
A Comparison of Feature Selection and Feature
Extraction in Network Intrusion Detection Systems

Tuan-Cuong Vuong, Hung Tran, Mai Xuan Trang, Vu-Duc Ngo, and Thien Van Luong

Abstract—Internet of Things (IoT) has been playing an impor-
tant role in many sectors, such as smart cities, smart agriculture,
smart healthcare, and smart manufacturing. However, IoT de-
vices are vulnerable to cyber-attacks, which may result in security
breaches and data leakages. To effectively prevent these attacks,
a variety of machine learning-based network intrusion detection
methods for IoT networks have been developed, which often
rely on either feature extraction or feature selection techniques
for reducing the dimension of input data before being fed
to machine learning models. This aims to make the detection
complexity low enough for real-time operations, which is partic-
ularly vital in intrusion detection systems. This paper provides a
comprehensive comparison between these two methods in terms
of various performance metrics, namely, precision rate, recall
rate, detection accuracy, as well as runtime complexity, in the
presence of UNSW-NB15 dataset. Note that such a comparison
between feature selection and feature extraction methods has
been overlooked in the literature. Furthermore, based on this
comparison, we provide a useful guideline on selecting a suitable
intrusion detection type for each specific scenario.

Index Terms—Intrusion detection, UNSW-NB15, feature se-
lection, feature extraction, PCA, machine learning, internet of
things.

I. INTRODUCTION

In recent years, the Internet of Things (IoT) has seen
explosive expansion in industry-specific applications [1], [2]
such as healthcare, smart homes, smart cities, smart energy,
smart agriculture, and logistics. These IoT systems are made
up of several interconnected sensors, actuators, and diverse
network-enabled devices [3] that communicate various sorts
of data through both public and private networks. By 2030,
it is forecast that there will be about 500 billion IoT devices
connected to the internet [3]. It is crucial to consider cyber-
security seriously since the IoT has evolved into the engine of
the current industrial revolution and the system for gathering
real-time dependent data. As a result, a Network Intrusion
Detection System (NIDS) that can identify present, potential,
and future attacks is needed to protect IoT networks and
systems built on them.

By examining the patterns of data traffic in the network, in-
trusion detection systems (IDS) can identify attacks. To lower
the computational cost of processing raw data in IDS, feature
extraction is necessary. It describes a method of converting a

Tuan-Cuong Vuong, Hung Tran, Mai Xuan Trang, and Thien Van
Luong are with the Faculty of Computer Science, Phenikaa Univer-
sity, Hanoi 12116, Vietnam (e-mail: 21011490@st.phenikaa-uni.edu.vn,
{hung.tran, trang.maixuan, thien.luongvan}@phenikaa-uni.edu.vn).

V.-D. Ngo is with the School of Electrical and Electronics Engineering,
Hanoi University of Science and Technology, Hanoi 11657, Vietnam, (email:
duc.ngovu@hust.edu.vn).

data space into a feature space that has the same (or a reduced)
dimension than the original data space. It is well known that
principal component analysis (PCA) is an essential technique
in data compression and feature extraction, and it has been
applied to the field of IDS [4]. Kuang et al. [5] proposed
a novel intrusion a novel intrusion detection (ID) approach
combining support vector machine (SVM) and kernel principal
component analysis (KPCA) to enhance the detection precision
for low-frequent attacks and detection stability. Pajouh et al.
[6] proposed a network-based model for ID, hereafter referred
to as Two-layer Dimension Reduction, including Linear Dis-
criminant Analysis (LDA) combining PCA and a Two-tier
Classification module utilizing Naive Bayes and K-Nearest
Neighbor. Their proposed model is designed to detect and deter
malicious activities such as User to Root (U2R) and Remote to
Local (R2L) attacks, its results outperforming similar models
of detection rates for both low-frequency and conventional
attacks. With the strong development of Deep Learning, in
order to maximize the efficiency of feature extraction and
create a powerful intrusion detection system, Autoencoder was
used [7]. Yan et al. [8] proposed using the sparse autoen-
coder (SSAE) to extract high-level feature representations of
intrusive behavior information. Its results reach or even exceed
the average detection level of conventional machine learning
classifiers. However, it cannot effectively detect R2L and U2R
low-frequency attack samples, that is, it cannot overcome the
adverse effects caused by imbalanced data distribution. In
addition, due to the high complexity of the algorithm, which
leads to expensive training time, many methods seem to reduce
the complexity of the algorithm. Charte et al. [9] proposed
an autoencoder-based approach to complexity reduction, using
class labels in order to inform the loss function about the
adequacy of the generated variables. Dao et al. [10] proposed
a thin-but-powerful NIDS scheme that combines a stacked
autoencoder with a network pruning technique. The system’s
result demonstrates that our slender NIDS architecture is well-
suited to edge devices with minimal memory and compute
requirements. Currently, researchers are still trying to find
ways to optimize the Autoencoder algorithm.

