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Abstract— Due to the strong sense of reality, immersion, and 
interaction, virtual reality technology has been widely used in 
emotional induction, psychological assistance, and the diagnosis 
of emotion-related disorders. It is a challenging problem that 
involves evaluating the interventional effect of virtual reality in 
the above applications and objectively judging an individual’s 
emotional state. The primary purpose of this paper is to 
introduce innovative methods for obtaining reliable 
distinguishing features and improve the classification accuracy 
of emotional valence from EEG signals in immersive virtual 
reality. Firstly, we established a relatively standard emotion-
induced virtual reality video library. Participants’ EEG data 
were collected synchronously while they were watching virtual 
reality clips. Then, EEG features of the energy spectrum, 
differential entropy, differential asymmetry, and rational 
asymmetry were extracted to represent the characteristics 
associated with emotional valence. The results show that the 
random forest (RF) generally performed better than the 
backpropagation neural network (BPNN). By combining the 
dimensionality reduction method (the F-test or PCA) and the RF 
classifier, it is possible to achieve encouraging classification 
results and increase computation speed and stability. PCA-RF 
achieved the highest average classification accuracy of 95.6%. In 
addition, it is demonstrated that features extracted from the 
theta band were superior to features from other frequency bands 
for emotional valence decoding. This may facilitate the 
application of EEG-based affective computing technology in the 
virtual reality brain-computer interface field. 

I. INTRODUCTION

Virtual reality (VR) is a computer-generated environment 
in which scenarios appear realistic and allow users to feel 
immersed [1]. According to a recent literature review [2], 
immersive VR is becoming more and more popular in 
affective computing. On the one hand, VR allows individuals 
to experience lively, naturalistic, and interactive situations, 
allowing researchers to study emotions in more realistic 
settings within controlled laboratory conditions. It is 
beneficial to the ecological validity of research conclusions. 
On the other hand, VR can be widely used in emotional 
induction, mental health care, and the diagnosis of emotion-

related disorders [3] to make scientific research and real-life 
applications closely integrated to benefit human life. 

According to literature review, one evolutionary trend of 
current research is the combination of immersive VR and 
implicit measurements to monitor physical and psychological 
states. One example is electroencephalogram (EEG) 
technology [2]. As one of the most mobile neurophysiological 
techniques, EEG has emerged as a powerful tool for 
quantitatively studying brain activities combined with the VR 
head-mounted display (HMD) [4]. Compared with other 
behavioral signals for affective computing, such as facial 
expressions and sound recordings, EEG signals directly 
reflect changes in the central nervous system, which provide 
more reliable information for emotions in contrast with visual 
and audio cues [5]. In addition, the use of EEG is noninvasive 
and inexpensive, which has attracted many researchers to 
unravel the evocation of emotional responses in the brain [6]. 
To summarize, the combination of immersive VR and EEG 
enables naturalistic neuroscientific research while maintaining 
experimental control.  

As a rapidly growing field of research, EEG-based affective 
computing in immersive VR is gradually transitioning from 
traditional statistical analysis to supervised machine learning-
based analysis. Previous studies focused more on the neural 
mechanisms of emotions underlying the VR environment or 
the frequency oscillations produced during various affective 
states by using hypothesis testing and correlation analysis [7-
9]. For example, ref. [10] demonstrated that the brain’s lower 
beta-band desynchronization could be used to predict 
emotional arousal when participants experienced a virtual 
roller coaster game. Another study showed that the VR 
sequence with entertaining content was closely related to beta 
high (𝛽𝛽𝐻𝐻) bands, while the VR sequence with horrific content 
was closely associated with theta bands [11]. 

To our knowledge, ref. [12] was the first study that used 
EEG in an immersive scenario combined with machine 
learning algorithms to recognize various emotional states. An 
extensive set of EEG (frequency band power and phase 
coherency) and heart rate variability (HRV) features were put 

1466



Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai Thailand

into a nonlinear SVM classifier. The model realized an 
accuracy of 71.21% at the two levels of emotional valence. 
Another study used SVM in combination with EEG and HRV, 
and achieved recognition accuracies of 75% (arousal) and 
71.08% (valence) in a realistic 3D virtual museum [13]. Later, 
in 2022, a live automatic emotion recognition system was 
established to decode the real-time emotional states using the 
low-cost wearable EEG headset with only four electrodes to 
detect the four distinct emotion classes, which obtained an 
85.01% classification accuracy [14]. Limitations of the 
studies mentioned above can be summarized in two 
perspectives: (i) Existing research does not extract features 
from the multi-dimensional perspective of EEG itself but 
carries out emotion recognition by combining multi-modal 
features, such as HRV, which increases experimental 
complexity and cost; and (ii) The accuracy of emotion 
classification and recognition is generally low and cannot 
support a wide range of applications.  

