

Realizing 5G Network Slicing Provisioning with

Open Source Software

Kuan-Lin Lee†, Chung-Nan Lee* and Ming-Feng Lee+
National Sun Yat-sen University, Taiwan

†E-mail: lee850220@gmail.comTel: + 886-7-5254335
*E-mail: cnlee@mail.cse.nsysu.edu.tw Tel: + 886-7-5252000 ext. 4313

+ E-mail: mflee@mail.nsysu.edu.tw Tel: + 886-7-5254335

Abstract— 5G has gradually been commercialized in

countries around the world, but for most telecom companies,

network slicing is still in the development stage and has not been

applied to appropriate scenarios. Automated provisioning of

network slicing is even more challenging for development. The

purpose of this research is to implement a complete, open source,

and automatically deployable 5G network slicing architecture.

We use OpenStack as the platform required to realize

virtualization, Tacker module for slicing environment

deployment, free5GC as the core network of the 5G system, and

UERANSIM as the role of simulating UE and gNB. Through the

proposed architecture, an automatic slicing service with specific

functions can be created, the slice can be registered into the 5G

network with the support of the core network, and the simulated

UE can be used to connect the related slice. Experimental results

show that the proposed open-source-based architecture is feasible

and the QoS is guaranteed for each slice.

I. INTRODUCTION

The concept of network slicing is to use slicing

technology to create multiple logical networks on a physical

network, and each logical network can have its own network

configuration. Logically, each slice can be dedicated to a

certain type of application or meet the dedicated network needs

of specific users. The provider of network slicing adjusts

resources according to the dynamic needs of the business and

users to improve the flexibility of the network, and at the same

time, it can also reduce the construction cost of hardware

resources and network construction to achieve hardware

resource sharing. Network slicing provides different Quality of

Service (QoS) services to meet various application

requirements. When this technology enters the

commercialization, each telecom company can tailor the

exclusive transmission network service for the enterprise

according to different service requirements or application

scenarios.

Before the advent of 4G and 5G, traditional networks

could already support network slicing. Service providers can

implement part of the network slicing functionality through

network resource management. However, in the past, most of

the operations of network slicing were completed by hardware,

which required a relatively large cost. Until Beyond 4G (B4G),

virtualization technology was introduced to provide support for

software slicing, that is, through Software-Defined Networking

(SDN) and Network Function Virtualization (NFV)

technologies, new methods of network slicing were realized

Although network slicing technology has brought

breakthroughs in the development of 5G communication

network architecture and services, according to the Global

Mobile Suppliers Association (GSA) [1] in 2021, only five

countries have operated the 5G Standalone (SA) model, and the

rest of the countries still use the Non-Standalone (NSA) mode

that coexists with 4G, and there is no region where network

slicing is commercially available. On the one hand, it is

because each manufacturer develops independently and lacks a

unified implementation standard and the implementation

methods are also complicated. On the other hand, it faces

greater challenges in conducting research without a suitable

environment. Automated provisioning of network slicing is

even more challenging for development.

This paper aims to build a 5G mobile communication

system with open source software that allows users to quickly

deploy 5G network slices. Implementing 5G network slicing

through open source software allows research to be highly

freely used and quickly modified. We use OpenStack as the

virtualization platform, equipped with Tacker modules act as

VNF Manager (VNFM) and NFV Orchestrator (NFVO),

combined with free5GC as the core network of the 5G mobile

communication system, and UERANSIM as the role of

simulating UE and gNB. Working with Tacker through scripts

we develop, the network environment required by users can be

automatically deployed, and QoS configuration scripts can be

used to achieve Service Level Agreement (SLA), which is also

more conducive to related work and research. We use 5G Core

Network (CN) and Radio Access Network (RAN) that comply

with 3GPP R15 for implementation, and design several

experiments to verify the network slicing standards proposed

by 3GPP to ensure that the system can fully comply with the

published 5G network slicing standards.

