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Abstract—The simultaneous denoising and dereverberation for
single-channel mixture speech under the complicated acoustic
environment is considered to be a challengeable task. In this
paper, we propose a denoising and dereverberation network
named as D²Net in which a two-branch encoder (TBE) is designed
to extract and selectively fuse features with different granularity.
In addition, we design a global-local dual-path transformer
(GLDPT) which introduces the local dense synthesizer attention
(LDSA) in the dual-path transformer to improve the perception
of local information. We evaluated our proposed D²Net and
conducted ablation studies on the VoiceBank+DEMAND and
WHAMR! datasets. Meanwhile, we chose three types of data
in the WHAMR! dataset to verify the ability of the D²Net on the
tasks of denoising-only, dereverberation-only, and simultaneous
denoising and dereverberation, respectively. Experimental results
show that our proposed model outperforms the comparative
models, and all achieve better performance on the tasks of
simultaneous denoising and dereverberation, dereverberation-
only, and denoising-only, while keeping a small number of
network parameters.

Index Terms—Speech denoising, Speech dereverberation, Two-
branch encoder, Dual-path transformer

I. INTRODUCTION

Speech is easily degraded by background noise and room
reverberation, resulting in a significant decline of speech intel-
ligibility and speech recognition performance. Reverberation is
the accumulation of multiple reflections of a signal as it travels
around the room from source to microphone. Room reverbera-
tion can be characterized by the room impulse response (RIR)
related to the position of the sound source and microphone
[1] [2]. Speech denoising and dereverberation processing is
an indispensable front-end task and has been widely studied
in speech recognition [3] [4]. In this paper, we focus on the
task of single-channel denoising and dereverberation, which is
more challengeable.

Generally, the spatial information is extracted and fed
into the network of multi-channel dereverberation, such as
inter-channel phase differences (IPDs) [5] and inter-channel
convolution differences (ICDs) [6]. However, for the task of
single-channel dereverberation, the spatial information is not
available. There are some researches that exploit cascaded
modules to complete denoising and dereverberation [7] [8].

According to the input feature, speech enhancement methods

can be divided into two categories: time-domain methods
and time-frequency (T-F) domain methods. The time-domain
methods estimate the clean waveform directly from the mixture
speech in the time domain [9] [10]. The traditional T-F domain
methods usually adopt the magnitude spectrogram obtained by
the short time Fourier transform (STFT) operation [11]. In this
case, the performance is limited because the phase information
can not be utilized effectively. Many recent studies have
begun to adopt the complex-valued spectrogram, which can be
decomposed into the amplitude and phase in polar coordinates
or the real and imaginary parts in Cartesian coordinates. The
complex-valued spectrogram served as input is verified to
improve the performance of the speech denoising network [12].

In recent years, dual-path networks have shown good perfor-
mance in speech separation [13] [14] and speech enhancement
[10]. Wang K et al. introduced transformer [15] into dual-
path network structure and proposed a time-domain speech
enhancement model: Two-stage transformer based neural net-
work (TSTNN), which greatly improves the performance of
the speech enhancement [10]. Several studies reported that
dot-product self-attention may not be indispensable to the
transformer models. Xu M et al. proposed the local dense syn-
thesizer attention (LDSA) which dispenses with dot products
and pairwise interactions, and restricts the attention scope to
a local range around the current central frame to reduce the
computational complexity and improve the performance [16].

Inspired by the above-mentioned works, we propose a
single-channel network for simultaneous denoising and dere-
verberation named as D²Net, in which a two-branch encoder
(TBE) is designed to extract and selectively fuse the dif-
ferent granularity features from two branches. Meanwhile,
we design a global-local dual-path transformer (GLDPT)
which introduces the LDSA in the dual-path transformer to
improve the perception of local information. We evaluated
our proposed D²Net and conducted ablation studies on the
VoiceBank+DEMAND and WHAMR! datasets.

