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Abstract—We propose a novel type of zero-watermarking
method that incorporates associative memory models. Because the
zero-watermarking method does not embed a watermark directly
in an image, it avoids degrading the original image. However,
as a watermark is associated with each image, it is difficult to
manage the associations when dealing with a large number of
images. Moreover, the conventional zero-watermarking method
cannot correct the watermark when an image is degraded, and
the watermark’s length must be equal to that of the feature
vector extracted from an image. Hence, we propose a novel
management scheme that uses both a hetero-associative memory
model and an auto-associative memory model. The proposed
method can manage a large number of mappings between images
and watermarks via the hetero-associative memory model, while
also eliminating the watermark length restriction. Furthermore,
even if an image is heavily degraded, the auto-associative memory
model can correct watermark errors. The proposed method was
evaluated in the case of JPEG compression, and we found that it
can sufficiently reduce errors in watermarking.

I. INTRODUCTION

In recent years, social networking services (SNSs) have
rapidly spread in our daily lives. Images and videos are fre-
quently uploaded by SNS users and can easily be downloaded.
As many SNS users do not fully understand copyrights, they
often accidentally violate other people’s copyrights. The digital
watermarking method is an effective solution to this problem.

Digital watermarking is a technology for embedding copy-
rights and IDs in digital content as watermarks. It is used to
protect the copyrights of digital content and to inhibit tampering
and unauthorized copying. Watermarks are often embedded
in luminance values, discrete Fourier transforms (DFT), or
discrete cosine transformed (DCT) domains [1]–[4]. Because
these methods embed the watermark directly in the image, they
cause a considerable amount of image distortion.

The zero-watermarking method [5]–[7] generates a secret key
by extracting unique features from an image and multiplying
them by a watermark. As this method does not directly embed
the watermark in the image’s pixels, it does not cause distortion.
However, the zero-watermarking method has no error correction
function; thus, if the original image is attacked by JPEG
compression, noise addition, or filtering, watermark errors will
occur. In addition, because a watermark is associated with each
image, it is necessary to manage these associations separately
for a large number of images, which requires more effort to
manage the associations between images and secret keys.

In a hetero-associative memory model [8], [9], the associa-
tions between key patterns and associative patterns are stored,

and when a key pattern η is given, the corresponding asso-
ciative pattern ξ is recalled. Accordingly, a hetero-associative
memory model can be adopted for the zero-watermarking
scheme by using the features extracted from images as key
patterns and the watermarks as associative patterns. In addition,
because multiple associations can be stored in the weight matrix
of an associative memory model, all keys can be managed
together. Furthermore, even if there is an error in a feature,
it can be corrected by the hetero-associative memory model.

On the other hand, an auto-associative memory model stores
multiple associative patterns and recalls the closest stored pat-
tern when a similar pattern is given [10]–[12]. In other words,
this memory model has error correction capability because it
can retrieve the original pattern from a pattern with errors.
Through application of an auto-associative memory model to
the watermarking method, the errors remaining in a watermark
can be completely removed.

In this paper, we propose a novel type of zero-watermarking
method that uses both hetero-associative and auto-associative
memory models. We call the proposed method the associative
watermarking method. Compared with the conventional zero-
watermarking method, the proposed method can handle a large
number of images and reduce errors in watermarks. Specifi-
cally, it only needs to store two memory matrices, regardless
of the number of images. Moreover, even when images are
degraded, errors are reduced by using both the hetero- and
auto-associative memory models.

The rest of this paper is organized as follows. Section
II explains the conventional zero-watermarking method, and
section III explains the basic concepts of both the hetero- and
auto-associative memory models. In section IV, we explain
the proposed method. In section V, we describe a computer
simulation to evaluate the proposed method’s performance, and
we conclude our study in section VI.

II. ZERO-WATERMARKING METHOD

We first explain the zero-watermarking method using
DCT coefficients [5], in which a K-bit watermark ξ =
(ξ1, ξ2, · · · , ξK)⊤ is mapped to the original image, where
ξi ∈ {+1,−1}.

