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Abstract— 5G has gradually been commercialized in 

countries around the world, but for most telecom companies, 

network slicing is still in the development stage and has not been 

applied to appropriate scenarios. Automated provisioning of 

network slicing is even more challenging for development. The 

purpose of this research is to implement a complete, open source, 

and automatically deployable 5G network slicing architecture. 

We use OpenStack as the platform required to realize 

virtualization, Tacker module for slicing environment 

deployment, free5GC as the core network of the 5G system, and 

UERANSIM as the role of simulating UE and gNB. Through the 

proposed architecture, an automatic slicing service with specific 

functions can be created, the slice can be registered into the 5G 

network with the support of the core network, and the simulated 

UE can be used to connect the related slice. Experimental results 

show that the proposed open-source-based architecture is feasible 

and the QoS is guaranteed for each slice.  

I. INTRODUCTION 

The concept of network slicing is to use slicing 

technology to create multiple logical networks on a physical 

network, and each logical network can have its own network 

configuration. Logically, each slice can be dedicated to a 

certain type of application or meet the dedicated network needs 

of specific users. The provider of network slicing adjusts 

resources according to the dynamic needs of the business and 

users to improve the flexibility of the network, and at the same 

time, it can also reduce the construction cost of hardware 

resources and network construction to achieve hardware 

resource sharing. Network slicing provides different Quality of 

Service (QoS) services to meet various application 

requirements. When this technology enters the 

commercialization, each telecom company can tailor the 

exclusive transmission network service for the enterprise 

according to different service requirements or application 

scenarios. 

Before the advent of 4G and 5G, traditional networks 

could already support network slicing. Service providers can 

implement part of the network slicing functionality through 

network resource management. However, in the past, most of 

the operations of network slicing were completed by hardware, 

which required a relatively large cost. Until Beyond 4G (B4G), 

virtualization technology was introduced to provide support for 

software slicing, that is, through Software-Defined Networking 

(SDN) and Network Function Virtualization (NFV) 

technologies, new methods of network slicing were realized 

Although network slicing technology has brought 

breakthroughs in the development of 5G communication 

network architecture and services, according to the Global 

Mobile Suppliers Association (GSA) [1] in 2021, only five 

countries have operated the 5G Standalone (SA) model, and the 

rest of the countries still use the Non-Standalone (NSA) mode 

that coexists with 4G, and there is no region where network 

slicing is commercially available. On the one hand, it is 

because each manufacturer develops independently and lacks a 

unified implementation standard and the implementation 

methods are also complicated. On the other hand, it faces 

greater challenges in conducting research without a suitable 

environment. Automated provisioning of network slicing is 

even more challenging for development. 

This paper aims to build a 5G mobile communication 

system with open source software that allows users to quickly 

deploy 5G network slices. Implementing 5G network slicing 

through open source software allows research to be highly 

freely used and quickly modified. We use OpenStack as the 

virtualization platform, equipped with Tacker modules act as 

VNF Manager (VNFM) and NFV Orchestrator (NFVO), 

combined with free5GC as the core network of the 5G mobile 

communication system, and UERANSIM as the role of 

simulating UE and gNB. Working with Tacker through scripts 

we develop, the network environment required by users can be 

automatically deployed, and QoS configuration scripts can be 

used to achieve Service Level Agreement (SLA), which is also 

more conducive to related work and research. We use 5G Core 

Network (CN) and Radio Access Network (RAN) that comply 

with 3GPP R15 for implementation, and design several 

experiments to verify the network slicing standards proposed 

by 3GPP to ensure that the system can fully comply with the 

published 5G network slicing standards. 

The remainder of this paper is as follows. In the second 

section, we review the related works about 5G network slicing.  

The third section presents the proposed mechanism realizing 

network slicing provisioning. The fourth section conducts 

some experiments and presents their results.  Conclusions are 

drawn in the last section 

II. RELATED WORK 
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As early as 2016, 5G PPP organization first proposed the 

overall model in the 5G mobile communication system 

architecture white paper [2] can be divided into three layers. 