The remainder of this paper is organized as follows. The
structure of D²Net is introduced in Section II, and datasets
and experiment setup in Section III. Section IV describes the
ablation studies and comparisons of denoising and derever-
beration performance with other models in two datasets. The
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Fig. 1. Diagram of the D²Net. ⊗ represents the element-wise multiplication.

conclusions are drawn in Section V.

II. METHODOLOGY

Our proposed D²Net following an encoder-decoder structure
is composed of a two-branch encoder (TBE), a global-local
dual-path transformer (GLDPT) module, and a decoder. The
GLDPT module is used to estimate the mask of target speech.
Fig. 1 shows the overall structure of D²Net. Norm denotes the
switchable normalization operation [17].

A. Two-Branch Encoder

The two-branch encoder (TBE) consists of the upper and
lower branches of feature extract layers and a feature selective
fusion block (FSFB). The mixture waveform is converted into
spectrogram by the STFT operation. The input of the TBE, a
3-D tensor X∈R2×T×F , is formed by the stacking of the real
and imaginary parts of the complex-valued spectrogram.

The upper branch of feature extract layer consists of a
convolutional layer and a dilated-dense block [18]. The channel
number is increased to 64 by the operation of convolution
with the kernel size of 1×1. The dilated-dense block utilizes
4 dilation convolution layers to continuously expand receptive
fields to aggregate context at different resolutions. The lower
branch consists of multiple residual hybrid convolution (RH-
Conv) blocks [19]. The RH-Conv block makes better use
of time-frequency dependence to extract more fine-grained
features as shown in Fig. 2.
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Norm& 
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Fig. 2. Diagram of the residual hybrid convolution (RH-Conv) block.
⊕ represents the element-wise addition.

The features of the upper and lower branches, Fb1,
Fb2∈R64×T×F , are fed into the FSFB. Inspired by [20], the
architecture of designed FSFB is shown in Fig. 3. The Fb1

and Fb2 are concatenated along with the channel dimension,
and undergo a linear layer (Linear) and sigmoid activation
operation (Sigmoid) to generate a gated parameter w for Fb1

and thus 1-w for Fb2. The whole procedure can be formulated
as follows:

w = Sigmoid (Linear (Concat [Fb1 ,Fb2 ])) (1)

F = ReLU((w ⊗ Fb1 + (1− w)⊗ Fb2 ) + Fb1 + Fb2 ) (2)

where F∈R64×T×F is the output of the FSFB. The fusion
scheme of the FSFB combines each other’s features to preserve
key cues and discard inessential information [20]. After that,
the frequency dimension is down-sampled through a convolu-
tional layer with the kernel size of 1×3 and stride of 1×2.
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Fig. 3. Diagram of the feature selective fusion block (FSFB) architecture.
w denotes a weighted factor.

B. Global-Local Dual-Path Transformer (GLDPT) Module

The GLDPT module consists of multiple GLDPTs and
convolutional layers. A GLDPT consists of right-and-left two
improved transformers as shown in Fig. 4.

In order to reduce the computational complexity, we use a
convolutional layer with the kernel size of 1×1 followed by
a PReLU operation to halve the channel number. For each
improved transformer in Fig. 4, the local dense synthesizer
attention (LDSA) [16] block is introduced after the multi-head
self-attention (MHSA) block. Compared with self-attention,
the current frame in the LDSA can only be restricted to interact
with its neighboring frames so that the LDSA has the ability
to extract fine-grained local features [16]. Thus, the improved
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transformer in the GLDPT is more efficient than the original
transformer in modeling the global and local dependencies of
speech sequences. The global and local contextual information
along with the time and frequency dimensions can be captured
and extracted by swapping the time and frequency dimensions.

The input Y is firstly fed into the MHSA block.

Y ′ = LN
(
MHSA

(
Y
)
+ Y

)
(3)

where Y ′ denotes the output through the residual connection
and layer normalization (LN) after the MHSA block. Then the
Y ′ is passed through the LDSA block.

