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Abstract—Network anomaly detection has been a challenge
for both industry and academia. The alarming situation of
network attacks is a worrisome problem for many Internet
services. Machine learning techniques are widely investigated
to detect suspicious events from network traffic flow. In this
paper, we investigate the DNS over HTTPS traffic classification.
The majority of related works use a variety of features from
datasets. However, some of the adopted features are specific
to some networking environments, and those features make the
trained models not generalized to other network environments.
The generalization of a machine learning model is of critical
importance, since it would affect the effectiveness when the
model is applied to other network environments. We design an
appropriate data processing pipeline to process the CIRA-CIC-
DoHBrw-2020 time series dataset, including feature selection and
data imbalance handling, in order to facilitate the generalization
of deep learning models. We develop truly generalized deep
learning models, including the LSTM model and the BiLSTM
model, to classify DoH traffic with high accuracy and low latency.
While both models achieve good performance, the BiLSTM model
performs better than the LSTM model does for both the accuracy
and the computation time.

Index Terms—Deep learning, network attack, anomaly detec-
tion, machine learning, neural network, DNS over Hypertext
Transfer Protocol Secure, DoH.

I. INTRODUCTION

The Internet has become intrinsic in our daily lives, so
information security on the Internet is of paramount impor-
tance [1]. Among all Internet protocols, the Domain Name
System (DNS) is one of the most important and widely-used
protocols. The DNS is a critical subsystem of the Internet
infrastructure, on which most Internet-applications depend [2].
The DNS is a hierarchical and decentralized system used to
name computers, services, or other resources on the Internet.
Human and machines rely on the DNS requests and responses
to find their communication targets over the Internet. Just in
the first quarter of 2019, more than five trillion DNS messages
were exchanged among users per month [3]. However, the
DNS is one of the vulnerable network protocols that have
been exploited by network attackers repeatedly over the years.
Providing secure DNS requests and responses is a challenging
task.
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The DNS over Hypertext Transfer Protocol Secure
(HTTPS), abbreviated as DoH, is already defined in the In-
ternet Engineering Task Force (IETF) Request for Comments
(RFC) 8484. The purpose of DoH is to send DNS queries and
getting DNS responses over HTTPS. General web browsers,
such as Google Chrome and Mozilla Firefox, already support
DoH. However, there exist several DNS tunneling tools, such
as dns2tcp, DNSCat2, and Iodine, that can be used by network
attackers to generate malicious DoH traffic. The detection of
malicious DoH traffic is thus important.

In this paper we investigate the traffic classification of
DoH by using machine learning and the CIRA-CIC-DoHBrw-
2020 dataset [4]. To date, Machine learning is taking many
businesses and industries by storm. Huge amount of data is
produced and processed to train machine learning models.
According to [5], over the past decade there has been an
increased interest in time series classification. Time series data
is everywhere existing in many areas of research. Look no
further than the CIRA-CIC-DoHBrw-2020 dataset which is a
time series dataset. Moreover, the CIRA-CIC-DoHBrw-2020
dataset is the first of its kind and it needs to be processed
meticulously in order to get good results from any machine
learning model. Hence, we have studied the dataset used in
this research whereby we want to contribute significantly to the
area of network security by using machine learning techniques.
Deep learning has been successfully implemented in various
applications that require time series data. The majority of
related works use a variety of features from datasets. For
example, Banadaki and Robert uses 34 features in their
work, including the SourceIP, DestinationIP, SourcePort, and
DestinationPort features [6]. However, some of the adopted
features are specific to some networking environments, and
those features make the trained models not generalized to
other network environments. We argue that the SourceIP is
apparent and can be easily changed by network attackers. In
other words, using the SourceIP feature to guarantee network
security does not represent a real world scenario. Moreover,
the timestamp feature just means the time stamp when the
data instance is collected. The timestamp feature would be
useless for future inference. To summarize, the generalization
of a machine learning model is of critical importance, since
it would affect the effectiveness when a model is applied

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1903978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



to other network environments. In this paper, we show that
the CIRA-CIC-DoHBrw-2020 dataset could be used to train
machine learning models by using fewer features compared to
the previous papers in the literature. We drop several specific
features to imitate a real intrusion detection scenario; that is,
the fewer features we use to train the machine learning models,
the more realistic it can be.