Feature selection is a form of search in the training data.
In order to increase the classification accuracy of a learning
classifier, it chooses a subset of input features from a total
of original input features in the training data. Wrapper and
filter approaches can be used to classify feature selection
algorithms [11]. Filter methods select features that are in-
dependent of one another and are heavily dependent on the

Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

978-616-590-477-3 ©2022 APSIPA APSIPA ASC 20221795



output, while wrapper techniques strive to maximize some
specified criteria with respect to the feature set as part of
the selection process. The entire feature space is searched for
and potential subsets are evaluated using a search algorithm
in feature selection methods. They need a feature goodness
measure that assigns grades to any feature subset in order to
assess these subsets. Overall, a feature is useful if it contributes
to the output but does not duplicate other relevant features.
The relationship between two features may serve as a measure
of feature goodness. Amiri et al. proposed two methods:
linear correlation-based feature selection (LCFS) and modified
mutual information-based feature selection (MMIFS) to build
a lightweight IDS [12]. In [13], Ambusaidi et al. proposed
a new filter-based feature selection method, namely Flexible
Mutual Information Feature Selection (FMIFS). FMIFS is an
improvement over MMIFS.

Although both feature selection and feature extraction meth-
ods have been widely used for reducing data dimensionality
in NIDS, a comprehensive comparison between them has been
overlooked in the literature. Our paper appears to address
this gap. In particular, we first provide an overview of NIDS,
with a focus on the phase of feature reduction, where feature
extraction with PCA and feature selection with correlation
matrix are two promising candidates for realistic low-latency
operations of NIDS. Then, using the UNSW-15 dataset, we
thoroughly compare the detection performance (precision, re-
call, F1-score) as well as runtime complexity (training time and
inference time) of these two methods when the same number of
features are selected or extracted. Thanks to this comparison,
we provide a useful guideline on choosing a suitable intrusion
detection technique for each specific scenario.

The rest of this paper is organized as follows. Section II
discusses machine learning-based network intrusion detection
methods for IoT networks. The overview of UNSW-NB15
dataset and data pre-processing are explained in Section III.
Section IV provides the experimental results and discussion.
Finally, Section V concludes this paper.

II. MACHINE LEARNING-BASED NETWORK INTRUSION
DETECTION METHODS

In this section, we describe an overview of a network
intrusion detection system (NIDS) based on machine learning,
followed by details on the two major ML-based detection
methods, namely feature selection and feature extraction.
A. Overview of NIDS

An NIDS consists of three major components, namely data
pre-processing, feature reduction, and attack classification, as
illustrated in Fig. 1. In particular, in the first phase, the raw
data is denoted as the dataframe Z, whose features may include
unexpected or non-numeric values, such as null or nominal.
Z is pre-processed in order to either replace these unexpected
values with valid ones or transform them to the numeric format
using one-hot encoding. Several features that do not affect
detection performance, such as the source IP address and the
source port number, are dropped. Furthermore, depending on
the classifier we use for identifying attacks, we may use the

Fig. 1. Block diagram of an network intrusion detection system.

normalization technique, for example, to constrain the values
of all features, i.e., the elements of the output vector of the first
phase X in Fig. 1 to vary only from 0 to 1. We will discuss
this in detail in Section III, where we present UNSW-NB15
dataset.