A. Watermark Mapping Procedure

The mapping from features to watermarks consists of the
following two steps.
Step 1. Feature extraction from original image.
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The original image is transformed into the frequency do-
main by a two-dimensional DCT. Then, K-bit coefficients
are extracted from the low-frequency components, excluding
the DC component, by using a zigzag scan. The coefficients
d = (d1, d2, · · · , dK)⊤ are binarized to obtain the feature
η = (η1, η2, · · · , ηK)⊤. That is,

ηi = sgn(di), i = 1, 2, · · · ,K, (1)

where the function sgn(x) is defined by

sgn(x) =

{
+1, x ≥ 0

−1, x < 0
. (2)

Step 2. Secret key generation.
The secret key W = (W1,W2, · · · ,WK)

⊤ is generated as the
product of the feature η and the watermark ξ. That is,

Wi = ηiξi, i = 1, 2, · · · ,K. (3)

Note that the bit lengths of η and ξ must be the same. Also,
the associations between the generated secret key W and the
original image must be preserved.

B. Watermark Extraction Procedure

The watermark extraction also consists of two steps.
Step 1. Feature extraction from original image.
The extraction of the feature η′ is the same as Step 1 of the
watermark mapping procedure above.
Step 2. Extraction of watermark ξ′ from secret key W .
By multiplying the feature η′ by the stored secret key W , the
watermark ξ′ can be retrieved as

ξ′i = Wiη
′
i, i = 1, 2, · · · ,K. (4)

By generating W from a single image in this way, it is possible
to map an image to a watermark ξ without embedding the
watermark directly in the image’s pixels. Moreover, if the image
is degraded and its feature becomes inaccurate, the extracted
watermark will also be inaccurate. In addition, as the number
of images to be managed increases, the number of secret
keys also increases, making it difficult to find the secret key
corresponding to a given image.

III. ASSOCIATIVE MEMORY MODEL

A. Hetero-Associative Memory Model

A hetero-associative memory model (HMM) is an associative
memory model that retrieves associative patterns corresponding
to key patterns [8], [9]. The associative and key patterns
can respectively be regarded as the watermarks and features
described in section II. Suppose that we have P key patterns
ηµ = (ηµ1 , η

µ
2 , · · · , η

µ
K)

⊤ and P associative patterns ξµ =

(ξµ1 , ξ
µ
2 , · · · , ξ

µ
N )

⊤, for µ = 1, 2, · · · , P , and that the µ-th key
pattern maps to the µ-th associative pattern, where the length
of the key pattern is K bits and that of the associative pattern
is N bits. Each component of ηµ and of ξµ is assumed to be

an independent random variable, which takes a value of either
+1 or −1 according to the following probabilities:

Prob [ηµi = ±1] =
1

2
, (5)

Prob [ξµi = ±1] =
1

2
. (6)

The weight matrix W h that recalls the associative pattern ξµ

from the key pattern ηµ is given by

Wh
ij =

1

K

P∑
µ=1

ξµi η
µ
j . (7)

When an input y = (y1, y2, · · · , yK)
⊤ is given to the HMM,

the neuron’s output, x0 =
(
x0
0, x

0
1, · · · , x0

N

)⊤
, is given by

x0
i = sgn (hi) , (8)

where hi is defined by

hi =

K∑
j=1

Wh
ijyj . (9)

The overlap between the µ-th key pattern ηµ and the input y
is defined by

mµ
∗ =

1

K

K∑
i=1

ηµi yi. (10)

In the following, we assume that the input y is close to the
ν-th key pattern ην . By substituting (7) into (9), we obtain

hi = αmν
∗ξ

ν
i + zi, (11)

where α = K
N , and zi represents crosstalk noise given by

zi =
1

N

K∑
j=1

P−1∑
µ ̸=ν

ξµi η
µ
j yj . (12)

The mean of zi is 0, and the variance V [zi] is

V [zi] =
P

K
. (13)

We define the loading rate as β = P
K . In the limit of infinite

K, the crosstalk noise zi can then be assumed to follow a
Gaussian distribution with mean 0 and variance β. The overlap
mµ

0 between the output x0 and the µ-th watermark ξµ is defined
by

mµ
0 =

1

N

N∑
i=1

ξµi x
0
i . (14)

Assuming that the crosstalk noise zi follows a Gaussian distri-
bution, and that the loading rate β is finite when N → ∞,K →
∞, and P → ∞, the theoretical value of mµ

0 is given by

mµ
0 = E

[
1

N

N∑
i=1

ξµi sgn(hi)

]
(15)

= erf
(

mµ
∗√
2β

)
, (16)

where erf(x) denotes the error function.
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Fig. 1. Diagram of the proposed model.