The remainder of this paper is as follows. In the second

section, we review the related works about 5G network slicing.

The third section presents the proposed mechanism realizing

network slicing provisioning. The fourth section conducts

some experiments and presents their results. Conclusions are

drawn in the last section

II. RELATED WORK

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1923978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

As early as 2016, 5G PPP organization first proposed the

overall model in the 5G mobile communication system

architecture white paper [2] can be divided into three layers.

The bottom layer is physical resources, including computing

resources, storage resources, and network resources. These

resources are effectively configured and distributed through the

management unit to facilitate splitting and cutting into different

network services. In 2017, 3GPP proposed the standard of 5G

core network architecture in TS 23.501 [3] and Choi et al. [4]

carried out detailed analysis of various functions of the core

network according to the 3GPP standard. Same year, Ordonez-

Lucena et al. [5] began to conduct a detailed analysis of the

relationship between network slicing, SDN and NFV, and they

proposed a number of technical implementation concepts and

possible challenges for the 5G network slicing architecture.

Each function in the 5G core network has its own task, and the

connection between each function represents a different

protocol. These functions are User Plane Function (UPF),

Session Management Function (SMF), Access and Mobility

Management Function (AMF), Authentication Server Function

(AUSF), Network Slice Selection Function (NSSF), Network

Exposure Function (NEF), Network Repository Function

(NRF), Policy Control Function (PCF), Unified Data

Management (UDM) and Application Function (AF).

Yoo [6] proposed a variety of possible model architectures

for 5G network slicing, subdivided the control plane and data

plane, and separated the related functions and the reference

points between each other. There are different plans for

network slices in different scenarios, such as a single UE

connected to multiple slices, a single slice connected to

multiple UEs, etc., and the signal transmission process of

different functions between UE registration and session

establishment under these plans is proposed. Kotulski et al. [7]

discussed the problem of slice isolation in point-to-point (P2P)

connections in 5G networks and related challenges that need to

be overcome and solved. They also analyzed the security issues

of sharing functions or data exchange between slices. Kotulski

et al. [8] also analyzed the slicing isolation for the RAN and

CN of the end-to-end (E2E) connection, and quantitatively

analyzed the characteristics of the corresponding technology,

and the obtained parameters can be used for the realization of

slicing.

Mechtri et al. [9] discussed the architecture of

implementing Service Function Chaining (SFC) from the

perspective of NFV scheduling, and compared the current

software’s support for SFC, implementation methods and

effectiveness, and finally discussed the problems that may be

faced in planning SFC. Li et al. [10] measured and analyzed the

deployment location and resource utilization of network

functions in the cloud SFC, and found the best resource

utilization through algorithms. The same function may affect

the service quality of the entire slice depending on the location

of the data center or edge cloud. To achieve the low-latency

requirements of ultra-Reliable and Low Latency

Communications (uRLLC), it is necessary to carefully deploy

important functions in appropriate locations.

Raza et al. [11] used mixed integer linear programming

(MILP) to solve the problem of VNF deployment and

reconfiguration of computing resources, which can make the

use of VNF resources highly flexible. This way of dynamically

deploying resources allows resources to be used effectively.

Troia et al. [12] also used MILP to solve the VNF resource

problem. The MILP formula evaluates the VNF

reconfiguration for power consumption, which can solve the

VNF deployment and routing and wavelength allocation

problems.

In terms of implementing network slicing with open

source software, Minami et al. [13] used an automated slicing

system to implement microservices, and provided a visual user

interface to drag each VNF for serial connection. The back-end

system can automatically deploy slicing according to the

content configured by the user, but the system does not connect

the core network of mobile communication. Costanzo et al.

[14] used a 4G core network to build a dynamic network slicing

system, and simultaneously simulated the coexistence of

eMBB and IoT slices and sharing the same base station.