As such, after the first phase, the pre-processed data X ∈
RD×N is likely to have much more features than the original
data Z, particularly due to the use of one-hot encoding, where
D is the number of dimensions, or equivalently, the number
of features of X, and N is the number of data samples. For
example, when UNSW-NB15 dataset is used, the dimension
of data increases from 45 to 200, which is too large for
classification techniques to quickly recognize the attack type.
In order to address this fundamental issue, in the second
phase, we need to reduce the number of features that will
be used for the attack classification phase (the last phase in
Fig 1). For this, two feature reduction methods called feature
selection and feature extraction are widely used to either
selected or extracted a small number of most important features
from pre-processed traffic data. This procedure also helps to
remove a large amount of unnecessary features, which not
also increase the complexity of NIDS, but also degrade its
detection performance, as will be illustrated in experimental
results in Section IV. Herein, the output data of the feature
reduction block is denoted as vector U ∈ RK×N in Fig. 1,
which is expected to achieve much lower dimensions than X,
i.e., K ≪ D, while retaining its most important information.

Finally, in the third phase of NIDS, a number of multiclass
classification approaches based on machine learning, such as
decision tree, random forest and multilayer perception neural
networks, are employed to detect the attack type. Relying
on attack detection results, the system administrators can
promptly make a decision to prevent malicious activities,
ensuring the security of IoT networks. Here, note that the
detection performance and latency of a NIDS strongly depend
on which classifier and which feature reduction method it
employs. Therefore, in this contribution, we comprehensively
investigate detection performance (in terms of recall, precision,
F1-score) and latency (in terms of training time and inference
time) of different detection methods in presence of both feature
selection and feature extraction as well as different machine
learning classifiers. We also focus more on the comparison
between these two feature reduction methods, which will be
described in detail in the following subsections.
B. Feature selection

There are a number of feature selection techniques used
in intrusion detection, namely information gain (IG) [14] and
feature correlation [15], [16]. In this work, we focus on using
feature correlation for selecting important features, since this

Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

1796



method has been shown to achieve competitive performance
and complexity compared to its IG counterpart. Using this
correlation-based method, we aim to select features that are
most correlated to other features based on the correlation
matrix calculated from the training dataset. More specifically,
the correlation coefficient between feature Ω1 and Ω2 is
calculated based on the numeric pre-processed training dataset
X as follows:

CΩ1,Ω2 =

∑N
i=1 (αi − EΩ1

) (βi − EΩ2
)√∑N

i=1 (αi − EΩ1)
2
.
√∑N

i=1 (βi − EΩ2)
2
, (1)

where αi and βi are the values of these two features,
EΩ1

=
∑N

i=1 αi/N and EΩ2
=

∑N
i=1 βi/N are their means

over N training data samples. By doing this, we obtain a
D × D correlation matrix C, whose elements are given by
cij = CΩi,Ωj

for i, j = 1, 2, ..., D. The average correlation of
feature Ωi to other features is computed as follows:

Ci =

∑D
j=1 cij

D
, (2)

where cii = 1 for j = i and cij ∈ [−1; 1] for j ̸= i. Note
that the self-correlation coefficient cii does not affect selection
results, since it contributes the same amount to all Ci for i =
1, 2, ..., D. Then, using a suitable threshold, as will be detailed
in Section IV, we are able to select K most important features
corresponding to K largest elements Ci.

It is worth noting that we only need to calculate such feature
correlation in the training phase, while in the testing phase, we
simply pick up K features from the high-dimensional data X
to form the reduced-dimensional data U in Fig. 1. This does
not require much computational resource when compared with
the feature extraction method, which is presented next.
C. Feature extraction

Principal component analysis (PCA) and autoencoder (AE)
[17] are the two major feature extraction methods used in the
NIDS. Different from feature selection, whose selected fea-
tures are identical to those appearing in the original data, these
feature extraction techniques compress the high-dimensional
data X into the low-dimensional data U using either a
projection matrix or an AE-based neural network learned
from training dataset. Since the AE approach usually suffers
from high computational complexity of a deep neural network
(DNN), leading to higher latency than the PCA, in this work,
we concentrate on the PCA-based feature extraction approach
in order to fulfill a strict requirement on the latency of the
NIDS for promptly preventing severe cyber attacks.