To overcome these limitations, we try to propose a reliable 
method to recognize the emotional valence in immersive VR. 
Inspired by previous affective computing studies, we have 
sorted out the EEG features commonly used in VR research 
and the features generally considered to perform well in 
emotional valence recognition in 2D scenarios [12-15]. 
Finally, we extracted energy spectrum (ES), differential 
entropy (DE), differential asymmetry (DASM), and rational 
asymmetry (RASM) as features. The F-test and the principal 
components analysis (PCA) algorithm were used as 
dimensionality reduction methods to reduce the computational 
cost of modeling. The classification performance of the 
random forest (RF) and the backpropagation neural network 
(BPNN) were compared. 

II. MATERIALS AND METHODS

A. Participants
A total of 28 college students participated in this

experiment, with an average age of 21.44 years and a standard 
deviation of 2.87. The data of one participant was deleted 
because of extensive artifacts. Finally, the data of 27 
participants were used for further analysis. All participants 
were right-handed and natively Chinese, with normal or 
corrected-to-normal vision, and free of achromatopsia and 
neurological disorder. Participants were requested not to drink 
coffee or tea 3 hours before coming to the lab and less than 5 
hours of experience with VR. All of them signed informed 
consent before participation. The Ethics Committee approved 
the study. Each participant received ¥ 45 (about $ 7.0) as 
compensation for their time. 

In compliance with ethical guidelines, participants 
completed the 21-item Chinese version of the Depression 
Anxiety Stress Scales (DASS-21) before the start of the study 
[16]. As a short version of a 42-item self-report scale 
designed to measure three related negative emotional states: 
depression, anxiety, and tension/stress, this questionnaire has 
high validity and reliability. Participants read each statement 
and circled a number 0 (not applicable to me at all), 1 
(applicable to me to some degree, or some of the time), 2 

(applicable to me to a considerable degree, or a good part of 
the time) or 3 (applicable to me very much, or most of the 
time) that indicates to what extent the statement applies to 
them over the previous week. The DASS-21 results were 
obtained immediately so that unsuitable participants could be 
excluded (subjects with a depression score above 9, an 
anxiety score above 7, or a stress score above 14). None of the 
participants were excluded from the study (depression scores: 
Mean = 3.63, SD = 3.16; anxiety scores: Mean = 3.26, SD 
=2.54; stress scores: Mean = 5.37, SD = 4.43). 

B. Materials
We spent over one month searching for clips of immersive

VR with the potential function of emotion induction. In total, 
more than 100 VR clips were viewed and assessed. The 
subsequent selection round was conducted based on the 
criteria employed by ref. [17]. Firstly, the clips had to be of 
relatively short length. This is especially important as longer 
clips might induce fatigue and dizziness among participants. 
Secondly, the clips had to be comprehensible on their own 
without the need for further description. Thirdly, the clips 
were likely to induce emotions. Three psychologists judged 
this from Shanghai International Studies University. Finally, 
15 high-resolution clips were selected for the study, each with 
a duration of 30 seconds. Clips 1-5 were used for negative 
emotion induction, mainly with horrible and dark scenarios; 
Clips 6-10 were used for positive emotion induction, mainly 
with contents of cute pets or dance performances; and Clips 
11-15 clips were used for neutral emotion induction mainly
with natural or urban street scenarios. Fig.1 shows the
procedure of the experiment and the screenshot of each clip.