 Garcia-Aviles et al. [15] used open source software to

implement the slicing of RAN, CN, and Virtualized Network

Function (VNF) respectively, and combined with OpenStack

Management and Orchestration (MANO) to manage the slicing

network. The core network is implemented using srsLTE and

implemented for enhanced Mobile Broadband (eMBB) and

uRLLC scenarios. In addition, they implemented a Local

Breakout (LB) mechanism according to the delay requirements

of network services, so that packets with special requirements

can be processed at edge nodes as much as possible. Chen et al.

[16] also used open source software to implement network

slicing. They use OpenAirInterface (OAI) Evolved Packet

Core (EPC) as the core network and use Universal Software

Radio Peripheral (USRP) to enable physical UE access. In their

architecture, the deployment of slices also uses OpenStack and

Tacker for VNF deployment. Moreover, they implement QoS

services and use Open vSwitch (OVS) Queue commands for

traffic control.

The main research direction of this paper is similar to the

literatures [15] and [16]. We also use OpenStack as the

development platform to implement VNF, and combine RAN

and CN to implement related 5G scenarios. However, in

literatures [15] and [16], The core network used is the open

source 4G core network, and the architecture of this study is

implemented with the open source 5G core network. Literature

[15] focused on RAN slicing and packet delay control while

this paper focused on packet transmission control between

VNFs in slicing and theoretical verification under the co-

existence of multiple slices. Although a slice contains multiple

VNFs in the architecture, there is only one VNF in the

experimental verification in [16]. In addition, in the

management of QoS, due to the limitation of Queue command,

downlink cannot be restricted, so this paper adopts the method

of Meter and OpenFlow to control downlink.

The main difference between 4G and 5G is that the change

of the core network architecture, 5G in the control plane using

the HTTP/2 protocol, safety promotion also increased the

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1924

difficulty of debugging, communication between functions are

encrypted, and add many network functions, which also means

that synergy and configuration between the function appears

especially important, also increased the difficulty of

deployment.

III. PROPOSED METHOD

A. System architecture

The system of 5G mobile communication network

equipped with network slicing functionality proposed in this

paper is shown in Fig. 1. According to the number of UEs N, a

total of N+1 Virtual Machines (VMs) equipped with

UERANSIM are created. Each VM has an independent private

IP, N UEs use N UERANSIM VMs for simulation, and the

remaining VM is for simulation of gNB. The 5G core network

of this research is built according to the official process of

free5GC. After the relevant network functions are compiled, all

the functions except UPF run on the same VM. One SMF

controls all UPFs and corresponds to different network slices.

Finally, regarding network services, we use OpenStack

installed on a separate host to generate related VNFs, and use

Tacker to concatenate the corresponding VNFs into a SFC for

subsequent network slicing. The first VNF of SFC is used to

carry free5GC, but this VNF only runs UPF. All hosts are

deployed on the same public area network, and there are

multiple private network segments inside OpenStack, and each

SFC uses one network segment. In addition, UPF has two

interfaces, one is connected to the public area network, and the

other is connected to one of the internal OpenStack networks.

The purpose is to enable other hosts in the public area network

to identify and connect to the UPF so as to enable SFC can be

connected to the core network.

Fig. 1 Context model of the proposed system

Fig.2 Architecture of slice creation

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1925

B. Slice creation

Fig. 2 shows the architecture of slice creation proposed in

this paper. The orange arrows indicate the flow of user data

packets. This architecture diagram simulates any slicing

environment that can be created, and the source of packets can

come from anywhere, including any device on the Internet and

private networks. At this time, this system plays the role of

creating cloud services to deploy customized services, such as

private websites or File Transfer Protocol (FTP) servers, and

manage user authentication and other VNFs to form a set of

service chains, which can also be regarded as a slice service. If

the packet comes from a mobile client such as a mobile phone,

then the VNFs may deploy with RAN and CN functions. The

service provider deploys network functions through this system,

and specify the correct packet routing through VNF

Forwarding Graph (VNFFG) to form an E2E slice service.