In what follows, we introduce the procedure of producing
the D × K projection matrix W in the training phase, and
how to utilize this matrix in the testing phase. In particular,
based on the pre-processed training data X of N samples,
we normalize it by subtracting all samples of X by its
mean over all training samples, i.e., the normalized data is
given as follows: X̂ = X − X̄, where X̄ is the mean
vector. Then, we compute the D × D covariance matrix of
training data as follows: R = 1

N X̂X̂T . Based on this, we

determine its eigenvalues and eigenvectors, from which, we
select K eigenvectors corresponding to K largest eigenvalues
for constructing the D × K projection matrix W. Herein,
these K eigenvectors are regarded as the principal components
that create a subspace, which is expected to be significantly
close to the normalized high-dimensional data X̂. Finally, the
compressed data is determined by U = WT X̂, which now
has the size of K ×N instead of D×N of the original data.

In the testing phase, for each new data point xi ∈ RD,
its dimensions are reduced using PCA according to ui =
WT

(
xi − X̄

)
. This indicates that the output of the training

phase of PCA includes both the projection matrix W and the
mean vector of all training samples X̄. It should be noted that
such projection matrix calculation would be computationally
expensive, particularly when D and K are large.

III. OVERVIEW OF UNSW-NB15 DATASET

We now present some key information about UNSW-NB15
dataset, which is used in our experiments in Section IV
to compare between feature selection and feature extraction.
Then, the data pre-processing for this dataset is also discussed.

A. Key information of UNSW-NB15 dataset

UNSW-NB15 dataset was first introduced in [18], which
offers better real modern normal and abnormal synthetical
network traffic compared with the previous NIDS dataset such
as NSLKDD and KDDCUP99 [19]. A total of 2.5 million
records of data are included in the UNSW-NB15 dataset, which
includes one normal class and nine attack classes: Analysis,
Backdoor, DoS, Exploits, Fuzzers, Generic, Reconnaissance,
Shellcode, and Worms. Flow features, basic features, content
features, time features, additional generated features, and la-
beled features are six feature groups, which consist of a total of
49 features in the original data. Additionally, in this work, we
use a 10% cleaned dataset of UNSW-NB15, which includes a
training set of 175,341 records and a test set of 82,332 records.
There are a few minority classes with proportions of less
than 2%, including Analysis, Backdoor, Shellcode, and Worms
(see Fig. 2 and Fig. 3). In the 10% dataset, some unrelevant
features were removed (see Subsection III-B), and the number
of features was reduced to 45, including 41 numerical features
and 4 nominal features.

B. Pre-processing dataset

Initially, the dataset has 45 features, including 41 numerical
features and 4 nominal features. We remove the id feature
in numerical features, since its does not affect the detection
performance. The remaining 4 nominal features include [’at-
tack_cat’, ’proto’, ’service’, ’state’]. The attack_cat feature
contains the names of attack categories so we will remove this
feature. For the service feature, if it contain nulls, we treats
those null values as ’other’ type of service.

One-hot encoding is used for transforming nominal features
to numerical values. As a result, the number of features Z
in the training set will increase from 45 features to 200
features U. Therefore, it is necessary to reduce such a large

Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

1797



Fig. 2. Proportions of 10 classes in training dataset of UNSW-NB15.

Fig. 3. Proportions of 10 classes in testing dataset of UNSW-NB15.

number of features to a few most important features, which
helps to reduce the complexity of machine learning models
in the classification phase. When feature extraction is used,
we normalize the input feature with the minimum-maximum
method [20] to improve the classification accuracy, while we
do not use data normalization for feature selection since it does
not improve performance.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We now present extensive experimental results for investi-
gating the performance of the NIDS using both feature selec-
tion and feature extraction methods described in Section II,
in combination with a range of machine learning-based clas-
sification models. More particularly, the performance metrics
used for comparison include recall (R), precision (P), F1-score,
training time and inference time, which will be explained

