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Abstract—Dysarthria is a neuro-motor speech impairment that
renders speech unintelligibility, which is generally imperceptible
to humans w.r.t severity-levels. Dysarthric speech classification
acts as a diagnostic tool for evaluating the advancement in a
patient’s severity condition and also aids in automatic dysarthric
speech recognition systems (an important assistive speech tech-
nology). This study investigates the significance of Teager Energy
Cepstral Coefficients (TECC) in dysarthric speech classification
using three deep learning architectures, namely, Convolutional
Neural Network (CNN), Light-CNN (LCNN), and Residual Net-
works (ResNet). The performance of TECC is compared with
state-of-the-art features, such as Short-Time Fourier Transform
(STFT), Mel Frequency Cepstral Coefficients (MFCC), and Lin-
ear Frequency Cepstral Coefficients (LFCC). In addition, this
study also investigate the effectiveness of cepstral features over
the spectral features for this problem. The highest classification
accuracy achieved using UA-Speech corpus is 97.18%, 94.63%,
and 98.02% (i.e., absolute improvement of 1.98%, 1.41%, and
1.69%) with CNN, LCNN, and ResNet, respectively, as compared
to the MFCC. Further, we evaluate feature discriminative capa-
bility using F1-score, Matthew’s Correlation Coefficient (MCC),
Jaccard index, and Hamming loss. Finally, analysis of latency
period w.r.t. state-of-the-art feature sets indicates the potential of
TECC for practical deployment of the severity-level classification
system.
Index Terms: Dysarthria, UA-Speech Corpus, TEO Profiles,
TECC. 1

I. INTRODUCTION

Coordination between the brain and the speech producing
muscles is required for speech production and perception [1].
Speech disorders, such as aparaxia, dysarthria, and stuttering,
affect a person’s ability to generate speech sounds and for-
mulate intelligible words. These disorders can be caused by
neurological or neurodegenerative diseases, such as Cerebral
Palsy or Parkinson’s disease. It can be mild, moderate, or
severe, depending on the impact on the brain. In the case of
mild severity, there may be a few minor mispronunciations. On
the other hand, in a severe case, there is inability to produce
intelligible speech. Among these speech disorders, dysarthria is
a relatively common speech disorder [2]. Dysarthria is a neuro-
motor speech disability that causes the muscles useful in pro-
ducing speech to weaken. Additionally, patient’s lips, tongue,
throat, and upper respiratory tract system are also affected due
to brain damage, Cerebral Palsy, muscular dystrophy, or stroke
affects, which are linked to dysarthria [3].

12This work was done when Dr. Hardik B. Sailor was at Samsung
Research Institute, Bangalore (SRI-B), India in collaboration with DA-IICT,
Gandhinagar.

Dysarthric severity depends on the damage to the neurolog-
ical area and its treatment depends on type, underlying cause,
severity-level, and symptoms [4]. This motivates researchers
to develop diagnostic assistive speech tools for dysarthria in-
telligibility classification. This problem has been studied in the
literature using either speech recognition-based approaches or
blind intelligibility assessment. In [5], Mel Frequency Cepstral
Coefficients (MFCC) are also employed due to their capacity to
capture “global” spectral envelope properties for perceptually-
motivated audio classification tasks. In addition, glottal exci-
tation source parameters derived from quasi-periodic sampling
of vocal tract systems are also investigated in [6]. As in [7], the
disparity in vocal fold vibration between dysarthric and normal
speech production cannot be described solely by the rate of
vibration (i.e., pitch source information), the mode of vibration
of the vocal folds are also impacted. Hence, information
generated by the waveform of the acoustic speech excitation
and glottal flow may contain useful information. Teager Energy
Operator (TEO) is known to capture the non-linear excitation
source information related to glottal flow waveform of the
vocal folds [8], [9]. The key objective of this study is to
explore and analyse the difference in non-linearities present
in the normal vs. dysarthric speech production mechanism
using TEO. To that effect, we propose the novel approach in
classifying the dysarthric speech severity-level using Teager
Energy Cepstral Coefficients (TECC) feature set, which was
originally used for speech recognition applications [10], [11].
Many recent studies reveal that the feature representation of the
speech signal developed using TEO is useful for anti-spoofing
[12], [13].