Fig. 1 Procedure of the experiment and the screenshot of each clip 

C. Experimental Equipment
An HTC Vive HMD was placed on the EEG cap using

custom-made cushions to avoid pressure artifacts and enhance 
wearing comfort. The HMD can provide stereoscopy with two 
1440×1600-pixel OLED displays and a refresh rate of 90 Hz. 
VR clips were loaded into Viveport Video software (Ver. 
3.0.5), which ran on a 3.6 GHz Intel i9 computer with the 
Nvidia GTX 1080 graphics card. The equipment used for 
EEG recording was a 32-channel (international standard 10-
20 system distribution) BP EEG measurement system (Brain 
Products GmbH, Gilching, Germany), including signal 
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amplifiers, photoelectric converters, frequency division 
switches, and the EEG caps (ranged from 54 cm to 58 cm, 
each was selected according to the participant’s head size). 
The VR-EEG time synchronization interface was developed 
by Shanghai Qingyan Technology Co., Ltd., with a maximum 
synchronization frequency of 100 Hz. 
D. Experimental Design

When participants arrived, they were led to wash and blow
dry their hair to ensure that the scalp was free of oil. Then, 
they sat in a magnetic-insulated and sound-insulated room. 
They were told that they would wear an HMD and an EEG 
Electrode cap at the same time. They were allowed to request 
to quit anytime should they feel uncomfortable or dizzy. All 
of the participants were informed of the harmlessness of the 
equipment. After the electrode cap was put on, the conductive 
gel was injected into the electrodes. We conducted 
experiments after confirming that the impedance of each 
electrode point dropped to a reasonable range (below 5 kΩ). 
Afterward, the HMD was put on, and customized cushions 
were placed below the straps to reduce the interference with 
the EEG electrodes. Participants were also required to reduce 
body and eye movement to decrease electromyography 
(EMG) and electrooculography (EOG) noise. After the above 
steps were completed, participants entered the formal 
experiment. 

In the formal experiment, EEG data were continuously 
acquired when participants watched the 15 VR clips, with a 
sampling rate of 500 Hz and a frequency band of direct 
current (DC) to 100 Hz. Between every two clips, a 30-second 
blank screen was placed as an interval to reduce interference 
between evoked emotions while participants were allowed to 
have a rest to minimize the chances of fatigue or dizziness. 
Before the VR exposure, 30 seconds of resting EEG activity 
were recorded. The total duration of the formal experiment 
was about 15 minutes. Because participants wore the EEG cap 
and the HMD simultaneously, their heads were under a 
certain amount of pressure. Participants could moderately 
relax and adjust their posture in the blank screen stage if they 
felt uncomfortable. The behavioral data were collected by the 
Self-assessment manikin (SAM) scale, which was a 
nonverbal image-oriented assessment scale, as shown in Fig.2 
[18]. Participants were asked to report their emotional arousal 
and valence to various clips. 

Fig. 2 The SAM scale used in this experiment

E. EEG Data Preprocessing and Feature Extraction
The EEG data were further processed offline with the

Matlab EEGLab toolbox and several plugins. The EEG data 
were band-pass filtered at 0.5-50 Hz with a zero-phase shift 

FIR filter. The Notch filter removed electrical interference 
from the 50 Hz-line noise. High-density EEG activities 
referenced the average of both mastoids (TP9 & TP10). The 
EEG data were downsampled to speed up computation with a 
sampling frequency of 256 Hz. Combining EEG with VR 
provokes additional challenges: the signal-to-noise ratio 
(SNR) may be decreased due to mechanical interference of 
the VR headset with the EEG cap. To ensure high data quality, 
we applied multiple measures to prevent, recognize, discard, 
or correct artifacts in the EEG signal. Firstly, the EEG data 
were manually checked for contamination by muscles or other 
artifacts, and bad EEG epochs were rejected. Secondly, the 
location of removed bad electrodes was interpolated using 
spherical interpolation. Thirdly, the independent component 
analysis approach removed nonbrain-related artifacts such as 
significant muscle activity and eye movements. 

Through the above steps, cleaned EEG data were produced. 
Each participant’s data were segmented into 2-s epochs. For a 
better understanding of human brain activity, the EEG signal 
waves were divided into five significant sub-bands, which 
were separated from low to high frequencies known as delta 
(1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), 
and gamma (31-49 Hz) bands. Frequency domain features 
were employed in this study. A 512-point short-time Fourier 
transform (STFT) with a non-overlapped Hanning window of 
1s was used to convert EEG raw data from the time domain to 
the frequency domain, dividing the data into different 
frequency bands as required.  

Four features (ES, DE, DASM, and RASM) were extracted. 
ES is the average energy of EEG signals in the five frequency 
bands mentioned above. DE is equivalent to the logarithm ES 
and calculated according to ref. [15], The time series X obeys 
the Gauss distribution N(μ, δ2). 