The bottom layer is physical resources, including computing 

resources, storage resources, and network resources. These 

resources are effectively configured and distributed through the 

management unit to facilitate splitting and cutting into different 

network services. In 2017, 3GPP proposed the standard of 5G 

core network architecture in TS 23.501 [3] and Choi et al. [4] 

carried out detailed analysis of various functions of the core 

network according to the 3GPP standard. Same year, Ordonez-

Lucena et al. [5] began to conduct a detailed analysis of the 

relationship between network slicing, SDN and NFV, and they 

proposed a number of technical implementation concepts and 

possible challenges for the 5G network slicing architecture. 

Each function in the 5G core network has its own task, and the 

connection between each function represents a different 

protocol. These functions are User Plane Function (UPF), 

Session Management Function (SMF), Access and Mobility 

Management Function (AMF), Authentication Server Function 

(AUSF), Network Slice Selection Function (NSSF), Network 

Exposure Function (NEF), Network Repository Function 

(NRF), Policy Control Function (PCF), Unified Data 

Management (UDM) and Application Function (AF). 

Yoo [6] proposed a variety of possible model architectures 

for 5G network slicing, subdivided the control plane and data 

plane, and separated the related functions and the reference 

points between each other. There are different plans for 

network slices in different scenarios, such as a single UE 

connected to multiple slices, a single slice connected to 

multiple UEs, etc., and the signal transmission process of 

different functions between UE registration and session 

establishment under these plans is proposed. Kotulski et al. [7] 

discussed the problem of slice isolation in point-to-point (P2P) 

connections in 5G networks and related challenges that need to 

be overcome and solved. They also analyzed the security issues 

of sharing functions or data exchange between slices. Kotulski 

et al. [8] also analyzed the slicing isolation for the RAN and 

CN of the end-to-end (E2E) connection, and quantitatively 

analyzed the characteristics of the corresponding technology, 

and the obtained parameters can be used for the realization of 

slicing. 

Mechtri et al. [9] discussed the architecture of 

implementing Service Function Chaining (SFC) from the 

perspective of NFV scheduling, and compared the current 

software’s support for SFC, implementation methods and 

effectiveness, and finally discussed the problems that may be 

faced in planning SFC. Li et al. [10] measured and analyzed the 

deployment location and resource utilization of network 

functions in the cloud SFC, and found the best resource 

utilization through algorithms. The same function may affect 

the service quality of the entire slice depending on the location 

of the data center or edge cloud. To achieve the low-latency 

requirements of ultra-Reliable and Low Latency 

Communications (uRLLC), it is necessary to carefully deploy 

important functions in appropriate locations.  

Raza et al. [11] used mixed integer linear programming 

(MILP) to solve the problem of VNF deployment and 

reconfiguration of computing resources, which can make the 

use of VNF resources highly flexible. This way of dynamically 

deploying resources allows resources to be used effectively. 

Troia et al. [12] also used MILP to solve the VNF resource 

problem. The MILP formula evaluates the VNF 

reconfiguration for power consumption, which can solve the 

VNF deployment and routing and wavelength allocation 

problems. 

In terms of implementing network slicing with open 

source software, Minami et al. [13] used an automated slicing 

system to implement microservices, and provided a visual user 

interface to drag each VNF for serial connection. The back-end 

system can automatically deploy slicing according to the 

content configured by the user, but the system does not connect 

the core network of mobile communication. Costanzo et al. 

[14] used a 4G core network to build a dynamic network slicing 

system, and simultaneously simulated the coexistence of 

eMBB and IoT slices and sharing the same base station. 

 Garcia-Aviles et al. [15] used open source software to 

implement the slicing of RAN, CN, and Virtualized Network 

Function (VNF) respectively, and combined with OpenStack 

Management and Orchestration (MANO) to manage the slicing 

network. The core network is implemented using srsLTE and 

implemented for enhanced Mobile Broadband (eMBB) and 

uRLLC scenarios. In addition, they implemented a Local 

Breakout (LB) mechanism according to the delay requirements 

of network services, so that packets with special requirements 

can be processed at edge nodes as much as possible. Chen et al. 