In this study, two state-of-the-art features are used, namely,
MFCC and Linear Frequency Cepstral Coefficients (LFCC)
along with comparison with the spectral features mentioned in
[14]. The CNN, LCNN, and ResNet are trained using features
extracted from speech utterances present in UA-Speech corpus.
This study explores the effectiveness of TECC in capturing
the non-linearities for dysarthric speech severity-level classi-
fication. Speech enhancers are designed for the formants in
dysarthric speech enhancement [15] and hence, we present
analysis of TEO profile around 1st formant frequency. To the
best of the authors’ knowledge, this is the first study of its kind,
where TECC is proposed for classifying the severity-level of
dysarthric speech.
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Fig. 1. Subband filtered signal for vowel /i/ by a male speakers around
1stFormant = 500Hz (Panel I) and corresponding TEO profile (Panel
II) for (a) normal, dysarthic speech with severity-level as (b) very low, (c)
low, (d) medium, and (e) high. After [16].

II. PROPOSED TECC FEATURE SET

A. Analysis of TEO Profiles

In the signal processing literature, energy of the speech
signal x(t) is estimated through Squared Energy of the signal,
i.e., the integral of the square of absolute operation over the
entire signal under analysis [18]. This method of estimating
energy is based on linear filtering theory (in particular, Parse-
val’s energy equivalence), which can describe only the linear
components of speech production mechanism [16]. However,
in particular consider a discrete-time speech signal x(n).
The parseval’s energy equivalence in Discrete Time Fourier
Transform (DTFT) framework is given by [19],

∑
[n]

|x(n)|2 =
1

2π

∫ ∞

−∞
|X(ejω)|2 (1)

∞∑
n=−∞

x(n).x∗(n) =
1

2π

∫ ∞

−∞
X(ejω).X∗(ejω) dω (2)

From the Equation 2, it can be inferred that

< x(n), x(n) >=
1

2π
< X(ejω), X(jω) > (3)

Fig. 2. Subband filtered signal for vowel /e/ by a male speakers around
1stFormant = 500Hz (Panel I) and corresponding TEO profile (Panel
II) for (a) normal, dysarthic speech with severity-level as (b) very low, (c)
low, (d) medium, and (e) high. After [16].

Hence,
x(n) ∗ ¯x(n) =

1

2π
< X(ejω), X(ejω) > (4)

where ∗ is convolutional operator w.r.t. LTI operator, and
< > represents the inner product space between two signals.
Thus it can be observed that L2 norm, (i.e.), energy of a signal
imposes a linear product structure on the speech signal and this
in turn imposes linear structure on the data through convolution
operation.

However, because the speech production mechanism is non-
linear, the energy of the speech wave could not be effectively
approximated using linear filter theory [20]. TEO was devel-
oped to address this problem [21]. It is a nonlinear differential
operator that can capture the nonlinear feature of the speech
production mechanism as well as the properties of the airflow
pattern in the vocal tract system during speech production
process [18], [22]. By approximating the derivative operation
in continuous-time with backward difference in discrete-time,
we obtain the TEO for discrete-time signal x(n) having
amplitude, A and monocomponent angular frequency, Ωm as
follows [21]:

Ψ[x(n)] = x2(n)− x(n− 1)x(n+ 1) ≈ A2Ω2
m. (5)

Where Ψ[.] represents the TEO of monocomponent signal.
Furthermore, we analyse the TEO profiles around the 1st

formant frequency (i.e., F1 = 500Hz) for the utterance of
vowel /i/ as show in Figure 1 and vowel /e/ as show in
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Fig. 3. Functional block diagram of the proposed Subband TEO representation and TECC feature set. (SF: Subband filtered signal, TE: Teager energies, AE:
Averaged energies over frames). After [10], [17].