TABLE I
HARDWARE AND ENVIRONMENT SPECIFICATION

Unit Description
Processor Intel Core i5-10400F (2.66 Hz,

6 cores 12 threats, 12MB Cache, 65W)
RAM 16GB
GPU GiGabyte GTX 1650 OC-4G

Operating System Ubuntu 20.04.4 LTS
Packages Numpy, Matplotlib, Pandas, Scipy,

Scikit-learn, Scikit-plot and Time

TABLE II
THRESHOLD SETTING AND FEATURES SELECTED

Threshold Number Features Selected
0.0137 8 ’dur’, ’spkts’, ’dpkts’, ’sbytes’, ’dbytes’,

’sloss’, ’dloss’,’ct_state_ttl’
0.011 16 ’dur’, ’spkts’, ’dpkts’, ’sbytes’, ’dbytes’, ’sloss’,

’dloss’, ’dinpkt’, ’sjit’, ’djit’, ’tcprtt’, ’synack’,
’ackdat’, ’response_body_len’, ’ct_state_ttl’,
’proto_icmp’

in detail in Subsection IV-A. We also provide a number of
confusion matrices in order to provide an insight into different
intrusion detection methods considered in this work. Last but
not least, based on our extensive investigation and comparison
between feature selection and feature extraction, we provide
a helpful guideline on how to choose an appropriate intrusion
detection technique for each specific scenario.

A. Implementation setting

1) Computer configuration: The configuration of our com-
puter, its operation system as well as a range of Python
packages used for implementing intrusion detection algorithms
in this paper are detailed in Tab. I.

2) Evaluation Metrics: We consider the following perfor-
mance metrics: recall, precision, F1-score, as well as training
time and inference time, which are defined as follows.

As shown in Fig. 1, two methods go through the same pre-
processing data, so the training time consists of the training
time of classification models and the time duration consumed
by Feature Reduction in training (FR_train), as follows:

Training time = timetrain + timeFR_train, (3)

The inference time consists of the prediction time of classifi-
cation models and the testing time of classification models.

Inference time = timepredict + timetest, (4)

3) Classification models: We use 5 machine learning mod-
els: Decision Tree, Random Forest having max_depth = 5,
K-nearest Neighbors (n_neighbors = 5), Multi-layer Percep-
tron (MLP) (max_iter = 100, hidden_layer_sizes = 200), and
Bernouli Naive Bayes to do the multiclass classification task.
These models are all imported from the Scikit-learn library.

For feature selection, in Tab. II, we provide the lists of 8 and
16 selected features, as well as the corresponding thresholds of
the average correlation used to achieve that desired numbers
of selected features.

Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

1798



TABLE III
DETECTION PERFORMANCE COMPARISON BETWEEN FEATURE SELECTION AND FEATURE EXTRACTION: 8 FEATURES

Models Feature Extraction Feature Selection
P R F1 training (s) inference (µs) P R F1 training (s) inference (µs)

Decision Tree 76.43 69.36 72.72 27.49 4.42 80.18 76.62 78.36 14.65 0.13
Random Forest 78.32 66.74 72.07 34.13 20.66 78.82 68.65 73.38 18.38 5.48
KNeighbors 77.95 72.86 75.32 23.5 41.78 80.27 73.9 76.96 14.8 50.15
MLP 79.83 69.78 74.47 1180.75 47.77 65.14 68.96 66.99 591.4 42.79
Naive Bayes 65.73 51.77 57.92 22.77 4.52 43.47 59.67 50.3 14.57 1.08

TABLE IV
DETECTION PERFORMANCE COMPARISON BETWEEN FEATURE SELECTION AND FEATURE EXTRACTION: 16 FEATURES

Models Feature Extraction Feature Selection
P R F1 training (s) inference (µs) P R F1 training (s) inference (µs)

Decision Tree 77.33 70.11 73.55 37.68 5.04 79.59 75.78 77.64 15.17 0.19
Random Forest 78.36 66.71 72.07 53.12 21.27 80.03 68.02 73.54 22.17 5.69
KNeighbors 77.56 72.03 74.69 34.94 1405.43 78.79 63.91 70.58 14.72 1396.85
MLP 79.44 71.97 75.52 1428.97 47.51 64.42 69.01 66.63 895.37 49.51
Naive Bayes 74.57 60.59 66.87 34.75 6.34 47.28 59.75 52.79 14.47 1.09