[16] also used open source software to implement network 

slicing. They use OpenAirInterface (OAI) Evolved Packet 

Core (EPC) as the core network and use Universal Software 

Radio Peripheral (USRP) to enable physical UE access. In their 

architecture, the deployment of slices also uses OpenStack and 

Tacker for VNF deployment. Moreover, they implement QoS 

services and use Open vSwitch (OVS) Queue commands for 

traffic control. 

The main research direction of this paper is similar to the 

literatures [15] and [16]. We also use OpenStack as the 

development platform to implement VNF, and combine RAN 

and CN to implement related 5G scenarios. However, in 

literatures [15] and [16], The core network used is the open 

source 4G core network, and the architecture of this study is 

implemented with the open source 5G core network. Literature 

[15] focused on RAN slicing and packet delay control while 

this paper focused on packet transmission control between 

VNFs in slicing and theoretical verification under the co-

existence of multiple slices. Although a slice contains multiple 

VNFs in the architecture, there is only one VNF in the 

experimental verification in [16]. In addition, in the 

management of QoS, due to the limitation of Queue command, 

downlink cannot be restricted, so this paper adopts the method 

of Meter and OpenFlow to control downlink.  

The main difference between 4G and 5G is that the change 

of the core network architecture, 5G in the control plane using 

the HTTP/2 protocol, safety promotion also increased the 
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difficulty of debugging, communication between functions are 

encrypted, and add many network functions, which also means 

that synergy and configuration between the function appears 

especially important, also increased the difficulty of 

deployment.   

III. PROPOSED METHOD 

A. System architecture 

The system of 5G mobile communication network 

equipped with network slicing functionality proposed in this 

paper is shown in Fig. 1. According to the number of UEs N, a 

total of N+1 Virtual Machines (VMs) equipped with 

UERANSIM are created. Each VM has an independent private 

IP, N UEs use N UERANSIM VMs for simulation, and the 

remaining VM is for simulation of gNB. The 5G core network 

of this research is built according to the official process of 

free5GC. After the relevant network functions are compiled, all 

the functions except UPF run on the same VM. One SMF 

controls all UPFs and corresponds to different network slices. 

Finally, regarding network services, we use OpenStack 

installed on a separate host to generate related VNFs, and use 

Tacker to concatenate the corresponding VNFs into a SFC for 

subsequent network slicing. The first VNF of SFC is used to 

carry free5GC, but this VNF only runs UPF. All hosts are 

deployed on the same public area network, and there are 

multiple private network segments inside OpenStack, and each 

SFC uses one network segment. In addition, UPF has two 

interfaces, one is connected to the public area network, and the 

other is connected to one of the internal OpenStack networks. 

The purpose is to enable other hosts in the public area network 

to identify and connect to the UPF so as to enable SFC can be 

connected to the core network. 

 
Fig. 1 Context model of the proposed system 

 
Fig.2 Architecture of slice creation 
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B. Slice creation 

Fig. 2 shows the architecture of slice creation proposed in 

this paper. The orange arrows indicate the flow of user data 

packets. This architecture diagram simulates any slicing 

environment that can be created, and the source of packets can 

come from anywhere, including any device on the Internet and 

private networks. At this time, this system plays the role of 

creating cloud services to deploy customized services, such as 

private websites or File Transfer Protocol (FTP) servers, and 

manage user authentication and other VNFs to form a set of 

service chains, which can also be regarded as a slice service. If 

the packet comes from a mobile client such as a mobile phone, 

then the VNFs may deploy with RAN and CN functions. The 

service provider deploys network functions through this system, 

and specify the correct packet routing through VNF 

Forwarding Graph (VNFFG) to form an E2E slice service. 

Fig. 3 shows the process of slice creation. The service 

provider creates OpenStack’s internal private network segment. 

Then the service provider uploads the pre-prepared system 

image files. These image files become the operating matrix of 

various network functions, similar to the operating mode of 

Docker. Then the service provider writes the VNF description 

file required by Tacker for the required network functions, and 

imports the description file into OpenStack for VNF creation. 