Y ′′ = LN (LDSA (Y ′) + Y ′) (4)

where Y ′′ denotes the output through the residual connection
and layer normalization after the LDSA block. In the feed-
forward network (FFN), we adopt a GRU layer (GRU) as the
first layer to capture the long-term context dependencies for
both past and future frames of the time series [10]. The output
of the FFN is as follows:

Yffn = Linear (ReLU (GRU (Y ′′))) (5)

The output of an improved transformer in the GLDPT is as
follows:

Yout = LN (Yffn + Y ′′) (6)

The first improved transformer is followed by the group
normalization operation (GN) and residual connection. Then,
the feature is fed into the next improved transformer after a
permutation operation by swapping the time and frequency
dimensions.
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Fig. 4. Diagram of the global-local dual-path transformer
(GLDPT) architecture. Add represents ⊕.

As shown in Fig. 1, after the last GLDPT, a convolutional
layer with the kernel size of 1×1 followed by a PReLU
operation is used to restore the channel number to 64. Then the
feature map is fed into two convolutional layers with the kernel
size of 1×1 followed by a nonlinearity activation operation,

respectively. The outputs are multiplied together and fed into
a convolutional layer with the kernel size of 1×1 followed by
a ReLU operation to get the mask of target speech.

Finally, the estimated mask and the input of the GLDPT
module are multiplied to serve as the input of the decoder.

C. Decoder

The decoder is composed of a dilated-dense block and a
sub-pixel convolutional layer [21]. The structure of the dilated-
dense block is consistent with that in the TBE. After a convolu-
tional layer with the kernel size of 1×1, the channel number is
reduced to 2 that two channels represent the real and imaginary
parts of spectrogram of estimated speech, respectively. And
finally, the waveform of estimated target speech is restructured
by the inverse STFT (ISTFT) operation.

D. Loss Function

The loss function combines both time-domain and time-
frequency domain losses. The loss function is as follows:

Loss = α ∗ LossT + β ∗ LossTF (7)

where α and β are tunable parameters and set to 0.4 and 0.6 in
this paper, respectively. LossT is the mean square error (MSE)
loss:

LossT =
1

N

N−1∑
n=0

(xn − x̃n) (8)

where x and x̃ are the sample of the clean speech and enhanced
speech, respectively. N denotes the number of samples in the
waveform. LossTF is the L1 loss:

LossTF =
1

TF

T−1∑
t=0

F−1∑
f=0

∣∣(∣∣Xr(t, f)
∣∣− ∣∣X̃r(t, f)

∣∣)
+

(∣∣Xi(t, f)
∣∣− ∣∣X̃i(t, f)

∣∣)∣∣ (9)

where X and X̃ are the spectrogram of the clean speech and
enhanced speech, respectively. r and i denote the real and
imaginary parts of complex-valued spectrogram. T and F are
the number of frames and frequency bins, respectively.

III. EXPERIMENTS

A. Datasets and Evaluation Metrics

We evaluated the denoising performance of our proposed
D²Net on the VoiceBank+DEMAND dataset which contains
pre-mixed noisy speech and its paired clean speech. The clean
set is selected from the VoiceBank corpus [24], where the
training set contains 11,572 utterances and the test set contains
872 utterances. For the pre-mixed noisy speech, the training
set contains 40 different noise conditions with 10 types of
noises (8 from the DEMAND database [25] and 2 artificially
generated) at 4 signal noise ratios (SNRs) from 0 dB to 15 dB
at 5 dB intervals, and the test set contains 20 different noise
conditions with 5 types of unseen noises from the DEMAND
database at 4 SNRs from 2.5 dB to 17.5 dB at 5 dB intervals.
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TABLE I
EVALUATION RESULTS AND ABLATION ANALYSIS ON THE VOICEBANK+DEMAND DATASET

Model Para.(Million) PESQ STOI SI-SNR CSIG CBAK COVL

Noisy - 1.97 0.92 8.45 3.34 2.45 2.63

SEGAN [22] ,2017 97.47 2.16 0.93 - 3.48 2.94 2.80
Wave U-net [9] ,2018 10.00 2.40 - - 3.52 3.24 2.96
MetricGAN [11] ,2019 1.86 2.86 - - 3.99 3.18 3.42
DCCRN*[12] ,2020 3.67 2.57 0.94 19.13 3.93 2.90 3.21
DEMUCS(Small) [23] ,2020 18.90 2.93 0.95 - 4.22 3.25 3.52
TSTNN [10] ,2021 0.92 2.96 0.95 18.82 4.31 3.49 3.66
D²Net 1.13 3.27 0.96 19.78 4.63 3.18 3.92