 (1) 

DASM and RASM are the differences and ratios between 
DE of 13 pairs of hemispheric asymmetry electrodes (left-
right: FP1-FP2; F3-F4; C3-C4; P3-P4; O1-O2; F7-F8; T7-T8; 
P7-P8; FC1-FC2; CP1-CP2; FC5-FC6; CP5-CP6; TP9-TP10), 
which can be calculated as 

       (2) 

  (3) 

where h(X) is defined in Equation 1, and i is the pair 
number. 

F. Dimensionality Reduction and Emotion Classification
We extracted the features (ES, DE, DASM, and RASM) of

27 participants within 5 frequency bands in different 
electrodes. We confronted with data that were of 
a high dimensionality. Dimensionality reduction methods 
benefit emotional valence recognition to reduce the 
computational cost of modeling. This study employed an F-
test (p-value < 0.05) and PCA (cumulative proportion of 
variance more than 80%) to get the optimal feature sets. F-
Test is helpful in feature selection as we know each feature’s 
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significance in improving the model. PCA is useful for 
selecting a subset of variables that preserves as much 
information as possible in the complete features. After feature 
selection, the data were normalized to avoid dependence on 
the choice of measurement units. In this study, we employed 
the min-max normalization method. It is commonly used 
when features are on drastically different scales. For every 
feature, the minimum value of that feature was converted into 
0, the maximum value was transformed into 1, and every 
other value was converted into a decimal between 0 and 1. 

Fig. 3 Flow chart of the EEG data processing 
 The processed features were further applied to 
emotion classification using RF and BPNN. RF is an 
ensemble learning method that combines the outputs of 
multiple decision trees to get a single result, usually 
trained with bagging or bootstrap aggregating. RF is 
user-friendly with fewer parameters, and its performance 
is not sensitive to parameter value. Ease of use and 
flexibility have boosted the adoption of RF. More 
importantly, it is immune to irrelevant outliers and robust to 
overfitting. In our model, the number of trees in the forest is 
100, the maximum depth of the trees is 81, and the minimum 
number of samples required to split an internal node is 3. 
Different from RF, BPNN builds upon the human nervous 
system. The topology structure of BPNN includes one 
input layer, multi-hidden layers and one output layer. 
Compared with RF, more factors are needed in 
constructing the BPNN, including the initialization of the 
network, the transfer functions, and so on, which require 
experience and prior knowledge to determine many 
parameters. In fitting a neural network, backpropagation 
calculates the gradient of a loss function concerning all the 
weights in the network. It should be noted that the 10-fold 
cross-validation method was used to evaluate the model’s 
generalization performance. We first divided our dataset into 
ten equally sized subsets. Then, we repeated the train-test 
method ten times such that each time one of the ten subsets 
was used as a test set and the rest nine subsets were used 
together as a training set. We have selected several 
performance indicators of the classification model, including 

accuracy, precision, recall, and macro-F1 (macro-averaged 
F1-score) based on the confusion matrix. The calculation 
method for each index is as follows. 

Accuracy=(TP+TN)/(TP+FN+FP+TN)  (4) 

Precision=TP/(TP+FP)            (5) 

Recall=TP/(TP+FN)   (6) 

F1-score=2×Recall×Precision/(Recall+Precision)        (7) 

where TP = Number of true positives among the total 
predictions; FN = Number of false negatives among the total 
predictions; FP = Number of false positives among the total 
predictions; TN = Number of true negatives among the total 
predictions. 

III. RESULTS 

A. Self-reported Results
The self-reported results show that 48.15% of the

participants had experienced VR equipment before, and 
51.85% wore VR equipment for the first time. In all, 18.23% 
of the participants had a slight sense of dizziness during the 
experiment. Statistical comparisons (ANOVA with Fisher’s 
LSD post hoc test) of SAM (9-point Likert scale) were 
performed to detect significant differences in self-reported 
emotional valence and arousal with positive, negative, and 
neutral VR clips priming. The ANOVA analysis of the self-
reported emotional valence was significant [F(2,78)=  40.50, 
p<0.001]. The LSD Post Hoc test indicated that positive VR 
clips induced significantly higher valence ratings than 
negative and neutral VR clips (p<0.001). Neutral VR clips 
generated significantly higher valence ratings than negative 
VR clips (p<0.001). The ANOVA analysis of the self-
reported emotional arousal was significant [F(2,78)= 10.325, 
p<0.001]. The LSD Post Hoc test indicated that neutral VR 
clips induced significantly lower arousal ratings than negative 
and positive VR clips (p<0.001). There were no statistically 
significant differences in arousal between negative VR clips 
and positive VR clips (p>0.05), as shown in Table I. 