After VNF is launched, it will run a series of process to setup 

its environment, including system, network, and OpenFlow 

rules. Then the service provider writes the VNFFG description 

file required by Tacker for the required forwarding graph, and 

imports the description file into OpenStack for VNFFG 

creation. Finally, the service provider runs the script the setup 

QoS service for slices, and a full function slice is created. 

 
Fig. 3 Process of slice creation 

C. UE packet transmission 

Fig. 4 shows the packet transmission situation in the 

proposed system, where the slice is located in the SFC section 

marked in this figure. The packet is transmitted with a Multi-

Protocol Label Switching (MPLS) header. The location of the 

packet encapsulation is in the OVS in OpenStack, and the 

packet decapsulation is in the OVS of the VNF. The reason is 

that the Media Access Control (MAC) address of the 

destination needs to be modified during decapsulation, so that 

the packet can be sent to the correct destination. To ensure the 

stable operation of OVS in OpenStack, we delegate the work 

of modifying the packet to the VNF. 

 
Fig. 4 Transmission route of UE packets 

D. QoS management 

When deploying VNF, the image file of OVS must be 

prepared as boot media. We install OVS as a kernel module in 

the Ubuntu system. In addition to higher performance than user 

mode, kernel mode also uses hardware support to implement 

OpenFlow Meter. We write part of the flow table into the VNF 

Descriptor (VNFD) boot script, so that the required OpenFlow 

flow table is built at the same time as the VNF is created. 

We design OpenFlow rules to separate uplink and 

downlink traffic as shown in Fig. 5. In default, only table 0 will 

be matched. There are three flows in it, and one NORMAL 

flow is created by OVS by default, in order to allow packets to 

pass through normally. The other two match the labels 13567 

and 13566 of the MPLS packet respectively. We apply the rules 

by matching 13567, which means uplink traffic, send to table 

5. Packets matching 13566, which means downlink traffic, 

send to table 6, to separate uplink and downlink. Note that the 

label is assigned by Tacker, and the value is captured by an 

automated script provided by us and written into the VNF. In 

addition, in the MPLS protocol, the label value will be reduced 

by 1 for each transmission to the next node. Therefore, for 

uplink, VNF is the first stop, and for downlink, VNF is the 

second stop. Therefore, the label value can be used as a basis 

for distinguishing between unlink and downlink. 
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Figure 5. OpenFlow rules without meter in VNF (middle forwarder) 

After the packet is sent to tables 5 and 6, QoS control is 

implemented here. When no action is taken by default, the 

packet is directly forwarded to tables 10 and 11. If Meter is 

added, it is necessary to add the flow table to which Meter is 

applied, and to force the rule to be overwritten by priority. 

Finally, in table 10, the uplink packet needs to be reduced by 1 

for the label and forwarded to the next node to complete the 

work performed by a VNF. In table 11, since the downlink 

packet has reached the end of the SFC in the VNF, the MPLS 

header will be disassembled, and the packet will be written into 

the MAC address of VNF to its destination. Therefore, the 

routing function in the system can send the packet to the 

destination correctly. 

IV. EXPERIMENTAL RESULTS 

This session conducts experimental verification of the 

proposed system, and the system components include 

OpenStack, free5GC, UERANSIM, Tacker, and OVS. 

A. Experimental environment 

The environment of the network slicing experiment is 

shown in Fig. 6 and the software specifications of each 

component are shown in Table 1, Table 2, Table 3 and Table 4. 

The figure shows the situation of creating two slices. Note that 

the number of slices can be increased or decreased as needed. 

The two slices belong to net1 (orange network segment) and 

net2 (green network segment) within OpenStack, and their 

corresponding IP segments are 10.10.0.0/16 and 10.20.0.0/16. 

Each slice contains UPF, VNF, and Server. UPF has two 

interface cards, one is connected to 192.168.127.0/24 as an 

external network to receive packets from the core network and 

UE, and the other is connected to the OpenStack intranet as the 

first node of the slice, which is the starting stop of SFC. 