Fig. 3 shows the process of slice creation. The service

provider creates OpenStack’s internal private network segment.

Then the service provider uploads the pre-prepared system

image files. These image files become the operating matrix of

various network functions, similar to the operating mode of

Docker. Then the service provider writes the VNF description

file required by Tacker for the required network functions, and

imports the description file into OpenStack for VNF creation.

After VNF is launched, it will run a series of process to setup

its environment, including system, network, and OpenFlow

rules. Then the service provider writes the VNFFG description

file required by Tacker for the required forwarding graph, and

imports the description file into OpenStack for VNFFG

creation. Finally, the service provider runs the script the setup

QoS service for slices, and a full function slice is created.

Fig. 3 Process of slice creation

C. UE packet transmission

Fig. 4 shows the packet transmission situation in the

proposed system, where the slice is located in the SFC section

marked in this figure. The packet is transmitted with a Multi-

Protocol Label Switching (MPLS) header. The location of the

packet encapsulation is in the OVS in OpenStack, and the

packet decapsulation is in the OVS of the VNF. The reason is

that the Media Access Control (MAC) address of the

destination needs to be modified during decapsulation, so that

the packet can be sent to the correct destination. To ensure the

stable operation of OVS in OpenStack, we delegate the work

of modifying the packet to the VNF.

Fig. 4 Transmission route of UE packets

D. QoS management

When deploying VNF, the image file of OVS must be

prepared as boot media. We install OVS as a kernel module in

the Ubuntu system. In addition to higher performance than user

mode, kernel mode also uses hardware support to implement

OpenFlow Meter. We write part of the flow table into the VNF

Descriptor (VNFD) boot script, so that the required OpenFlow

flow table is built at the same time as the VNF is created.

We design OpenFlow rules to separate uplink and

downlink traffic as shown in Fig. 5. In default, only table 0 will

be matched. There are three flows in it, and one NORMAL

flow is created by OVS by default, in order to allow packets to

pass through normally. The other two match the labels 13567

and 13566 of the MPLS packet respectively. We apply the rules

by matching 13567, which means uplink traffic, send to table

5. Packets matching 13566, which means downlink traffic,

send to table 6, to separate uplink and downlink. Note that the

label is assigned by Tacker, and the value is captured by an

automated script provided by us and written into the VNF. In

addition, in the MPLS protocol, the label value will be reduced

by 1 for each transmission to the next node. Therefore, for

uplink, VNF is the first stop, and for downlink, VNF is the

second stop. Therefore, the label value can be used as a basis

for distinguishing between unlink and downlink.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1926

Figure 5. OpenFlow rules without meter in VNF (middle forwarder)

After the packet is sent to tables 5 and 6, QoS control is

implemented here. When no action is taken by default, the

packet is directly forwarded to tables 10 and 11. If Meter is

added, it is necessary to add the flow table to which Meter is

applied, and to force the rule to be overwritten by priority.

Finally, in table 10, the uplink packet needs to be reduced by 1

for the label and forwarded to the next node to complete the

work performed by a VNF. In table 11, since the downlink

packet has reached the end of the SFC in the VNF, the MPLS

header will be disassembled, and the packet will be written into

the MAC address of VNF to its destination. Therefore, the

routing function in the system can send the packet to the

destination correctly.

IV. EXPERIMENTAL RESULTS

This session conducts experimental verification of the

proposed system, and the system components include

OpenStack, free5GC, UERANSIM, Tacker, and OVS.

A. Experimental environment

The environment of the network slicing experiment is

shown in Fig. 6 and the software specifications of each

component are shown in Table 1, Table 2, Table 3 and Table 4.

The figure shows the situation of creating two slices. Note that

the number of slices can be increased or decreased as needed.

The two slices belong to net1 (orange network segment) and

net2 (green network segment) within OpenStack, and their

corresponding IP segments are 10.10.0.0/16 and 10.20.0.0/16.