Figure 2 for normal vs. different dysarthric severity-levels.
Panel-I of Figure 1 and 2 shows the subband filtered signal
around 1st formant frequency using a linear-spaced Gabor
filter, and Panel-II shows corresponding TEO profiles. Figure
1(a), Figure 1(b), Figure 1(c), Figure 1(d), and Figure 1(e)
shows the analysis for normal, very low, low, medium, and
high severity-levels, respectively. Similarly, for Figure 2(a),
Figure 2(b), Figure 2(c), Figure 2(d), and Figure 2(e) shows
the analysis for normal, very low, low, medium, and high
severity-levels, respectively. It can be observed from both
Figure 1 and Figure 2 that TEO profile for normal speech
shows bumps within two consecutive Glottal Closure Instants
(GCIs), which are known to indicate non-linearities in speech
production mechanism. Furthermore, it can also be observed
that the quasi-periodicity in glottal excitation source decreases
with increase in severity-level (as observed via aperiodic TEO
profile) indicating disruption in the rhythmic quasi-periodic
movements of vocal folds due to dysarthria. Moreover, it is
all the more true in high dysarthric condition. Furthermore, as
the severity-level increase, the neuro-motor impairment also
increase, which leads to increased vocal fold closure disruption
and loosing structural periodicity.

B. TECC Feature Extraction

TEO is derived to find the running estimate of the signal’s
energy for a monocomponent signal. However, speech signal
consists of the frequency range varying from baseband to
Nyquist frequencies. Hence, to obtain the monocomponent
approximation of the signal, the speech signal is passed
through the filterbank, which consists of several subband filters
with appropriate center frequency and bandwidth. The subband
filtered signals are narrowband signals, which are supposed
to approximate the monotone signals and hence, TEO can be
applied on these subband filtered signals. In this work, Gabor
filterbank with linearly-spaced subbandd filters, is utilized
for subband filtering. We chose Gabor filters due to their
optimal time and frequency resolution in the framework of
Heisenberg’s uncertainty principle [16]. TEO is applied on
each subband filtered signal to accurately estimate the energy.
Furthermore, these narrowband energies are segmented into the
frames of 20 ms duration with overlapping of 10 ms. Then,
the temporal average for each frame is estimated to produce
N -dimensional (D) subband Teager energy representations
(subband-TE). Discrete Cosine Transform (DCT) is performed
on subband Teager energy representations to obtain the TECC.
The functional block diagram representation of the proposed

subband-TE and TECC feature set is shown in Figure 3.
Throughout this study, TECC features extracted using linear
scale are termed as TECC.

III. EXPERIMENTAL SETUP

A. Dataset Details

The proposed technique is validated using Universal Access
dysarthric speech (UA-Speech) Corpus [23]. In our exper-
iments, we have used data of 8 speakers (i.e., 4 males,
namely, M01, M05, M07, and M09) and 4 females (namely,
F02, F03, F04, and F05). From 765 word utterances, 465
utterances per speaker as mentioned in [24] was used. For
training and testing, we used 90% and 10% of the data,
respectively. Table I shows the statistics of UA-Speech Corpus.

TABLE I
CLASS-WISE PATIENT DETAILS OF UA SPEECH CORPUS. AFTER [23].

Female Male
High F03 M01, M04, M12

Medium F02 M07, M16
Low F04 M05, M11

Very Low F05 M08, M09, M10, M14

B. Feature Sets

In this study, the performance of TECC is compared against
MFCC [25], and LFCC [25]. Furthermore, subband-TE being
a spectral representation, its performance is compared against
the Mel Filterbank (MelFB) coefficients, and Linear Filterbank
(LinFB) coefficients. The details of the parameters for these
feature sets are given in Table II. All cepstral representations
consists of static, ∆, and ∆∆ coefficients. In this study, we
compare the performance of TECC feature set with the state-
of-the-art feature sets, namely, MFCC and LFCC along with
its spectral features.

