgery. Recently, many machine learning methods have been
applied to automatic epileptic focus localization. However, most
studies have performed feature extraction and classification based
on single type of features, leading to less robustness to noises
and degraded performance. In this paper, inspired by making a
diagnosis from multiple angles in practical situation, we proposed
a multi-set feature fusion strategy by using tensor representation
technique. As compared to the existing linear fusion strategy,
our proposed tensor fusion approach can significantly enhance
the expressive power of the model by taking into account
the feature interaction information. We integrate tensor fusion
strategy into deep convolutional neural network, yielding a new
method for automatic epileptic focus localization. Experimental
results demonstrate that our proposed model based on multi-set
tensor fusion can achieve the best performance among single type
features based models and the linear fusion model.

I. INTRODUCTION

Epilepsy is a common neurological disease of brain caused
by the abnormal discharge of brain cells. According to the
statistics of the World Health Organization (WHO), approx-
imately 50 million people are suffering from epilepsy and
causes a series of troubles in the patient’s daily life. Currently,
patients with diagnosed epilepsy will be treated with med-
ication first in clinical practice. Then, after long-term drug
treatment, part of the patients will be fully recovered, but
part of the patients will need to take drugs for whole life.
The remaining patients will develop drug resistance causing
treatment failure. For these patients, surgical removal of the
epileptic focus (lesion) has become an option. Before surgery,
clinical experts first needs to locate the focus of the epilepsy.
The steps of localization include: (i) the patient’s iEEG signal
are recorded (usually for one week, and with a minimum of
two or three days); (ii) clinical experts evaluate the iEEG
signal by visual inspection; and (iii) the final diagnosis is
made by a team of experts after discussion and vote. The
signal recorded from the epileptogenic area is called focus,
and the signal recorded from the non-epileptogenic area is

called non-focus, compared to the non-focus signal, the focus
signal includes some special waveforms such as spike waves,
sharp waves, slow waves, spike-and-slow-waves and so on.
Visual assessment is time-consuming, experience-dependent
and subjective, the diagnosis by different clinical experts is
usually not the same. Because of this, nowadays, the efficiency
of localization by physician is low in clinical diagnosis, and
patients may even be on hold for treatment. Therefore, it is
highly demanding for automatic localization of epileptic focus.

In recent years, many diagnostic aided methods have been
proposed that can reduce the workload of clinical experts
in visual judgement. Most methods include two steps: (i)
feature extraction and (ii) classification. In the feature extract
step, several techniques such as empirical mode decomposi-
tion (EMD) [1], [2], wavelet transform (WT) [3], [4], [5],
entropy [6], [7], [8], phase-amplitude coupling (PAC) [9], [10]
are usually used. In the second step, support vector machine
(SVM) [11], random forest [12], k-nearest neighbor [13]
and neural networks [14] are usually used as a classifier.
These methods have helped clinical experts in their diagnosis,
but unlike the current diagnosis of clinical experts, these
methods often use a single type of feature for training model.
However, just use a single type of feature will ignore other
hidden nonlinear interaction information and leads to limited
expressive power and robustness.

To improve the analyze of iEEG signal more thoroughly,
a multi-set feature fusion model is proposed that incorpo-
rates efficiently several different types of features. Due to
the nonlinear dependence, the non-randomness and the non-
stationary characteristics in iEEG signal, the entropy feature
is used in the fusion model. As focus signal includes several
kinds of abnormal waves such as spike, sharp, slow, spike-and-
slow-waves and so on. The abnormal waves have a different
frequency distribution. Therefore the frequency feature is
extracted by using Short-time Fourier Transform (STFT) and
used in the fusion model. In view of the rapid development of
convolutional neural networks in recent years, we also use one-
dimensional convolutional neural networks to extract features
of iEEG signal. In the fusion procedure, through the use of
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Fig. 1. Samples of focus and non-focus iEEG signal in Bern-Barcelona dataset.

tensor representation, the three features of (i) statistics domain
(entropy), (ii) time-frequency domain (STFT) and (iii) graphs
(CNN) are merged into one data tensor, which will also allow
interactions between features to be taken into account.