Each slice contains UPF, VNF, and Server. UPF has two

interface cards, one is connected to 192.168.127.0/24 as an

external network to receive packets from the core network and

UE, and the other is connected to the OpenStack intranet as the

first node of the slice, which is the starting stop of SFC.

Since there is currently no 5G radio hardware available to

test, we used software simulation to implement UE and gNB

operations. RAN communication processes are in compliance

with the 3GPP specification, and each node is wired to ensure

a stable network environment for optimal slicing results.

Table 1 Host requirement of UE

UE

 Machine Type: VM

 CPU: 2 cores (Intel® Core™ i7-9700 CPU @ 3.00 GHz)

 RAM: 4 GB

 Disk: 10 GB

UERANSIM v3.2.2

Linux Kernel 5.8.0-59

Lubuntu 20.04

Table 2 Host requirement of gNB

gNB

 Machine Type: VM

 CPU: 8 cores (Intel® Core™ i7-9700 CPU @ 3.00 GHz)

 RAM: 4 GB

 Disk: 10 GB

UERANSIM v3.2.2

Linux Kernel 5.4.0-77

Ubuntu Server 20.04
Table 3 Host requirement of Core Network

Core Network

 Machine Type: Physical Host

 CPU: Intel® Core™ i7-4790 CPU @ 3.60 GHz

 RAM: 16 GB

 Disk: 1 TB

free5GC v3.0.5

Linux Kernel 5.8.0-59

Ubuntu Server 20.04

Table 4 Host requirement of NFV platform

NFV Platform

 Machine Type: Physical Host

 CPU: Intel® Core™ i7-5960X CPU @ 3.00 GHz

 RAM: 64 GB

 Disk: 1.2 TB

OpenStack Train

Linux Kernel 3.10.0-1160.24.1.el7

Centos 7 2009

Fig. 6 Intranet of OpenStack in the proposed system

B. Experimental results

Experiment 1

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1927

The purpose of the first experiment is to verify whether

the packet passes through each node in sequence when passing

through the SFC. The test method is to observe by capturing

packets at each node with the packet analysis tool tcpdump.

In Fig. 7, we captured the network card packet of GPRS

Tunnelling Protocol (GTP) in the UPF, and caught the UE

packet from 60.60.0.1, which is assigned by UPF, and the

destination is the IP address of Google.com. At the same time,

we also caught the Internet Control Message Protocol (ICMP)

response from Google.com. As in Figure 8, we captured the

packet from 10.10.0.101, which is assigned by UPF with NAT

transition, means the packet sent by UPF. At the same time, the

packet has been encapsulated into MPLS, so it needs to be

captured by tcpdump on OVS to verify that UPF is the starting

point of SFC, and the destination is also the IP of the

Google.com. In addition, we can observe that the labels of

MPLS are 13567 for uplink and 13566 for downlink. The first

node of the first SFC is preset to use 13567 as its label by

default. In Figure 9, we can observe that the packets captured

by server are also from 10.10.0.101.

Fig. 7 Packets captured in UPF

Fig. 8 Packets captured in VNF

Fig. 9 Packets captured in server

Experiment 2

The purpose of the second experiment is to test the

performance of network transmission in the Virtual eXtensible

Local Area Network (VxLAN) environment and observe the

difference between the network quality controlled by Meter

and the theoretical value. The test method is to use the speed

test software iperf3 and Speedtest to verify the service

performance.

In order to ensure the accuracy of the experimental results,

we adopt three packet routes and conduct network performance

tests through iperf3 and Speedtest. The iperf3 server is located

in the local area network, so the next node after the packet

reaches the gateway is the iperf3 server, whereas Speedtest

automatically selects the neighboring server for speed

measurement.