TABLE I 

THE RESULTS (MEAN ± S.D.) OF EMOTIONAL VALENCE AND 
AROUSAL FROM SAM 

B. EEG Results
The performance of different method combinations trained

with multivariate features (ES, DE, DASM, and RASM) on 
five frequency bands are shown in Fig.4, Table II and Table 
Ⅲ. The RF classifier performed better than the BPNN 
classifier reflected by the four indicators. The RF classifier 
offers a more accurate and stable recognition performance 
regardless of the frequency band. 

dimension positive negative neutral 

valence 6.35±0.89 4.12±1.19 5.43±0.54 

arousal 5.07±1.69 5.18±1.57 3.38±1.66 
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Fig.4 Classification accuracy of methods in each frequency band 

As we can see from the results, theta frequency bands 
generally performed better than other frequency bands, which 
achieved the highest average classification accuracy of 95.6% 
with the PCA-RF method and 82.2% with the BPNN method. 
In addition, theta frequency bands achieved the highest 
average recall rate of 93.3% with the PCA-RF method and 
73.3% with the BPNN method.  

TABLE II 
PERFORMANCE EVALUATION OF THE RANDOM FOREST 

method band accuracy precision recall F1 

RF 

delta 0.778 0.724 0.667 0.672 

theta 0.867 0.794 0.800 0.792 

alpha 0.822 0.739 0.733 0.731 

beta 0.778 0.683 0.667 0.671 

gamma 0.778 0.672 0.667 0.665 

F-test 
RF

delta 0.867 0.794 0.800 0.792 

theta 0.867 0.806 0.800 0.798 

alpha 0.867 0.800 0.800 0.800 

beta 0.778 0.667 0.667 0.667 

gamma 0.867 0.800 0.800 0.800 

PCA 
RF 

delta 0.822 0.756 0.733 0.739 

theta 0.956 0.944 0.933 0.933 

alpha 0.867 0.838 0.800 0.794 

beta 0.822 0.790 0.733 0.739 

gamma 0.778 0.672 0.667 0.665 

For the RF classifier, the PCA can significantly improve its 
performance. The average classification accuracies of PCA 
and RF methods were improved by 4.4%, 8.9%, 4.4%, and 
4.4% in delta, theta, alpha, and beta bands, respectively, 
compared with the RF method alone. The average 
classification precisions of the combination of PCA and RF 
methods were improved by 3.2%, 15%, 9.9%, and 10.7% in 
delta, theta, alpha, and beta bands, respectively, compared 
with the RF method alone. The average classification recall 
rates of PCA and RF methods were improved by 6.7%, 13.3%, 
6.7%, and 6.7% in delta, theta, alpha, and beta bands, 
respectively, compared with the RF method alone. The 
average classification F1-scores of PCA and RF methods 
were improved by 6.6%, 14.1%, 6.3%, and 6.8% in delta, 

theta, alpha, and beta bands, respectively, compared with the 
RF method alone. 