Another crucial aspect of data processing for machine learn-
ing is the data imbalance problem. In a binary classification
problem with data samples from two groups, class imbalance
occurs when one class, the minority group, contains signifi-
cantly fewer samples than the other class, the majority class.
It is important to stress that in many problems, the minority
group is the class of interest. Johnson and Khoshgoftaar stated
that highly imbalanced data poses added difficulty, as most
learners will exhibit bias towards the majority class, and in
extreme cases, may ignore the minority class altogether [7].
In this paper, we process the data to make it balanced in order
to improve the performance. We use the processed dataset
to train and evaluate two deep learning models, including
the Long Short-Term Memory (LSTM) and the Bi-directional
Long Short-Term Memory (BiLSTM) model.

The major contributions of this paper are twofold:
1) We design an appropriate data processing pipeline to

process the CIRA-CIC-DoHBrw-2020 dataset, including
feature selection and data imbalance handling, in order
to facilitate the generalization of deep learning models.

2) We develop truly generalized deep learning models to
classify DoH traffic with high accuracy and low latency.

The rest of this paper is organized as follows. In Section
II we describe the related work in the literature. The dataset
description and the data processing pipeline are provided in
Section III. The deep learning-based classification models
for DoH traffic are described in Section IV, followed by
the numerical results and discussions in Section V. Finally,
conclusions are presented in Section VI.

II. RELATED WORK

Banadaki and Robert studied a systematic two-layer ap-
proach for detecting DNS over HTTPs (DoH) traffic and
distinguishing Benign-DoH traffic from Malicious-DoH traffic
using a number of machine learning algorithms [6]. The au-
thor evaluated the CIRA-CIC-DoHBrw-2020 dataset using the
LGBM and XGBoost algorithms considering their accuracy,
precision, recall, F-score, confusion matrices, ROC curves, and
feature importance. These two algorithms outperformed the
other four machine learning algorithms. LGBM and XGBoost
algorithms show the maximum accuracy of 100% in the
classification tasks of layers 1 and 2. The author explains that
LGBM algorithms misclassified one DoH traffic test as non-
DoH out of 4000 test datasets. In addition, out of 34 features
extracted from the CIRA-CIC-DoHBrw-2020 dataset, Source
IP is the critical feature for classifying DoH traffic from non-
DoH traffic in layer one followed by the DestinationIP feature.
Interestingly, the feature DestinationIP is an important feature

for LGBM and gradient boosting when classifying Benign-
DoH from Malicious-DoH traffic in layer 2. Singh and Roy
also use machine learning techniques to detect malicious DoH
traffic and got similar results [8].

MontazeriShatoori et al. states that Domain Name System
(DNS) is the internet backbone for providing a mapping
between human-readable hostnames and computer understand-
able Internet Protocol (IP) addresses [9]. The DNS protocol
follows a decentralized hierarchical approach. The mechanism
is when a DNS client generates a DNS query requesting for
an IP address, the local DNS server responds after looking
into its cache. Technically, it does not find the answer within
cache memory, it forwards the DNS query to recursive DNS
resolver which tracks down the DNS record with repetitive
DNS queries to root name server, Top Level Domain (TLD)
name server and authoritative name servers until it gets the
target authoritative answer. They did research on identifying
the tunneling activities that utilize DNS communications over
HTTPs by presenting a two-layered approach to detect and
characterize DoH traffic using time-series classifiers. Their
paper presents a novel two-layered approach to classify DoH
traffic from non-DoH at layer 1 and characterize DoH traffic at
layer 2. They generated a labeled dataset by capturing Benign-
DoH, Malicious-DoH and non-DoH encrypted traffic in the
network premises. They also proposed a new feature-set based
on time-series representation of traffic flows by introducing the
concept of packet clumps and demonstrating the effectiveness
of this feature set in encrypted traffic characterization.

Lotfollahi et al. focused on feature extraction and classifica-
tion to handle network traffic characterization and identify end-
user applications [10]. Authors used stacked AutoEncoder and
Convolutional Neural Network for network classification. Ler-
oux et al. also worked on machine learning models based on
size and timing features to fingerprint VPN and ToR encrypted
traffic [11]. In addition, a Quick UDP Internet Connection
(QUIC) protocol based CNN classifier is developed by Tong
et al. which used flow-based and packet-based features to
identify some QUIC protocol based on Google services with
an accuracy of approximately 99% [12]. Wang et al. proposed
an end-to-end encrypted traffic classification method with ID-
CNN which integrated feature extraction, feature selection, and
classifier into one end-to-end network [13]. Buczak et al. used
traffic captured at each device and analyzed DNS tunneled data
[14]. Authors used random forest with features selected from
the previous works on this area to show that the method is
sufficiently effective even when the classifier had not seen the
tunneling technique in the training set. They also determined
the features that worked better with random forest classifier.