The rest of the article is organized as follows: Section
2 introduces the iEEG dataset used for evaluation of the
proposed method and describes the three set of features
considered and the multi-feature fusion strategy. Section 3
describes the experimental part, while the conclusions are
presented in Section 4.

II. METHODS

A. Dataset

In this work, the Bern-Barcelona iEEG dataset [15] is used
to evaluate the proposed approach. This dataset is recorded
by the Department of Information and Communication Tech-
nologies of the Universitat Pompeu Fabra (Barcelona, Cat-
alonia) and the Department of Neurology of the University
of Bern (Switzerland). Retrospective EEG data analysis has
been approved by the ethics committee of the Kanton of
Bern. The dataset contains a total of 15,000 samples (7,500
focus samples and 7,500 non-focus samples). The data was
collected from five patients suffering from long-standing drug-
resistant temporal lobe epilepsy, and candidates for surgery.
The signals were recorded with intracranial strip and depth
electrodes (AD-TECH, Racine, WI, USA) and preprocessed
with a sampling rate of 512 or 1024 Hz, depending on the
number of electrodes used (signals sampled at 1024 Hz were
first downsampled at 512 Hz, to homogenize the sampling
frequency of the dataset). Then, they were band-pass filtered
from 0.5 to 150 Hz (fourth-order Butterworth filter). The
label to each sample is assigned as follows: the ”focus” label
was assigned if the channel is in the epileptogenic region;
otherwise, the sample is labeled as non-focus. An example of
the focus and non-focus iEEG samples are shown in Fig. 1,
respectively.

B. Feature Extraction by Using Entropies

Taking into account the nonlinear dependence, the non-
randomness and the non-stationary characteristics of the iEEG
signal in epilepsy patients, entropy was used as one of the
features to extract. The feature extraction was carried out in
two steps. Because the different brainwave frequency bands
have different physiological meanings, the iEEG signals were

0.5–4   |   4–8   |   8–13  |  …….  |  110–130 | 130–150 Hz

…….

Ten Band-pass filters

Four types of entropy for each filtered signal

Each 20-s iEEG signal

Fig. 2. Each iEEG signal is processed with ten band-pass filters and four types
of entropy.

first pre-processed using ten three-order Butterworth band-
pass filters (0.5–4, 4–8, 8–13, 13–30, 30–50, 50–70, 70–
90, 90–110, 110–130, and 130–150 Hz, respectively). The
second step was to calculate four types of entropy (Spectral
entropy, Approximate entropy, Singular value decomposition
entropy, Sample entropy) for each frequency-band signal.
Finally, a feature matrix arranged as 11 (raw signal plus the ten
frequency-bans) ×4 (entropy measures) was extracted for each
sample. The procedure of the feature extraction is illustrated
in Fig. 2.

C. Feature Extraction by Using Short-time Fourier Transform

Focus signal includes several kinds of waves such as spike
waves, sharp waves, slow waves, spike-and-slow-waves and
so on. Each one of them has its own frequency range [16].
Therefore, it will be useful to characterize the iEEG signal
from a time-frequency perspective. The Short-time Fourier
Transform (STFT) is then used to generate the spectrogram,
where the window length is 1 second and the overlap between
the windows is 0.8. The output of the STFT feature is a matrix
of size 257 × 101. An example of the spectrogram of the focus
and a non-focus sample is shown in Fig. 3. In order to further
extract the features in the spectrogram, a shallow 2D-CNN
model with the following structure is used: Conv (kernel size
= 3, kernel number = 32, strides = 1), Maxpool (pool size = 2,
strides = 2) Conv (3, 32, 1), Conv (3, 64, 1), Maxpool (2, 2),
Conv (3, 64, 1), Conv (3, 128, 1), Maxpool (2, 2). BatchNorm
layer and ReLU function are used behind the Conv layer.