TABLE Ⅲ 
PERFORMANCE EVALUATION OF THE BACKPROPAGATION 

NEURAL NETWORK 
method band accuracy precision recall F1 

BPNN 

delta 0.778  0.683  0.667  0.671  

theta 0.822  0.756  0.733  0.739  

alpha 0.733  0.617  0.600  0.604  

beta 0.733  0.568  0.600  0.572  

gamma 0.778  0.672  0.667  0.665  

F-test 
BPNN 

delta 0.778  0.679  0.667  0.656  

theta 0.556  0.436  0.333  0.389  

alpha 0.689  0.556  0.533  0.484  

beta 0.644  0.444  0.467  0.401  

gamma 0.600  0.431  0.400  0.395  

PCA 
BPNN 

delta 0.644  0.692  0.467  0.598 

theta 0.600  0.442  0.400  0.421  

alpha 0.689  0.605  0.533  0.646  

beta 0.733  0.728  0.600  0.757  

gamma 0.600  0.443  0.400  0.421  

For the RF classifier, the F-test can also significantly 
improve its performance. The average classification 
accuracies of the F-test and RF methods were improved by 
8.9%, 4.4%, and 8.9% in delta, alpha, and gamma bands, 
respectively, compared with the RF method alone. The 
average classification precisions of the F-test and RF methods 
were improved by 7.1%, 1.1%, 6.1%, and 12.8% in delta, 
theta, alpha, and gamma bands, respectively, compared with 
the RF method alone. The average classification recall rates of 
the F-test and RF methods were improved by 13.3%, 6.7%, 
and 13.3% in delta, alpha, and gamma bands, respectively, 
compared with the RF method alone. The average 
classification F1-scores of F-test and RF methods were 
improved by 12%, 0.6%, 6.9%, and 13.5% in delta, theta, 
alpha, and gamma bands, respectively, compared with the RF 
method alone. 

IV. DISCUSSION

Affective computing based on EEG signals in immersive 
VR is a rapidly growing field that enables naturalistic 
neuroscientific research while maintaining experimental 
control. It has a wide range of applications in emotional 
induction, psychological assistance, and the diagnosis of 
emotion-related disorders. Since 2018, researchers have 
proposed many emotional valence recognition methods based 
on supervised machine learning algorithms to automatically 
identify the individual’s emotional states. However, these 
methods have high time complexity, high cost, and 
insufficient accuracy. This study has proposed an effective 
and reliable way to extract EEG features and encode 
emotional valence with encouraging performance. 

As EEG signals involve a considerable amount of data, 
determining how to extract valuable features effectively is 
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still the focus of much research. A recent review article shows 
that the most frequently used EEG features for affective 
computing in VR scenarios are frequency domain features 
[19]. Inspired by previous affective computing studies, we 
have sorted out the EEG frequency domain features 
commonly used in VR research and the features generally 
considered to perform well in emotional valence recognition 
in 2D scenarios [12-15]. Finally, we extracted ES, DE, 
DASM, and RASM as features. We can get a more 
comprehensive mapping and representation of emotions from 
various aspects, including the power attribute, logarithmic 
attribute, and cerebral asymmetry attribute of frequency-
domain data. The results demonstrate that each band’s joint 
presentation of multivariate features was complementary. 
These distinguishing features can be used to characterize 
emotional changes in EEG signals and achieve good 
classification results. 

To reduce the computational cost of modeling, we applied 
PCA for dimensionality reduction. As an unsupervised linear 
transformation technique, PCA aims to find the directions of 
maximum variance in high-dimensional data and project the 
data onto a new subspace with equal or fewer dimensions than 
the original one. The PCA’s validity is verified when 
combined with the RF method. It saves computing resources 
and significantly improves the performance of the model. The 
average classification accuracies of PCA and RF methods 
were improved by 4.4%, 8.9%, 4.4%, and 4.4% in delta, theta, 
alpha, and beta bands, respectively, compared with the RF 
method alone. PCA and RF methods preserve valid feature 
information while reducing the data dimensionality. 

As a comparison, we proposed to combine the one-way 
ANOVA F-test statistics scheme to determine the most 
important features contributing to emotional valence 
recognition. This method was used to reduce the high data 
dimensionality of the feature space before the classification 
process. The F-test’s validity is verified when combined with 
the RF method. It reduces the amount of calculation and 
significantly improves the model’s performance. The average 
classification accuracies of the F-test and RF methods were 
improved by 8.9%, 4.4%, and 8.9% in delta, alpha, and 
gamma bands, respectively, compared with the RF method 
alone. In summary, combining the dimensionality reduction 
method and the RF classifier helps increase the model’s 
accuracy and stability. Some of the feature values are shown 
to be irrelevant to emotional valence recognition, and some 
are redundant in our task. This discovery helps us reduce the 
computations of features and the complexity of the 
classification models. However, it is worth mentioning that 
combining the dimensionality reduction method with some 
classifiers, such as the BPNN in this paper, may play a 
negative role in the model performance. Therefore, choosing 
the appropriate combination according to the specific 
situation is necessary. Researchers should consider not only 
the computational cost and time complexity of the model, but 
also the classification model’s performance. 