B. Auto-Associative Memory Model

Next, an auto-associative memory model (AMM) is a model
that recalls the closest associative pattern to a given pat-
tern [10]–[12]. Suppose that P associative patterns ξµ, µ =
1, 2, · · · , P are stored in an AMM. The length of an associative
pattern is N bits, and the weight matrix W a

ij is given by

W a
ij =

1

N

P∑
µ=1

ξµi ξ
µ
j . (17)

The state xt+1
i of the i-th neuron at time t+ 1 is defined by

xt+1
i = sgn

(
ht
i

)
, (18)

where ht
i is given by

ht
i =

N∑
j ̸=i

W a
ijx

t
j . (19)

The overlap between the µ-th associative pattern ξµ and the
state xt at time t = 0, 1, 2, · · · is defined by

mµ
t =

1

N

N∑
i=1

ξµi x
t
i. (20)

The overlap at time t = 0 is called the initial overlap and is
identical to (14).

IV. PROPOSED METHOD

As illustrated in Figure 1, in the proposed method, the
associations between image features and watermarks are stored
in an HMM. The HMM output is then given to an AMM, and
watermark errors are corrected. This structure is the same as the
HASP-type associative memory model [8]. We define t = −1
as the time when the key pattern is given to the HMM’s input
layer y, and t = 0 as the time when the HMM output is given
as the AMM’s initial state x0.

A. Memory Matrix Generation

Suppose that we have P images. The µ-th image is mapped
to a watermark ξµ = (ξµ1 , ξ

µ
2 , · · · , ξ

µ
N )

⊤
, µ = 1, 2, · · · , P . As

in the zero-watermarking method [5], K coefficients d of the
image’s low-frequency components are extracted as features.
Then, by binarizing the coefficients dµ via (1), the feature ηµ =
(ηµ1 , η

µ
2 , · · · , η

µ
K)

⊤ is obtained. Note that the feature’s length
K may be different from the watermark’s bit length N .

Next, let the feature ηµ be the key pattern and the watermark
ξµ be the associative pattern. Weight matrices W h and W a

are then generated from (7) and (17). By storing W h, the
associations between features and watermarks for P images
can easily be managed. Moreover, storage of W a enables
watermark retrieval without errors.

B. Decoding Procedure

Suppose that the µ-th image is attacked and degraded. By
using the features η̃µ = (η̃µ1 , η̃

µ
2 , · · · , η̃

µ
K)

⊤ extracted from this
degraded image and the weight matrix W h, the µ-th watermark

ξ̃µ =
(
ξ̃µ1 , ξ̃

µ
2 , · · · , ξ̃

µ
N

)⊤
is retrieved via (8) as the HMM’s

output x0. The output x0 is then given to the AMM as its
initial state. The state at time t + 1 is given by (18). After a
sufficiently long time, if mµ

t = 1, then the watermark ξµ has
been successfully retrieved.

V. COMPUTER SIMULATION

Through simulation results, we show that watermarks can be
retrieved from an attacked image. The retrieval performance is
evaluated in terms of the bit error rate (BER) of the watermark
for a large number of images. The BER is computed from the
overlap m and is given by

BER (m) =
1−m

2
. (21)

Specifically, the BERs for the feature ηµ and the µ-th water-
mark are given by BER(mµ

∗ ) and BER(mµ
t ), respectively. A

total of 38 images obtained from the USC-SIPI image database
[13] were used as original images: 6 images of 108×108 pixels,
10 images of 256× 256 pixels, 6 images of 512× 512 pixels,
6 images of 600×800 pixels, and 7 images of other sizes. The
feature bit lengths were K = 500, 1000, and the watermark
bit length was N = 1000. We evaluated the proposed method’s
robustness against JPEG compression. As the watermark can be
correctly recalled by the HMM for small attacks, we applied
large attacks to the images.