III. DATA PROCESSING

A. Dataset Description

In this paper, We use the CIRA-CIC-DoHBrw-2020 dataset
[4]. The authors of this dataset captured benign and malicious
DoH traffic along with non-DoH traffic, and used a two-
layered approach to classify them. The first layer is to classify
data instances as DoH or non-DoH, and to pass the data
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TABLE I
COUNT OF EACH LABEL.

Label Name Count
DoH 269,643

Non-DoH 897,493
Benign 19,807

Malicious 249,836

TABLE II
FEATURES OF THE CIRA-CIC-DOHBRW-2020 DATASET.

# Feature
1 SourceIP
2 DestinationIP
3 SourcePort
4 DestinationPort
5 TimeStamp
6 Duration
7 FlowBytesSent
8 FlowSentRate
9 FlowBytesReceived

10 FlowReceivedRate
11 PacketLengthVariance
12 PacketLengthStandardDeviation
13 PacketLengthMean
14 PacketLengthMedian
15 PacketLengthMode
16 PacketLengthSkewFromMedian
17 PacketLengthSkewFromMode
18 PacketLengthCoefficientofVariation
19 PacketTimeVariance
20 PacketTimeStandardDeviation
21 PacketTimeMean
22 PacketTimeMedian
23 PacketTimeMode
24 PacketTimeSkewFromMedian
25 PacketTimeSkewFromMode
26 PacketTimeCoefficientVariation
27 ResponseTimeTimeVariance
28 ResponseTimeTimeStandardDeviation
29 ResponseTimeTimeMean
30 ResponseTimeTimeMedian
31 ResponseTimeTimeMode
32 ResponseTimeTimeSkewFromMedian
33 ResponseTimeTimeSkewFromMode
34 ResponseTimeTimeCoefficientofVariation

instances classified as DoH to the second layer. The second
layer is to classify data instances as benign-DoH or malicious-
DoH. To give this dataset some more context and on how
it was produced, DoH traffic, including benign DoH and
malicious-DoH, was generated by accessing top 10k Alexa
websites, and used browsers and DNS tunneling tools which
support DoH protocol, respectively. TABLE I shows the count
of each label in the CIRA-CIC-DoHBrw-2020 dataset. The
count of DoH traffic is the sum of the counts of benign and
malicious DoH traffic. The count values in the table show that
the CIRA-CIC-DoHBrw-2020 dataset is highly imbalanced.
TABLE II shows the original features of the CIRA-CIC-
DoHBrw-2020 dataset.

B. Data Processing Pipeline

The data processing pipeline consists of the following parts:
1) Feature Selection: to select appropriate features without

fitting to some specific environments or time period.
2) Missing Data Handling: to drop the data instances with

missing values in one or more features.
3) Train-Test Split: to split the original dataset into two

parts, including the training set and the test set. In this
paper, we split 20% of the dataset as the test set, and
take the other 80% as the training set.

4) Data Imbalance Handling: to balance the numbers of
data instances of different labels.

5) One Hot Encoding: to convert categorical features to
numerical features in order to facilitate machine learning
methods.

6) Feature Scaling: to scale and shift the feature values
to some ranges that are suitable for machine learning
methods. In this paper, we use the min-max scaling to
transform the features by scaling each feature to [0, 1].

Detailed descriptions of the critical parts of the data pro-
cessing pipeline, including the feature selection and the data
imbalance handling, are provided in the following subsections.

C. Feature Selection
Among all features in the CIRA-CIC-DoHBrw-2020 dataset

shown in TABLE II, we argue that the first four features are
environment-specific. Different network environments would
certainly have different IP addresses and port numbers. More-
over, it is very easy for networks attackers to modify IP
addresses in network packets. On the other hand, the time
stamp feature and the duration feature are time-specific. A
model trained by using all the 34 features would not be
generalized to other network environments. Therefore, we drop
the first six features in this work. Note that the dropping of
the first six features would lead to performance degradation,
since the test set to evaluate the model performance also comes
from the original dataset. More accurate model is required to
compensate the performance degradation caused be the feature
dropping.

D. Data Imbalance Handling
As TABLE I shows, the CIRA-CIC-DoHBrw-2020 is highly

imbalanced. We use the resampling technique to deal with
the data imbalance problem. The data imbalance handling is
performed after the train-test split mentioned above. In the
second layer, the DoH set and Non-DoH set are resampled to
161,796 data instances. In the second layer, the benign set and
the malicious set are both resampled to 3,269 data instances.