B. Detection and Runtime Performance

We investigate the detection performance and runtime of
feature selection and feature extraction when using multiclass
classification in Tab. III and IV for 8 and 16 selected/extracted
features, respectively. In these tables, the best values (i.e.
the maximum values for precision, recall, and F1-score, and
the minimum values for training and inference times at each
column of the tables) are highlighted in bold, especially the
best values for both feature selection and feature extraction
methods are highlighted both in bold and red color. The
training time is measured in second (s), while the inference
time (for each sample) is measured in millisecond (µs).

In terms of detection performance, it is shown from Tab. III
and IV that when the number of reduced features (i.e. ex-
tracted or selected) K increases, the detection performance
of feature extraction generally improves, while that of feature
selection does not improve when we increase K from 8
to 16. In fact, the precision, recall and F1-score of feature
selection even slightly degrade from Tab. III to Tab. IV. This
phenomenon is understandable due to the fact that if the
number of selected features gets larger, it is likely to have
more noisy or unimportant features, which deteriorate the
detection performance. For example, when Decision Tree is
employed in Tab. III to achieve the lowest inference time, the
F1-score of feature selection is 78.36%, which is higher than
that of feature extraction with 75.32%. It is also shown from
Tab. III and IV that when using feature selection, the Decision
Tree classification always provides the best precision, recall as
well as F1-score. Meanwhile, the feature extraction enjoys the
KNeighbors classifier when K = 8, while Decision Tree is
only its best classifier when K becomes larger, i.e., K = 16.

As for the runtime performance, Tab. III and IV demonstrate
that both the training time and inference time of feature selec-
tion is lower than that of feature extraction. This is because
of the fact that the feature extraction method requires addi-
tional computational resources when compressing the high-

Fig. 4. Confusion Matrix based Decision Tree with Feature Selection (8
feature selected)

dimensional data into low-dimensional data, as explained in
Section II-C, while the feature selection almost does require
any computing resources when just picking up K out of
D features. Actually, in Tab. III, the best inference time of
feature selection is 0.13 µs, which is 34 times lower than
that of feature extraction with 4.42 µs, where the Decision
Tree classifier is the best choice for minimizing the inference
time for both feature reduction methods. Again, Decision Tree
is one of the best classifier for minimizing both training and
inference times, in addition to the Naive Bayes classifier, which
however does not achieve a good accuracy.

Based on the Decision Tree model, we now evaluate the
multi-class classification ability of feature extraction and fea-
ture selection, using confusion matrix, as shown in Figs. 4,
5 and Figs. 6, 7 for 8 and 16 reduced features, respectively.
In both cases where we reduce 8 features or 16 features, the
results based on four figures show that Decision Tree model
based on the feature selection method can correctly detect a

Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

1799



Fig. 5. Confusion Matrix based Decision Tree with Feature Extraction (8
feature extracted)

greater number of attacks compared with the feature extraction
method. When the number of selected features increases, for
the feature selection method, shown in Figs. 4 and Fig. 6, the
number of detections of attack types is reduced slightly. In
contrast, for the feature extraction method, shown in Figs. 5
and Fig. 7, the number of attack types detected has been
increased. It is shown via Fig. 6 and Fig. 7 that when the
Decision tree model based on feature selection method cannot
detect the type of Analysis attack, but the Decision tree model
based on feature extraction method can detect it. The reason
for this problem lies in the fact that the number of features we
choose is relatively large, but the number of Analysis attack
types is only less than 1% (see Fig. 3), leading to the model
tending to detect the remaining attack types.

In summary, considering multiclass classification for the
NIDS, the feature selection method not only provides better
detection performance but also lower training and inference
time compared to its feature extraction counterpart, especially
when the number of reduced features K is not too large.
However, feature selection is not capable of detecting attacks
with as little data as feature extraction can yield.