•MFCC: The 42-D MFCC feature set used is extracted using
14 subband filters, which are placed using the Mel scale. Static,
∆, and ∆∆ coefficients are considered in this feature set [25].

•LFCC: The 120-D LFCC feature set used is extracted using
40 subband filters, which are placed linearly. Static, ∆, and
∆∆ coefficients are considered in this feature set [25]. It is
a widely used feature set for speech technology applications.
It also mimics the auditory representation, such as Constant-Q
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Cepstral Coefficients (CQCC). The windowed speech signal is
processed through Fourier transform (FT) to produce STFT.
The weighted sum is performed for each Mel scale subband
filter. Then, DCT is applied and desired number of cepstral
coefficients are extracted to get MFCCs. In this paper, we
have used 40 Mel scale subband filters for feature extraction.
13-D and 40-D static coefficients have been extracted for
two different experiments. However, results with 40-D static
coefficients shows inferior performance compared to that of
13-D static coefficients. Here, Mel scale filterbank is replaced
by linear-scale filterbank, where central frequencies of the
subband filters are linearly-spaced. LFCCs are extracted with
40 linear-scale subband filters. All 40 cepstral coefficients are
retained and appended with ∆ and ∆∆ coefficients to form
120-D LFCC feature vector.

C. Classifiers Details

According to the experiments reported in [5], CNN per-
forms at par w.r.t the other deep neural network (DNN)-based
classifiers for UA-Speech corpus. Hence, we employed CNN
classifier in this study. CNN model was trained using Stochas-
tic Gradient Descent (SGD) algorithm and 3 convolutional
layers each with a kernel size 5 × 5, and 1 Fully-Connected
(FC) layer [26]. The input feature is made of uniform size
of D × 300, where D is the dimension of the feature vector.
Rectified Linear Activation (ReLU) and a max-pool layer are
used. Learning rate of 0.001 and cross-entropy loss is selected
for loss estimation.

1) Light Convolutional Neural Network (LCNN): LCNN
architecture was also implemented, as it is one of the success-
ful architectures for anti-spoofing task [27], [28], [29]. The
experiments were performed on the uniform D×300 features.
LCNN architecture uses Max-Feature-Map (MFM) activation
operation, for learning with a few parameters [29]. In this
study, we utilized seven convolutional layers having MFM ac-
tivation function followed by two-fully connected layers. The
1st convolutional layer uses the kernel size of 5×5 and stride
of 1 × 1 and the following convolutional layer has a kernel
size of 3 × 3 and stride of 2 × 2 with learning rate of 0.001.
Weights of the LCNN are initialized using Xavier weight
initialization technique [30]. ResNets are one of the popular
DNN classifiers and introduced to take the advantage of more
DNN by integrating the high/mid/low-level features. ResNets
are introduced to alleviate the issue of vanishing/exploding
gradients of more DNNs. It utilizes the identity mapping as
explained in [31], which allows stacking more number of lay-
ers without introducing the vanishing/exploding gradients and

TABLE II
DETAILS OF PARAMETERS OF THE VARIOUS FEATURE SETS USED

Parameters MFCC LFCC TECC MelFB LinFB Subband-TE
Frequency

Scale Mel Linear Linear Mel Linear Linear

Subband
Filter 40 40 40 40 40 40

Feature
Dimension 42 120 120 40 40 40

permits the possibility of smooth convergence. The increase
in layers of DNN allow learning high-level features and thus,
improving the performance of the system. We have utilized 22
layers ResNet architecture.

D. Performance Evaluation Metrics
The performance of TECC w.r.t. other feature sets are

analysed using various statistical parameters, such as F1-score,
Matthew’s Correlation Coefficient (MCC), Jaccard index, and
Hamming loss.