Since there is currently no 5G radio hardware available to 

test, we used software simulation to implement UE and gNB 

operations.  RAN communication processes are in compliance 

with the 3GPP specification, and each node is wired to ensure 

a stable network environment for optimal slicing results. 

Table 1 Host requirement of UE 

UE 

 Machine Type: VM 

 CPU: 2 cores (Intel® Core™ i7-9700 CPU @ 3.00 GHz) 

 RAM: 4 GB 

 Disk: 10 GB 

UERANSIM v3.2.2 

Linux Kernel 5.8.0-59 

Lubuntu 20.04 

Table 2 Host requirement of gNB 

gNB 

 Machine Type: VM 

 CPU: 8 cores (Intel® Core™ i7-9700 CPU @ 3.00 GHz) 

 RAM: 4 GB 

 Disk: 10 GB 

UERANSIM v3.2.2 

Linux Kernel 5.4.0-77 

Ubuntu Server 20.04 
Table 3 Host requirement of Core Network 

Core Network 

 Machine Type: Physical Host 

 CPU: Intel® Core™ i7-4790 CPU @ 3.60 GHz 

 RAM: 16 GB 

 Disk: 1 TB 

free5GC v3.0.5 

Linux Kernel 5.8.0-59 

Ubuntu Server 20.04 

Table 4 Host requirement of NFV platform 

NFV Platform 

 Machine Type: Physical Host 

 CPU: Intel® Core™ i7-5960X CPU @ 3.00 GHz 

 RAM: 64 GB 

 Disk: 1.2 TB 

OpenStack Train 

Linux Kernel 3.10.0-1160.24.1.el7 

Centos 7 2009 

 
Fig. 6 Intranet of OpenStack in the proposed system 

B. Experimental results 

Experiment 1 
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The purpose of the first experiment is to verify whether 

the packet passes through each node in sequence when passing 

through the SFC. The test method is to observe by capturing 

packets at each node with the packet analysis tool tcpdump. 

In Fig. 7, we captured the network card packet of GPRS 

Tunnelling Protocol (GTP) in the UPF, and caught the UE 

packet from 60.60.0.1, which is assigned by UPF, and the 

destination is the IP address of Google.com. At the same time, 

we also caught the Internet Control Message Protocol (ICMP) 

response from Google.com. As in Figure 8, we captured the 

packet from 10.10.0.101, which is assigned by UPF with NAT 

transition, means the packet sent by UPF. At the same time, the 

packet has been encapsulated into MPLS, so it needs to be 

captured by tcpdump on OVS to verify that UPF is the starting 

point of SFC, and the destination is also the IP of the 

Google.com. In addition, we can observe that the labels of 

MPLS are 13567 for uplink and 13566 for downlink. The first 

node of the first SFC is preset to use 13567 as its label by 

default. In Figure 9, we can observe that the packets captured 

by server are also from 10.10.0.101. 

 
Fig. 7 Packets captured in UPF 

 
Fig. 8 Packets captured in VNF 

 
Fig. 9 Packets captured in server 

Experiment 2 

The purpose of the second experiment is to test the 

performance of network transmission in the Virtual eXtensible 

Local Area Network (VxLAN) environment and observe the 

difference between the network quality controlled by Meter 

and the theoretical value. The test method is to use the speed 

test software iperf3 and Speedtest to verify the service 

performance.  

In order to ensure the accuracy of the experimental results, 

we adopt three packet routes and conduct network performance 

tests through iperf3 and Speedtest. The iperf3 server is located 

in the local area network, so the next node after the packet 

reaches the gateway is the iperf3 server, whereas Speedtest 

automatically selects the neighboring server for speed 

measurement.  