-TBE(i) 0.95 3.19 0.96 19.28 4.60 2.59 3.90
-FSFB(ii) 1.12 3.22 0.96 19.45 4.43 3.08 3.77
-GLDPT(iii) 1.10 3.23 0.96 19.51 4.59 3.17 3.94
-TBE-GLDPT(iv) 0.92 3.11 0.95 19.05 4.15 2.79 3.51

* represents the results of the model obtained by our reproduction.

TABLE II
EVALUATION RESULTS AND ABLATION ANALYSIS ON THE WHAMR! DATASET

Noise+Reverb Reverb Noise

Model PESQ STOI SI-SNR PESQ STOI SI-SNR PESQ STOI SI-SNR

Mixed 1.11 0.73 -2.73 2.16 0.91 4.38 1.11 0.76 -0.99
DCCRN* 1.59 0.88 5.20 2.59 0.95 7.51 1.66 0.90 9.03
TSTNN* 1.91 0.91 2.89 2.66 0.95 3.56 1.94 0.93 4.17
D²Net 2.51 0.95 10.25 3.68 0.99 15.64 2.48 0.95 11.89

-TBE(i) 2.42 0.95 9.80 3.52 0.99 15.00 2.41 0.95 11.35
-FSFB(ii) 2.49 0.95 10.05 3.67 0.99 15.57 2.45 0.95 11.65
-GLDPT(iii) 2.46 0.95 9.79 3.64 0.99 15.09 2.42 0.95 11.34
-TBE-GLDPT(iv) 2.31 0.94 8.66 3.35 0.98 13.19 2.30 0.94 10.66

* represents the results of the model obtained by our reproduction.

We evaluated the denoising and dereverberation perfor-
mance of the D²Net on the WHAMR! dataset [26] which is
based on the WHAM! dataset [27] with the addition of syn-
thetic room impulse responses (RIRs). Reverberation times are
chosen to approximate domestic and classroom environments.
The WHAMR! dataset is a noise- and reverberation-augmented
version of the wsj0-2mix dataset [28]. The noise in the dataset
comes from different urban environments in the San Francisco
Bay Area was mixed with clean speaker speech by an SNR
of random selection between -6 and +3 dB. The WHAMR!
dataset contains many types of utterances where only the noisy
and reverberant speech, reverberant speech, and noisy speech
were used in the experiments. The training, validation, and test
sets contain 20000, 5000, and 3000 utterances, respectively.
During the training phase, only the noisy and reverberant
speech was selected as the training set. While, during the test
phase, three types of data were all evaluated in order to verify
the denoising, dereverberation, and simultaneous denoising and
dereverberation ability of the D²Net.

In terms of evaluation metrics indexes, we choose perceptual
evaluation of speech quality (PESQ) [29], short-time objective
intelligibility (STOI) [30], and scale-invariant source-to-noise
ratio (SI-SNR) [31]. We also adopt the three most commonly
used metrics in the VoiceBank+DEMAND dataset, which are
CSIG [32] for signal distortion, CBAK [32] for noise distortion
evaluation, and COVL [32] for overall quality evaluation to
evaluate the performance of the D²Net. For the experiment of

the WHAMR! dataset, only the results of PESQ, STOI, and
SI-SNR are shown in Table II.

B. Experimental Setup

The samples are kept with 16 kHz by downsampling, and
then randomly sliced into the segment with the length of 4
seconds. For the STFT and ISTFT operations, the window
length and hop size are set to 25 ms and 6.25 ms, respectively,
and the FFT length is 512. 5 RH-Conv blocks with the
channel number of feature maps of 16, 32, 48, 64, and 64,
respectively, are equipped in the TBE. There are 4 GLDPTs
in the GLDPT module. We use Adam [33] as the optimizer
and a gradient clipping with maximum L2-norm of 5 to avoid
gradient explosion. During the training phase, the D²Net and
comparative models are all trained for 100 epochs. A dynamic
strategy [15] is used to adjust the learning rate as follows:

lr =

{
0.2 · 64−0.5 · n · 4000−1.5, n ≤ nwarmup

4e−4 · 0.98[
epoch

2 ], n > nwarmup
(10)

where n is the number of steps.