V. CONCLUSIONS

We have compared two intrusion detection methods, namely,
feature selection and feature extraction, based on the UNSW-
NB15 dataset. Feature selection not only achieves higher
detection accuracy but also requires fewer training and in-
ference times than feature extraction, especially when the
number of reduced features is not too large. However, feature
selection is not capable of detecting attacks as diverse as
feature extraction can yield. In addition, the detection accuracy
of feature selection significantly degrades when substantially
increasing the number of reduced features, while that of feature
extraction is slightly improved.

Fig. 6. Confusion Matrix based Decision Tree with Feature Selection (16
feature selected)

Fig. 7. Confusion Matrix based Decision Tree with Feature Extraction (16
feature extracted)

REFERENCES

[1] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE communications surveys & tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[3] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E. K.
Markakis, “A survey on the internet of things (IoT) forensics: Chal-
lenges, approaches, and open issues,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 2, pp. 1191–1221, 2020.

[4] G. Liu, Z. Yi, and S. Yang, “A hierarchical intrusion detection model
based on the pca neural networks,” Neurocomputing, vol. 70, no. 7-9,
pp. 1561–1568, 2007.

[5] F. Kuang, W. Xu, and S. Zhang, “A novel hybrid kpca and svm with
ga model for intrusion detection,” Applied Soft Computing, vol. 18, pp.
178–184, 2014.

[6] H. H. Pajouh, R. Javidan, R. Khayami, A. Dehghantanha, and K.-
K. R. Choo, “A two-layer dimension reduction and two-tier classification
model for anomaly-based intrusion detection in iot backbone networks,”
IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 2, pp.
314–323, 2016.

Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

1800



[7] Y. N. Kunang, S. Nurmaini, D. Stiawan, A. Zarkasi, Firdaus, and Jasmir,
“Automatic features extraction using autoencoder in intrusion detection
system,” in 2018 International Conference on Electrical Engineering
and Computer Science (ICECOS), 2018, pp. 219–224.

[8] B. Yan and G. Han, “Effective feature extraction via stacked sparse
autoencoder to improve intrusion detection system,” IEEE Access, vol. 6,
pp. 41 238–41 248, 2018.

[9] D. Charte, F. Charte, and F. Herrera, “Reducing data complexity using
autoencoders with class-informed loss functions,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021.

[10] T.-N. Dao and H. Lee, “Stacked autoencoder-based probabilistic feature
extraction for on-device network intrusion detection,” IEEE Internet of
Things Journal, 2021.

[11] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and
H. Liu, “Feature selection: A data perspective,” ACM computing surveys
(CSUR), vol. 50, no. 6, pp. 1–45, 2017.

[12] F. Amiri, M. R. Yousefi, C. Lucas, A. Shakery, and N. Yazdani, “Mutual
information-based feature selection for intrusion detection systems,”
Journal of Network and Computer Applications, vol. 34, no. 4, pp. 1184–
1199, 2011.

[13] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an intrusion
detection system using a filter-based feature selection algorithm,” IEEE
transactions on computers, vol. 65, no. 10, pp. 2986–2998, 2016.

[14] C. Lee and G. G. Lee, “Information gain and divergence-based feature
selection for machine learning-based text categorization,” Information
processing & management, vol. 42, no. 1, pp. 155–165, 2006.

[15] M. A. Hall, “Correlation-based feature selection for machine learning,”
Ph.D. dissertation, The University of Waikato, 1999.

[16] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast
correlation-based filter solution,” in Proceedings of the 20th international
conference on machine learning (ICML-03), 2003, pp. 856–863.

[17] T.-N. Dao and H. Lee, “Stacked autoencoder-based probabilistic feature
extraction for on-device network intrusion detection,” IEEE Internet of
Things Journal, pp. 1–1, 2021.

[18] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in 2015 Military Communications and Information Systems Conference
(MilCIS), 2015, pp. 1–6.

[19] J. Gehrke, P. Ginsparg, and J. Kleinberg, “Overview of the 2003 kdd
cup,” Acm Sigkdd Explorations Newsletter, vol. 5, no. 2, pp. 149–151,
2003.

[20] S. B. Kotsiantis and et al., “Data preprocessing for supervised learning,”
2006.

Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

1801