The speed measurement results of the three routes are 

shown in Table 1. The speed measurement result with iperf3 is 

an average of 60 seconds, and the result with Speedtest is the 

average after 10 runs. It can be observed that the results of the 

two speed measurement methods for downlink are very close, 

while for uplink, when the packet enters the Internet, the speed 

is slightly lower than that in the local area network. From the 

perspective of routing, the direct connection rate of the VM has 

almost reached the limit (1Gbps) that the physical line can 

carry, indicating that the VM is running well. However, after 

connecting to the gNB and core network, the rate is obviously 

left half, and after slicing through the complete 5G network, 

the rate is slightly lower than the result without slicing, 

indicating that the traffic bottleneck lies in the gNB and 5G 

core network. 

Table 1 Speed test for 3 different routes 

Route 
iperf3 Speedtest 

Uplink / Downlink Speed (Mb/s) 

Direct 922 / 939 870 / 921 

Via UPF 556 / 635 448 / 634 

Via SFC 513 / 558 430 / 572 

Then we tested the impact of OVS Meter on service 

performance. Measure method same as testing traffic 

bottleneck, also we set the traffic limit implemented by OVS 

meter and OpenFlow rules. We tested it separately from low 

speed to high speed, and compared the speed measurement 

results of the downlink with the theoretical values. As shown 

in Figure 10, under the action of meter, the testing results are 

close to expectations. Also, iperf3 is more accurate cause its 

server is on local area network. 

 
Fig. 10 Speed test for UE to server in different speed limit 

Experiment 3 
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       The purpose of the third experiment is to test the 

slicing operation in the eMBB scenario. The test method is that 

the UE connects to the slice to perform high-traffic services, 

and observes the traffic in individual devices and slices. 

We created two VMs on separate hosts and equipped with 

Lubuntu 20.04, a lightweight branch of the Ubuntu operating 

system, to run UERANSIM. Each VM run a UE. Both UEs 

were connected to the same slice network, and each UE 

obtained an IP of the 60.60.0.0/16 network segment. In 

addition, this slice did not impose any restrictions, so the traffic 

could reach the theoretical upper limit to meet the definition of 

eMBB slice. We placed a huge file on the gateway 

(192.168.127.254), and UEs used the SFTP protocol to 

download the file on the server to observe the bandwidth usage. 

In addition, in order to avoid other factors affecting network 

performance, such as hard disk write bottlenecks, we set the 

write destination of the UE to NULL, and all write actions were 

automatically discarded. 

According to the results in Fig. 11, it can be observed that 

when the UEs use the SFTP protocol to download files, the 

bandwidth can almost be fully used. Note that the traffic in 

VNF (green line) is always bigger than in gateway (blue line) 

because packet has been encapsulated with MPLS header, the 

total length is larger than normal packet. In the figure, the 

brown line is the average maximum rate of slices measured in 

experiment 1, and each red line means the process of which UE 

is downloading files, when two UEs download files at the same 

time, the bandwidth is equally allocated to the two users. The 

total bandwidth used is also close to the upper limit, showing 

that the eMBB operation results are very satisfactory. 

According to the results, we can also see that in the case of 

multiple users, it is extremely important to ensure the QoS of 

individual users to prevent users from over-using or unable to 

obtain due resources. 

 
Fig. 11 Bandwidth testing result of eMBB slice 

Experiment 4 

       The purpose of the fourth experiment is to test the 

slicing operation in the massive Machine Type Communication 

(mMTC) scene. The test method is to create a large number of 

IoT clients in batches to connect mMTC slices through a script, 

and compare the connection speed and delay time of different 

numbers of UEs in the slices.  

This experiment uses the Message Queuing Telemetry 

Transport (MQTT) protocol as a method to implement mMTC 

slicing, and uses Mosquitto software to implement MQTT 

broker and client. We set up an MQTT broker on the Server 

and use four UEs to run clients, which are publishers and 

subscribers. The first UE is responsible for sending messages 

to the broker as a publisher, and the second UE is for receiving 

messages as a single independent subscriber for efficiency 

measurement. The remaining two UEs run a specified number 

of subscribers on average. Each publisher publishes 10 

messages with an interval of 0.1 second between each message. 