  It can be seen that the RF method performs better than the 
BPNN method, and there may be three reasons for this. (i) 

BPNN learns a non-linear mapping through a multi-layer 
network, which generally requires a large amount of training 
data. In our experiment, constrained by the number of 
experimenters, we adopt a small data set, which is detrimental 
to BPNN but has little impact on the RF algorithm [20]. (ii) 
RF requires far fewer hyperparameters than BPNN, which is 
more conducive to better classification results by adjusting the 
hyperparameters of the former. (iii) BPNN trains the 
parameters by gradient methods, so local optimum is usually 
obtained. This phenomenon restricts the stability of BPNN 
[21]. In contrast, RF can effectively avoid falling into local 
optima by randomly selecting samples and features. 

The results demonstrate that the classification effect of the 
RF method with features in the theta band is superior to 
features in other frequency bands. The best performance was 
achieved by RF when it was combined with PCA, with the 
results of 95.6% (accuracy), 94.4% (precision), 93.3% (recall 
rate), and 93.3% (F1-score), showing the theta band’s power 
in characterizing and separating emotional valence. It was 
found that theta asymmetry was one of the best indices for 
emotion recognition, which was quite robust to individual 
differences [22]. Theta power over the left and suitable frontal 
cerebral regions responded differentially to emotional valence. 
Positive valence emotions elicited larger theta power in the 
left hemisphere, whereas negative valence emotions elicited 
greater theta power in the right hemisphere [23]. As a 
biomarker, the power activation of the theta band may play a 
more critical role in emotion recognition [24]. Several recent 
studies have introduced different methods combined with 
frequency band features for automatically monitoring 
emotional valence in VR scenarios [12-14]. Compared with 
these studies, this research demonstrates higher discriminative 
performance.  

The combination of EEG and VR has broad application 
prospects. Due to the fast pace of modern life and the 
aggravation of work pressure, emotional regulation and 
management have become more important. Previous studies 
have demonstrated that HMD made viewers perceive more 
reality than 2D environments, and positive emotions were 
triggered at a higher level of strength [25]. Thus, the emotion 
regulation system based on VR technology can help us stay 
positive and control negative urges during emotional distress. 
Based on the EEG analysis method of this study, the validity 
and reliability of the VR emotion regulation system can be 
objectively evaluated to guide the design of VR scenarios, 
which can avoid the social desirability bias brought by self-
assessment questionnaires. Moreover, the initial screening and 
diagnosis of people with emotional disorders is an essential 
issue in clinical psychology. Taking advantage of the emotion 
induction by VR, objective electrophysiological neural 
markers can be extracted under different valence conditions to 
distinguish between normal and pathological populations. In 
addition, EEG signal-driven VR interaction technology is a 
new direction in brain-computer interfaces. This further 
expands the handle, button, and eye movement interaction, 
which can achieve more direct and naturalistic human-
computer interaction. Future research could conduct real-time 
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emotion monitoring based on EEG signals. Thus, the user’s 
emotional state can control the virtual environment. 

It should be noted that though this study has achieved 
encouraging results for automatically identifying emotional 
valence, several challenges still require additional effort. 
Firstly, future research should compare VR and ordinary 
imaging scenarios, which help determine the characteristics of 
EEG signals in VR scenarios. Secondly, although we have 
achieved high classification and recognition accuracy through 
machine learning methods, deep learning methods are also a 
path worth trying. In recent years, most studies have extracted 
hand-crafted features and used supervised machine learning 
methods to identify different emotional states in VR scenarios. 
However, hand-crafted feature engineering needs some 
background knowledge of neuroscience and more human 
intervention, which is complex, time-consuming, and 
experience-driven. Deep learning methods have demonstrated 
great promise in helping make sense of signals because of 
their capacity to automatically learn excellent feature 
representations from raw EEG data [26], which should be 
introduced to infer subjects’ emotional states in VR scenarios. 

V. CONCLUSIONS

This paper has established a standard emotion-induced VR 
video library presented through the portable HMD. We used 
the EEG acquisition device to obtain EEG signals generated 
by the participants while they were watching VR videos 
designed to elicit positive, negative, and neutral emotional 
states. We extracted EEG features of ES, DE, DASM, and 
RASM to represent the characteristics associated with 
emotional valence and compared their classification accuracy 
in five frequency bands. The results demonstrated that 
features extracted from the theta band were superior to 
features from other frequency bands for emotional valence 
decoding. The RF generally performed better than the BPNN. 
By combining the dimensionality reduction method (the F-test 
or PCA) and the RF classifier, it is possible to achieve 
encouraging classification results and increase computation 
speed and stability, which may facilitate the application of 
EEG-based affective computing technology in the virtual 
reality brain-computer interface field. 
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