D. One-dimensional Convolutional Neural Network

Recently, the CNN model shows an increasingly important
role in multiple fields due to its excellent ability to extract
features. CNN has obtained great success in image data
processing, where 2D-CNN is normally used. EEGNet [17]
is a successful application of 1D-CNN to EEG signal, authors
found that using one-dimensional convolution could achieve a
filter-like effect. To process the time series data, the 1D-CNN
model is used to extract the iEEG wave feature in graphics.
The 1D-CNN model architecture is as follows: Conv (kernel
size = 3, kernel number = 32, strides = 1), Conv (3, 32, 1),
Maxpool (pool size = 4, strides = 4), Conv (3, 64, 1), Conv

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1324



0 5 10 15 20
Time [s]

0

100

101

102
Fr

eq
ue

nc
e 

[H
z]

Focal

0

10

20

30

40

50

60

0 5 10 15 20
Time [s]

0

100

101

102

Non-focal

0

10

20

30

40

50

60

Fig. 3. Examples of spectrogram of focus (left) and non-focus (right) sample,
using window length of one second and overlap of 0.8. The X-axis is the time
from 0-20 s and the Y-axis is the frequency from 0-256 Hz (in log scale).

(3, 64, 1), Maxpool (4, 4), Conv (3, 128, 1), Conv (3, 128, 1),
Maxpool (4, 4). The pooling layer is used to shorten signal
length, highlight features, and reduce calculation time, and
also can improve spatial invariance to some extent. BatchNorm
layer and ReLU function are used behind the Conv layer.

E. Multi-Feature Fusion

In order to simulate clinical experts analyzing iEEG signal
from multiple angles, a multi-feature fusion model is proposed,
which combines the entropy features, the spectrogram features
and the 1D-CNN features at the same time. The overall
architecture of our framework is shown in Fig. 4.

When the iEEG signals are fed into the model, three
different feature extractions are performed for each sample.
After obtaining the three feature vectors (STFT, entropy and
1D-CNN), the vector outer product can be used to represent
the data, but this will cause the data to expand rapidly and
will cause computational problems. To avoid this issue, a fully
connected neural network (FCNN) is added after each feature
vector, for the sake of dimensionality reduction. For the STFT
and 1D-CNN features, the FCNN includes five layers of size
1024, 512, 256, 128, and 15. For the entropy feature, FCNN
includes three layers of size 128, 128, and 15. In all the cases,
BatchNorm layer and ReLU function are used behind each
layer.

If the fusion is performed by directly calculating the outer
product of two feature vectors, the final result is a matrix
that contains only cross-feature information; the two original
feature vectors are not present in the fused feature matrix.
To preserve the original features, an element of ‘1’ is added
in each feature vector [18]. Let us consider the case of two
features fusion (z1 and z2). Using the added element of ‘1’ in
the fusion process, the fusion feature Z can be calculate as:

Z =

[
z1

1

]
⊗

[
z2

1

]
=

[
z1 z1 ⊗ z2

1 z2

]
where ⊗ indicates the outer product between vectors. This
process is illustrated in Fig. 5, in which four subregions can
be identified: the feature vectors z1 and z2 (blue and green
colours, respectively), the cross feature of z1 ⊗ z2 (purple
colour), and the constant value ‘1’.

In our model of three features, ze is the feature vector of
the entropy, zs is the feature vector of the spectrogram & 2D-
CNN, zc is the feature vector of the 1D-CNN. Then, the fusion
feature is defined as follows:

Z =

[
ze

1

]
⊗
[
zs

1

]
⊗
[
zc

1

]
where Z ∈ R16×16×16.

After the features are fused with tensor representation, the
fused features will be feed into a FCNN for classification.
The FCNN model architecture is as follows: Linear(4096,
1024), Linear(1024, 512), Linear(512, 256), Linear(256, 128),
Linear(128, 2), BatchNorm layer and ReLU function are used
behind the Linear layer (except for the last layer).

III. EXPERIMENTAL RESULTS AND DISCUSSION

Using the Bern-Barcelona dataset, five classification models
are evaluated implementing a 10-fold cross-validation strategy.
The model architectures are listed in Table I. The following
models are used, which differ from each other depending on
the type of features:

• For the entropy features, an SVM model with the kernel
of radial basis function (RBF). The hyper-parameters ’C’
and ’gamma’ are adjust by grid search (C: [1e-1, 1e1,
1e2, 1e3, 1e4], gamma: [1e-2, 1e-1, 1e1, 1e2, 1e3]).