First, we computed the BERs with bit lengths K = N =
1000. Figure 2 shows the time evolution of the overlap mµ

t .
The abscissa and ordinate represent the time and overlap,
respectively. The images were JPEG-compressed with quality
values of Q = 4, 6, 8, 10, and 20. Note that the overlap mµ

∗
at time t = −1 is for the feature ηµ given by (10), while the
overlaps mµ

t at time t ≥ 0 are for the watermark given by (20).
In the case of mµ

0 = 1, the watermark was fully recalled by
the HMM. For clarity, we removed the lines for mµ

0 = 1 from
Figure 2, because the majority of the results yielded mt

0 = 1.
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(a) Q = 4 (b) Q = 6

(c) Q = 8 (d) Q = 10

(e) Q = 20

Fig. 2. Time evolution of the overlap. The overlap mµ
∗ at time t = −1 is given by (10), while the overlaps mµ

t at time t ≥ 0 are given by (20).

In other words, the figure only shows cases in which the image
was compressed quite strongly (Q ≤ 20). We found that as the
Q-value decreased, the overlap mµ

∗ at time t = −1 decreased,
and that the overlaps at time t = 0 were all larger than those at
time t = −1. This result implies that the HMM could correct
certain errors. For strongly compressed cases, the overlap could
be mµ

0 ̸= 1. However, errors that were not corrected by the
HMM could be further corrected by the AMM at time t ≥ 1.
In some cases, recall could fail when the overlap mµ

∗ was not
above a certain value, but compression with Q ≤ 20 is rare.

Figure 3 shows the BER(mµ
t ) of the watermark versus the

feature overlap mµ
∗ . The curves represent the theoretical values

according to (16). The red points represent BER(mµ
0 ) for the

HMM’s output, and the blue points represent BER(mµ
10) for

the AMM’s output at time t = 10. The number of blue points
with BER = 0 was larger than the number of red points,
which demonstrates that the AMM could significantly reduce
the BER.

Next, the BERs were calculated with bit lengths of K = 500
for the feature and N = 1000 for the watermark. Figure 4
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(a) K = 1000 (b) K = 500

Fig. 3. BER with feature bit lengths of (a) K = 1000 and (b) K = 500.

shows the time evolution of the overlap mµ
t . As with Figure 2,

the lines for mµ
0 = 1 were removed from Figure 4 for clarity.

There are more lines in Figure 4 than in Figure 2, which
indicates that more watermarks could not be correctly retrieved
by the HMM because of the shorter feature length, K = 500.
However, errors were corrected by the AMM at time t ≥ 1. It
was thus effective to use both the HMM and the AMM rather
than only the HMM.

VI. CONCLUSIONS

In the zero-watermarking method, which does not degrade
the original image, it is difficult to manage the associations
between images and secret keys when there are many images.
In addition, the bit lengths of the features and the watermark
must be equal. Moreover, as that method does not have the
ability to correct errors, it cannot retrieve the watermark when
an image is degraded.

Accordingly, in this paper, we proposed a watermarking
method using associative memory models, called the associa-
tive watermarking method. By introducing a hetero-associative
memory model (HMM), we could solve the problem of man-
aging the mapping between features and watermarks, as well
as the bit-length restriction. Furthermore, the error correction
capability could be improved by introducing an auto-associative
memory model (AMM). In a computer simulation, a total of 38
features were mapped to watermarks, and the watermarks could
be fully retrieved from the degraded features. Next, we plan to
examine the case when an image that is similar to but different
from stored images is represented by the hetero-associative
memory model. Even though the probability of retrieval would
be very small, it is possible that the stored watermark could be
retrieved. For another future work, we will theoretically clarify
the basin of attraction for watermarks in the proposed method.
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(a) Q = 4 (b) Q = 6

(c) Q = 8 (d) Q = 10

(e) Q = 20

Fig. 4. Time evolution of the overlap. The overlap mµ
∗ at time t = −1 is given by (10), while the overlaps mµ

t at time t ≥ 0 are given by (20).
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