1) F1-Score: F1-score is as widely used measure to the
test accuracy of a model, which ranges from 0 to 1, where
closer to 1 F1-score indicates better model. It is estimated by
taking the harmonic mean of model’s precision and recall, as
in [33].

2) MCC: MCC is a balanced statistical measure, which
measures the effectiveness of the model prediction. It measures
the degree of correlation between the actual and predicted class
values. MCC ranges between −1 to 1 [34].

3) Jaccard index: It is a metric for determining similarity
and dissimilarity between classes. Jaccard index ranges be-
tween 0 and 1. The Jaccard index is defined as [35]:

Jaccard index =
TP

TP + FP + FN
, (6)

where TP, FP, and FM represents True Positive, False positive,
and False Negative, respectively.

4) Hamming Loss: It takes into account incorrectly pre-
dicted class labels. The prediction error (an incorrect label is
predicted) and missing error (a relevant label is not predicted)
are standardized across the total number of classes and data
under test. Hamming Loss can be estimated as [36]:

Hamming Loss =
1

nL

n∑
i=1

L∑
j=1

I(yji ̸= ŷji ), (7)

where yji and ŷji are the actual and predicted labels, and I is
an indicator function. The more it is close to 0, the better is
the performance of the algorithm.

IV. EXPERIMENTAL RESULTS

A. Visualization of Features Space using Linear Discriminant
Analysis (LDA)

Severity-level classification capability of the TECC is also
validated using the scatter plot obtained using Linear Dis-
criminant Analysis (LDA) due to it’s higher image resolution
and better projection of the given higher-dimensional feature
space to lower-dimensional than the scatter plots obtained
using TSNE plots. [32]. Here, we project TECC, MFCC, and
LFCC feature sets to 2-D space to obtain the scatter plots for
various severity-levels in dysarthria. Figure 4(a), Figure 4(b),
and Figure 4(c) shows the scatter plots obtained for MFCC,
LFCC, and TECC, respectively, using LDA. It can be observed
from Figure 4 that the interclass distance between the clusters
of various classes is larger for TECC as compared to the
other features. Also, the clusters obtained using TECC are
more compact, indicating the better severity-level classification
capability of the TECC.

1462



Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

Fig. 4. Scatter plots obtained using LDA for (a) MFCC, (b) LFCC, and (c) TECC. After [32]. Best viewed in colour.

B. Performance Evaluation

The results obtained in % classification accuracy using vari-
ous features sets and classifiers are reported in Table III. It can
be observed that the TECC performs relatively better than the
baseline STFT with classification accuracy of 97.12%, 94.63%
and 98.02% (i.e., absolute improvement of 5.35 %, 6.20 %, and
2.70 %) for CNN, LCNN, and ResNet classifiers, respectively.
Furthermore, it was also observed that there was decrease in %
classification accuracy by varying parameters in CNN model.
This might be due to overfitting of the model. Furthermore,
TECC performs better than baseline STFT features for CNN,
LCNN, and ResNet classifiers explored in [24]. Moreover, it
was observed that optimum results of TECC were obtained for
linear scale. The analysis provided in sub-Section II-A along
with experimental results obtained using various classifiers
shows that the TECC can be the best possible choice for the
severity-level classification of dysarthric speech.

TABLE III
RESULTS (IN % CLASSIFICATION ACCURACY) FOR VARIOUS

CLASSIFICATION SYSTEMS. TECC → LINEAR FREQUENCY SCALE USED

Feature Set ↓ % Classification Accuracy
CNN LCNN ResNet

STFT 91.76 88.43 95.32
MFCC 95.20 93.22 96.33
LFCC 96.32 94.07 97.17

TECC-Mel 92.37 85.87 93.09
TECC 97.12 94.63 98.02
MelFB 96.04 91.24 97.45
LinFB 94.91 89.26 97.17

Subband-TE 95.48 93.22 95.12

As mentioned in [14], the cepstral features perform better on
noisy signal. In [23], the noise in dysarthric speech increases
with increase in severity-levels. Hence, experiments were also
performed on the spectral features w.r.t proposed and baseline
features with all the three classifiers. It was observed that
the cepstral features gave remarkably better % classification
accuracy on all the classifiers. Hence, it can be inferred that
more the severity-level, more is the speech production noise.