The speed measurement results of the three routes are

shown in Table 1. The speed measurement result with iperf3 is

an average of 60 seconds, and the result with Speedtest is the

average after 10 runs. It can be observed that the results of the

two speed measurement methods for downlink are very close,

while for uplink, when the packet enters the Internet, the speed

is slightly lower than that in the local area network. From the

perspective of routing, the direct connection rate of the VM has

almost reached the limit (1Gbps) that the physical line can

carry, indicating that the VM is running well. However, after

connecting to the gNB and core network, the rate is obviously

left half, and after slicing through the complete 5G network,

the rate is slightly lower than the result without slicing,

indicating that the traffic bottleneck lies in the gNB and 5G

core network.

Table 1 Speed test for 3 different routes

Route
iperf3 Speedtest

Uplink / Downlink Speed (Mb/s)

Direct 922 / 939 870 / 921

Via UPF 556 / 635 448 / 634

Via SFC 513 / 558 430 / 572

Then we tested the impact of OVS Meter on service

performance. Measure method same as testing traffic

bottleneck, also we set the traffic limit implemented by OVS

meter and OpenFlow rules. We tested it separately from low

speed to high speed, and compared the speed measurement

results of the downlink with the theoretical values. As shown

in Figure 10, under the action of meter, the testing results are

close to expectations. Also, iperf3 is more accurate cause its

server is on local area network.

Fig. 10 Speed test for UE to server in different speed limit

Experiment 3

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1928

 The purpose of the third experiment is to test the

slicing operation in the eMBB scenario. The test method is that

the UE connects to the slice to perform high-traffic services,

and observes the traffic in individual devices and slices.

We created two VMs on separate hosts and equipped with

Lubuntu 20.04, a lightweight branch of the Ubuntu operating

system, to run UERANSIM. Each VM run a UE. Both UEs

were connected to the same slice network, and each UE

obtained an IP of the 60.60.0.0/16 network segment. In

addition, this slice did not impose any restrictions, so the traffic

could reach the theoretical upper limit to meet the definition of

eMBB slice. We placed a huge file on the gateway

(192.168.127.254), and UEs used the SFTP protocol to

download the file on the server to observe the bandwidth usage.

In addition, in order to avoid other factors affecting network

performance, such as hard disk write bottlenecks, we set the

write destination of the UE to NULL, and all write actions were

automatically discarded.

According to the results in Fig. 11, it can be observed that

when the UEs use the SFTP protocol to download files, the

bandwidth can almost be fully used. Note that the traffic in

VNF (green line) is always bigger than in gateway (blue line)

because packet has been encapsulated with MPLS header, the

total length is larger than normal packet. In the figure, the

brown line is the average maximum rate of slices measured in

experiment 1, and each red line means the process of which UE

is downloading files, when two UEs download files at the same

time, the bandwidth is equally allocated to the two users. The

total bandwidth used is also close to the upper limit, showing

that the eMBB operation results are very satisfactory.

According to the results, we can also see that in the case of

multiple users, it is extremely important to ensure the QoS of

individual users to prevent users from over-using or unable to

obtain due resources.

Fig. 11 Bandwidth testing result of eMBB slice

Experiment 4

 The purpose of the fourth experiment is to test the

slicing operation in the massive Machine Type Communication

(mMTC) scene. The test method is to create a large number of

IoT clients in batches to connect mMTC slices through a script,

and compare the connection speed and delay time of different

numbers of UEs in the slices.

This experiment uses the Message Queuing Telemetry

Transport (MQTT) protocol as a method to implement mMTC

slicing, and uses Mosquitto software to implement MQTT

broker and client. We set up an MQTT broker on the Server

and use four UEs to run clients, which are publishers and

subscribers. The first UE is responsible for sending messages

to the broker as a publisher, and the second UE is for receiving

messages as a single independent subscriber for efficiency

measurement. The remaining two UEs run a specified number

of subscribers on average. Each publisher publishes 10

messages with an interval of 0.1 second between each message.