IV. DEEP LEARNING-BASED CLASSIFICATION MODELS
FOR DOH TRAFFIC

In this paper, we design the following two deep learning
models:

1) Long Short-Term Memory (LSTM)
2) Bi-directional Long Short-Term Memory (BiLSTM)

We use the grid search method to optimize their corresponding
hyperparameter combinations. TABLE III and IV show the
optimization results for both layers of the LSTM model and
the BiLSTM model, respectively. We use TimeSeriesSplit in
the scikit-learn as the cross validator.
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TABLE III
HYPERPARAMETER COMBINATION FOR THE LSTM MODEL.

Layer 1 Layer 2
Batch Size 20 Batch Size 10

Epochs 100 Epochs 100
Optimizer Adam Optimizer Adam

Learning Rate 0.001 Learning Rate 0.001
Activation ReLU Activation Softsign
Dropout 0.1 Dropout 0.9

Hidden Neurons 20 Hidden Neurons 30

TABLE IV
HYPERPARAMETER COMBINATION FOR THE BILSTM MODEL.

Layer 1 Layer 2
Batch Size 80 Batch Size 80

Epochs 100 Epochs 100
Optimizer Nadam Optimizer Adam

Learning Rate 0.001 Learning Rate 0.01
Activation tanh Activation tanh
Dropout 0.2 Dropout None

Hidden Neurons 30 Hidden Neurons 30

V. NUMERICAL RESULTS AND DISCUSSIONS

Fig. 1 and 2 show the confusion matrices for layer 1 and
layer 2 of the LSTM model, respectively. In layer 1, 0 means
DoH and 1 means Non-DoH. In layer 2, 0 means benign and 1
means malicious. Fig. 1 shows that the LSTM model provides
91.1% recall for DoH traffic and 96.6% recall for Non-DoH
traffic in layer 1, and Fig. 2 shows that the LSTM model
provides 78.4% recall for benign traffic and 99.3% recall for
malicious traffic in layer 2.

Fig. 3 and 4 show the confusion matrices for layer 1 and
layer 2 of the BiLSTM model, respectively. Fig. 3 shows that
the BiLSTM model provides 98.0% recall for DoH traffic
and 99.8% recall for Non-DoH traffic in layer 1, and Fig.

Fig. 1. Confusion matrix for layer 1 of the LSTM model.

TABLE V
COMPARISONS OF THE ACCURACY AND TIME TAKEN FOR LAYER 1.

Train
Model Mean Accuracy Standard Deviation Time Taken (mm:ss)
LSTM 0.944 0.011 45:22

BiLSTM 0.990 0.000 31:42
Test

Model Mean Accuracy Standard Deviation Time Taken (mm:ss)
LSTM 0.944 0.011 00:03

BiLSTM 0.990 0.000 00:14

4 shows that the BiLSTM model provides 98.0% recall for
benign traffic and 99.9% recall for malicious traffic in layer
2. These results show that the BiLSTM model performs better
than the LSTM model does, while both models perform well.

TABLE V and VI show the comparisons of the accuracy
and time taken for layer 1 and layer 2, respectively. The
results show that both the LSTM and the BiLSTM models
perform well for training and test accuracy. The BiLSTM
model performs better than the LSTM model does for both
the accuracy and the time taken.

Note that the time taken for testing considers the calculation
of all data instances in the test set. Therefore, the time taken
to classify each data instance is in the order of milliseconds.
This validates the efficiency of the proposed method from the
time complexity perspective.

VI. CONCLUSION

In this paper, we investigate the DoH traffic classification
by using the LSTM and BiLSTM models. We design an
appropriate data processing pipeline to process the CIRA-CIC-
DoHBrw-2020 dataset, including feature selection and data
imbalance handling, in order to facilitate the generalization
of deep learning models. We develop truly generalized deep

Fig. 2. Confusion matrix for layer 2 of the LSTM model.
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Fig. 3. Confusion matrix for layer 1 of the BiLSTM model.

Fig. 4. Confusion matrix for layer 2 of the BiLSTM model.

TABLE VI
COMPARISONS OF THE ACCURACY AND TIME TAKEN FOR LAYER 2.

Train
Model Mean Accuracy Standard Deviation Time Taken (mm:ss)
LSTM 0.950 0.007 01:52

BiLSTM 0.998 0.004 00:51
Test

Model Mean Accuracy Standard Deviation Time Taken (mm:ss)
LSTM 0.952 0.004 00:02

BiLSTM 0.994 0.005 00:01

learning models to classify DoH traffic with high accuracy
and low latency. The BiLSTM model performs better than the
LSTM model does for both the accuracy and the time taken.

In the future, we will investigate the feasibility to apply the
proposed models to embedded systems with limited resources.
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