Furthermore, Table IV shows the confusion matrices for
the TECC, MFCC, and LFCC for ResNet model. It can
be observed that TECC reduces the misclassification errors,

especially for high severity-level dysarthria, and overall per-
formance of the TECC is relatively better than the MFCC,
and LFCC. Furthermore, F1-score, MCC, Jaccard index, and
Hamming loss are estimated for all the cepstral features as
shown in Table V. It can be observed from Table V that the
TECC feature set outperforms the other cepstral features for
all the evaluation metrics, indicating relatively better feature
discriminative power of TECC.

TABLE IV
CONFUSION MATRIX OBTAINED FOR MFCC, LFCC, AND TECC USING

RESNET

Feature Severity High Medium Low Very Low

MFCC

High 72 0 2 1
Medium 1 90 2 0

Low 1 1 88 3
Very Low 1 0 0 92

LFCC

High 74 0 1 0
Medium 1 88 2 2

Low 0 1 91 1
Very Low 1 0 0 92

TECC

High 74 1 0 0
Medium 1 92 0 0

Low 0 1 92 0
Very Low 1 0 0 92

TABLE V
VARIOUS STATISTICAL MEASURES FOR MFCC, LFCC, AND TECC

Feature Sets F1-Score MCC Jaccard
Index

Hamming
Loss

MFCC 0.96 0.95 0.93 0.033
LFCC 0.97 0.96 0.95 0.025
TECC 0.98 0.97 0.96 0.019

C. Analysis of Latency Period

We analysed latency period for TECC, LFCC, and MFCC
feature sets as shown in Figure IV-C. The latency period of the
trained model is estimated by computing the % classification
accuracy w.r.t. varying durations of test speech segment in a
test utterance. For analysis of latency period, we chose the
duration of the utterances varying from 100 ms to 3000 ms.
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To that effect, experiments were performed on x86 64 32 bit,
INTEL(R) Core(TM) i5-2400 CPU at 3.10 GHz. The better
performing model w.r.t. latency period should produce the
larger accuracy for short speech segments. Moreover, it can
be observed that the TECC gave significant % classification
accuracy in a limited duration speech utterance of < 500
ms. On the contrary, MFCC and LFCC shows increment in
accuracy after a relatively longer utterance duration of 1000
ms. Hence, these results signifies the suitability of TECC for
practical dysarthric speech classification system deployment.

Fig. 5. Latency period vs. % classification accuracy comparison between
MFCC, MelFB, LFCC, LinFB, TECC, and Subband-TE. Best viewed in
colour.

V. SUMMARY AND CONCLUSIONS

In this study, TECC was proposed to classify the severity-
level of dysarthric speech using CNN, LCNN, and ResNet
classifiers. To classify the severity-level, TECC captures the
non-linearities present in the speech signal. It was observed
that the TECC outperforms the other feature sets. This justifies
the proposition that as the severity-level increases, the non-
linearities decreases and the amount of linear components
increases in the speech signal. It can also be seen that due
to lack of neuro-motor coordination, the formant structure,
which captures the linguistic information are distorted. This
study shows that the TEO-based excitation source information
are more effective over perceptually-motivated features for
this problem. Furthermore, we have also demonstrated the
discriminative capability of TECC using statistical measures,
such as F1-score, MCC, Jaccard index and Hamming loss.
For effective analysis of TECC, we analysed the latency
period w.r.t. state-of-the-art feature sets, which indicates the
potential of TECC for practical deployment of severity-level
classification system. To the best of authors’ knowledge,
this study presented the first detailed analysis of TECC for
dysarthric speech classification. Our future research efforts will
be directed towards evaluation of proposed approach under
cross-database scenarios.
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