The first and second UEs synchronize time to ensure that the

delay time can be accurately calculated. The publisher entrains

the timestamp when sending in the MQTT message, and

subscriber adds a timestamp to the output after the receives the

message and redirect to file. The time accuracy is microseconds

to facilitate subsequent calculation delays. The server monitors

the CPU usage rate of the broker and outputs it to the file. The

time precision is 0.1 second. The usage rate is multiplied by the

execution time, and finally the actual usage time of the CPU is

used for performance comparison.

As can be seen in Table 2, as the number of subscribers

and publishers increases, the load on the server also increases.

When the amount of published messages exceeds 1 million

(1000 publishers each publish 10 messages, and copy 100

copies to 100 subscribers, referring to the 100/1000 data),

packet loss begins. When the number of subscribers is N, after

each message is published, N copies need to be copied and sent

to N subscribers at the same time, which becomes a

performance bottleneck. It can also be observed that the

increase in the number of publishers causes greater pressure on

the CPU. The reason is that as the number of publishers

increases, the published messages need to be copied and sent

on the broker, and subsequent messages must enter the queue

before sending. Once the broker cannot handle it, the queue

will overflow and cause packet drop.

Table 2 Performance of different subscribes/publishers (no. of subscriber is

too small)

Subscribers /

Publishers

Latency

(ms)

Packet

Loss

(%)

Process’s

CPU Load

(%)

Execution

Time

(sec)

CPU Time

(sec)

100 / 100 19.259 0.00 14.22 4.0 0.56860

100 / 500 44.585 0.00 13.63 20.2 2.75360

100 / 1000 175.758 0.02 12.81 42.6 5.45680

500 / 100 39.654 0.00 37.28 5.0 1.86420

500 / 500 169.199 0.84 36.71 25.6 9.39840

500 / 1000 390.211 1.68 46.21 47.0 21.71760

Experiment 5

The purpose of the fifth experiment is to test the slicing

operation in the uRLLC scene. The test method is to create

SFCs of different lengths, to simulate the amount of service by

increasing or decreasing the number of VNFs, and to test the

performance through the delay of ping. We created two slices,

as shown in Fig. 13. The first slice contains only UPF and a

server, and the second slice contains UPF, a server and an

additional VNF. In this experiment, except for UPF, the rest of

the nodes only help the packet forwarding. We used two UEs

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1929

to connect to slice one and slice two respectively, and measured

the delay of ping to the gateway.

Fig. 12 Two SFCs of different lengths

We performed 20 ping instructions and recorded the

results as shown in Table 3. As the number of sliced nodes

increases, the delay also increases. Therefore, when the service

of uRLLC is needed, reducing the routing path and reducing

the number of computing nodes is a key task.

Table 3 Latency of two slices of different lengths

Slice #
Avg Latency

(ms)

Min Latency

(ms)

Max Latency

(ms)

1 0.449 0.228 0.545

2 0.495 0.391 0.726

V. CONCLUSIONS

This paper studies the realization of network slicing by

controlling packet routing, using OpenStack to allocate cloud

resources, carrying Tacker for VNF deployment and designing

unique scripts to drive VNF, so that it can operate as scheduled.

The main contribution of this paper is to use the serial

connection of various open source software to realize the 5G

network slicing environment. From UE connection, gNB

configuration, core network construction, and service content

in the slice, it can be completely connected into one E2E

connection. Through Meter and OpenFlow, the SLA of slices

and the separation of individual users can be achieved. We use

a single physical host to create diversified network slices, use

VxLAN to segment different slices to achieve slice isolation,

and use Tacker to quickly deploy VNFs and use SFC for

cascading to achieve highly flexible planning and

configuration. In addition, the use of self-compiled scripts for

simple settings to achieve automatic operation is extremely

convenient and helpful for subsequent research and

development. In the future, we are going to use the architecture

provided in this paper to import and implement dynamic

network slicing

REFERENCES

[1] GSA, “5G Standalone 2021 – Summary,” [Online]. Available:

https://gsacom.com/paper/5g-standalone-2021-summary/

[2] 5G PPP Architecture Working Group, “View on 5G Architecture,”

2020. [Online]. Available: https://5g-ppp.eu/wp-

content/uploads/2020/02/5G-PPP-5G-Architecture-White-

Paper_final.pdf.