• For the STFT features, a FCNN is used as a classifier,
which includes five layers of size 1024, 512, 256, 128,
and 2. BatchNorm layer and ReLU function are used
behind each layer.

• For the 1D-CNN features, the same FCNN used in the
STFT case is adopted as the classifier.

• For the linear fusion model, the three sets of features are
fused by linear concatenation, obtaining a global feature
of size of 1× 45. Then, the fused features are fed into a
FCNN used as a classifier, which includes three layers
of size 128, 128, and 2. BatchNorm layer and ReLU
function are used behind each layer.

• For the tensor fusion model, three sets of features are
fused using the tensor fusion procedure, obtaining a
tensor of 16 × 16 × 16. Then, the tensor features are
flattened and fed into the five-layer FCNN that is same
with the STFT case.

Each model uses the same train epoch of 600 samples
(except for the SVM model). The evaluation results of each

TABLE I
FIVE DIFFERENT MODEL ARCHITECTURES USED FOR EVALUATION

Feature Extraction Methods Classifier

STFT & 2D-CNN FCNN
1D-CNN FCNN
Entropy SVM

STFT & 2D-CNN & FCNN (Fusion)
Linear /
Tensor

FCNN1D-CNN & FCNN
Entropy & FCNN
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Fig. 4. The overall architecture of the proposed framework. The input iEEG signal is fed into all three sub-networks. The outputs of the three sub-networks
are combined through tensor representation and fed into a fully connected network for prediction.

TABLE II
CLASSIFICATION RESULTS OF FOCUS AND NON-FOCUS IEEG DATA, COMPARING SINGLE FEATURE AND MULTI-FEATURE

FUSION MODELS (MEAN ± STANDARD DEVIATION IN [%]).

Models Accuracy Precision Recall Specificity F1-Score

Entropy 87.40± 0.6498 88.49± 1.070 85.98± 0.8412 88.81± 1.056 87.21± 0.7233

STFT 89.69± 0.03978 89.20± 0.1410 90.34± 0.09234 89.03± 0.1221 89.76± 0.04491

1D-CNN 89.80± 0.04611 92.29± 0.1670 86.83± 0.1078 92.75± 0.1223 89.47± 0.05684

Fusion (Linear) 90.84± 0.05912 94.92± 0.1646 86.34± 0.1116 95.33± 0.1260 90.39± 0.06753

Fusion (Tensor) 93.44± 0.03942 94.28± 0.1110 92.50± 0.1260 94.38± 0.1371 93.38± 0.03876

11 1

=

Fig. 5. Feature vector fusion with an additional ‘1’ (two-dimensional graphical
example).

model are shown in Table II, in which the mean and standard
deviation of the last ten epochs are provided.

In the experiment results, multi-feature fusion model with
tensor fusion shows the best performance. This could be
explained by several reasons, among which the two main ones
are: (a) compared to the single feature model, the fusion model
considered three different features at the same time, while
three features are interrelated and interacted with each other.
In this way, the samples that cannot be classified well by the
original feature sets individually may be possibly classified
correctly by more expressive fused features. (b) compared to
the linear fusion model, the tensor representation preserves the
original multiple sets of features and also captures multilinear
interactions between different sets of features, which can
achieve better performance.

IV. CONCLUSION

In view of the problem of the long time and personal
experience needed in the current diagnosis of epilepsy, and
with the aim of improving the diagnostic process, an assistance
system has been proposed that can reduce the workload
of clinical experts. Furthermore, compared to the traditional
method which only uses single type of features as the basis
for judgement, the proposed method considers three types
of features extracted from different angles. This process is
similar to the diagnostic process of the clinical expert, who
can analyze the iEEG signal comprehensively. According to
experimental results, fusion models improve the performance
compared to single-feature models. In addition, unlike the
linear fusion model, cross-feature interactions between three
types of features are performed using the tensor representation.
With this approach, more effective features can be captured
from iEEG signals and annotation information, which can
significantly improve the classification performance as demon-
strated by our extensive experiments.
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