The first and second UEs synchronize time to ensure that the 

delay time can be accurately calculated. The publisher entrains 

the timestamp when sending in the MQTT message, and 

subscriber adds a timestamp to the output after the receives the 

message and redirect to file. The time accuracy is microseconds 

to facilitate subsequent calculation delays. The server monitors 

the CPU usage rate of the broker and outputs it to the file. The 

time precision is 0.1 second. The usage rate is multiplied by the 

execution time, and finally the actual usage time of the CPU is 

used for performance comparison. 

As can be seen in Table 2, as the number of subscribers 

and publishers increases, the load on the server also increases. 

When the amount of published messages exceeds 1 million 

(1000 publishers each publish 10 messages, and copy 100 

copies to 100 subscribers, referring to the 100/1000 data), 

packet loss begins. When the number of subscribers is N, after 

each message is published, N copies need to be copied and sent 

to N subscribers at the same time, which becomes a 

performance bottleneck. It can also be observed that the 

increase in the number of publishers causes greater pressure on 

the CPU. The reason is that as the number of publishers 

increases, the published messages need to be copied and sent 

on the broker, and subsequent messages must enter the queue 

before sending. Once the broker cannot handle it, the queue 

will overflow and cause packet drop. 

Table 2 Performance of different subscribes/publishers (no. of subscriber is 

too small) 

Subscribers / 

Publishers 

Latency 

(ms) 

Packet 

Loss 

(%) 

Process’s 

CPU Load 

(%) 

Execution 

Time 

(sec) 

CPU Time 

(sec) 

100 / 100 19.259 0.00 14.22 4.0 0.56860 

100 / 500 44.585 0.00 13.63 20.2 2.75360 

100 / 1000 175.758 0.02 12.81 42.6 5.45680 

500 / 100 39.654 0.00 37.28 5.0 1.86420 

500 / 500 169.199 0.84 36.71 25.6 9.39840 

500 / 1000 390.211 1.68 46.21 47.0 21.71760 

Experiment 5 

The purpose of the fifth experiment is to test the slicing 

operation in the uRLLC scene. The test method is to create 

SFCs of different lengths, to simulate the amount of service by 

increasing or decreasing the number of VNFs, and to test the 

performance through the delay of ping. We created two slices, 

as shown in Fig. 13. The first slice contains only UPF and a 

server, and the second slice contains UPF, a server and an 

additional VNF. In this experiment, except for UPF, the rest of 

the nodes only help the packet forwarding. We used two UEs 
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to connect to slice one and slice two respectively, and measured 

the delay of ping to the gateway. 

 
Fig. 12 Two SFCs of different lengths 

We performed 20 ping instructions and recorded the 

results as shown in Table 3. As the number of sliced nodes 

increases, the delay also increases. Therefore, when the service 

of uRLLC is needed, reducing the routing path and reducing 

the number of computing nodes is a key task. 

Table 3 Latency of two slices of different lengths 

Slice # 
Avg Latency 

(ms) 

Min Latency 

(ms) 

Max Latency 

(ms) 

1 0.449 0.228 0.545 

2 0.495 0.391 0.726 

V. CONCLUSIONS 

This paper studies the realization of network slicing by 

controlling packet routing, using OpenStack to allocate cloud 

resources, carrying Tacker for VNF deployment and designing 

unique scripts to drive VNF, so that it can operate as scheduled. 

The main contribution of this paper is to use the serial 

connection of various open source software to realize the 5G 

network slicing environment. From UE connection, gNB 

configuration, core network construction, and service content 

in the slice, it can be completely connected into one E2E 

connection. Through Meter and OpenFlow, the SLA of slices 

and the separation of individual users can be achieved. We use 

a single physical host to create diversified network slices, use 

VxLAN to segment different slices to achieve slice isolation, 

and use Tacker to quickly deploy VNFs and use SFC for 

cascading to achieve highly flexible planning and 

configuration.  In addition, the use of self-compiled scripts for 

simple settings to achieve automatic operation is extremely 

convenient and helpful for subsequent research and 

development. In the future, we are going to use the architecture 

provided in this paper to import and implement dynamic 

network slicing 
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