[3] ETSI, “System Architecture for the 5G System (5GS),” 3GPP TS

23.501 version 16.7.0, 2021.

[4] Y. Choi and N. Park, “Slice Architecture for 5G Core Network,”

Ninth International Conference on Ubiquitous and Future

Networks (ICUFN 2017), pp. 571-575, 2017.

[5] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,

J. Lorca and J. Folgueira, “Network Slicing for 5G with

SDN/NFV: Concepts, Architectures, and Challenges,” IEEE

Communications Magazine, vol. 55, issue 5, pp. 80-87, 2017.

[6] T. Yoo, “Network Slicing Architecture for 5G Network,”

International Conference on Information and Communication

Technology Convergence (ICTC 2016), pp. 1010-1014, 2016.

[7] Z. Kotulski, T. W. Nowak, M. Sepczuk and M. A. Tunia, “On

End-to-end Approach for Slice Isolation in 5G Networks.

Fundamental Challenges,” 2017 Federated Conference on

Computer Science and Information Systems (FedCSIS 2017), pp.

783-792, 2017.

[8] Z. Kotulski, T. W. Nowak, M. Sepczuk and M. A. Tunia, “5G

Networks: Types of Isolation and Their Parameters in RAN and

CN Slices,” Computer Networks, vol. 171, pp. 1-15, 2020.

[9] M. Mechtri, C. Ghribi, O. Soualah and D. Zeghlache, “NFV

Orchestration Framework Addressing SFC Challenges,” IEEE

Communications Magazine, vol. 55, issue 6, pp. 16-23, 2017.

[10] D. Li, P. Hong, K. Xue and j. Pei, “Virtual Network Function

Placement Considering Resource Optimization and SFC

Requests in Cloud Datacenter,” IEEE Transactions on Parallel

and Distributed Systems, vol. 29, issue 7, pp. 1664-1677, 2018.

[11] M. R. Raza, M. Fiorani, A. Rostami, P. Öhlen, L. Wosinska and

P. Monti, “Dynamic Slicing Approach for Multi-Tenant 5G

Transport Networks [Invited],” IEEE/OSA Journal of Optical

Communications and Networking, vol. 10, issue 1, pp. A77-A90,

2018.

[12] S. Troia, A. Cibari, R. Alvizu and G. Maier, “Dynamic

Programming of Network Slices in Software-defined Metro-core

Optical Networks,” Optical Switching and Networking, vol. 36,

pp. 1-13, 2020.

[13] Y. Minami, A. Taniguchi, T. Kawabata, N. Sakaida and K.

Shimano, “An Architecture and Implementation of Automatic

Network Slicing for Microservices,” NOMS 2018 - 2018

IEEE/IFIP Network Operations and Management Symposium,

pp. 1-4, 2018.

[14] S. Costanzo, I. Fajjari, N. Aitsaadi and R. Langar, “Dynamic

Network Slicing for 5G IoT and eMBB services: A New Design

with Prototype and Implementation Results,” 2018 3rd

Cloudification of the Internet of Things (CIoT), pp. 1-7, 2018.

[15] G. Garcia-Aviles, M. Gramaglia, P. Serrano, F. Gringoli, S.

Fuente-Pascual and I. L. Pavon, “Experimenting with Open

Source Tools to Deploy a Multi-service and Multi-slice Mobile

Network,” Computer Communications, vol. 150, pp. 1-12, 2020.

[16] S. Chen, C. N. Lee and M. F. Lee, “Realization of 5G Network

Slicing Using Open Source Softwares,” Asia-Pacific Signal and

Information Processing Association Annual Summit and

Conference 2020 (APSIPA ASC 2020), pp. 1549-1556, 2020.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1930