IV. RESULTS

A. Results on the VoiceBank+DEMAND dataset

For the denoising-only task, we compared our proposed
D²Net with the other six models on the VoiceBank+DEMAND
dataset. As can be seen from Table I, the D²Net achieves good
performance and significant improvements over the other six
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models, especially on the PESQ and SI-SNR. Compared with
the time-domain dual-path transformer model TSTNN [10],
the D²Net improves by 0.31 and 0.96 in PESQ and SI-SNR,
respectively.

B. Results on the WHAMR! dataset

We evaluated the performance of our proposed D²Net on
three types of data in the WHAMR! dataset: noisy and rever-
berant speech (Noise+Reverb), reverberant speech (Reverb),
and noisy speech (Noise), the results as shown in Table II.
The D²Net achieves the best performance on the tasks of
simultaneous denoising and dereverberation, dereverberation-
only, and denoising-only. Compared with the TSTNN, the
results of the D²Net achieves considerable improvements on
three tasks, especially on the task of dereverberation-only
where the STOI score reaches 0.99.

C. Ablation analysis

We also conducted ablation studies on two datasets to verify
the effectiveness of TBE, FSFB, and GLDPT in the D²Net. For
Table I and Table II, (i) denotes without the TBE that is the
lower branch of feature extract layer and FSFB are removed.
(ii) denotes without the FSFB that means adopting the element-
wise addition method instead of the FSFB. (iii) denotes without
the GLDPT that means the LDSA in the GLDPT is removed
keeping with the two-stage transformer used in the TSTNN.
(iv) denotes that the D²Net preserves the settings in (i) and
(iii) simultaneously.

The results of (i) show that the TBE improves the perfor-
mance in the PESQ score by 0.08 and 0.09 on the Voice-
Bank+DEMAND and WHAMR! datasets, respectively. This
shows that the TBE can effectively extract different granularity
features from different branches and fuse them to improve
the performance of the network of denoising and derever-
beration. The results of (ii) show that the FSFB improves
the performance in the PESQ score by 0.05 and 0.02 on the
VoiceBank+DEMAND and WHAMR! datasets, respectively.
It verifies the FSFB can effectively preserve key cues and
discard inessential information. According to the results of
(iii), we can find that introducing the LDSA improves the
performance in the PESQ score by 0.04 and 0.05 on the
VoiceBank+DEMAND and WHAMR! datasets, respectively.
These prove the effectiveness of the LDSA on local infor-
mation extraction. The enhanced speech demos are available
online1.

V. CONCLUSIONS

In this paper, we propose a simultaneous denoising and
dereverberation network for single-channel mixture speech
named D²Net which is based on two-branch encoder (TBE) and
dual-path transformer. The TBE we designed can effectively
extract different granularity features and utilize the feature
selective fusion block (FSFB) to preserve key cues and discard
inessential information. Meanwhile, the local dense synthesizer

1https://wangliusong.github.io/D2-Demo/

attention (LDSA) is introduced in the global-local dual-path
transformer (GLDPT) to capture the fine-grained local features.

We evaluated our proposed D²Net and conducted ablation
studies on the VoiceBank+DEMAND and WHAMR! datasets.
In addition, we chose three types of data in the WHAMR!
dataset to verify the ability of the D²Net on the tasks of
denoising-only, dereverberation-only, and simultaneous denois-
ing and dereverberation, respectively. Experimental results
show that our proposed D²Net outperforms the comparative
models, and all achieve better performance on the tasks of
simultaneous denoising and dereverberation, dereverberation-
only, and denoising-only, while keeping with a small number
of network parameters.
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