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Abstract—This paper addresses the problem of estimating
the angular power spectrum (APS) of massive multiple input
multiple output wireless channels. Estimating the APS is useful,
for instance, for simplifying the downlink channel estimation
problem in frequency division duplex systems. We propose an
efficient online algorithm that estimates the APS from the channel
spatial covariance matrix. The proposed algorithm approximates
the APS as a sum of Gaussian functions and leverages the
framework of multikernel adaptive filtering.

Index Terms—Massive MIMO, angular power spectrum, co-
variance matrix, multikernel adaptive filtering.

I. INTRODUCTION

The angular power spectrum (APS) estimation arises in

important massive multiple input multiple output (MIMO) ap-

plications, such as estimation of the downlink (DL) covariance

matrix [1], [2], pilot decontamination [3], and localization [4].

Many of these studies estimate the APS from measurements

of the spatial covariance matrix, which is an inverse problem

that cannot be solved analytically in general. This has been

addressed in [1], [2] using the projection methods based on

some prior knowledge about the APS, but estimation with high

accuracy remains a major challenge to be tackled.

In this paper, we propose an efficient APS estimation scheme

based on the multikernel adaptive filtering [5] with Gaussian

functions. This approach is motivated by the empirical obser-

vation that typical APS can be expressed as the sum of few

realtively smooth bell-shaped functions. The Gaussian model

can express smooth functions efficiently, and this suggests that

our model may fit the APS estimation problem. The multik-

ernel adaptive filteringing algorithm updates the parameters

(weights, scales, and centers) of the Gaussian functions by

exploiting knowledge of the uplink (UL) channel covariance

matrix. It also reduces the number of Gaussian functions used

in our model, thereby yielding sparse estimates. Simulations

show that (i) the proposed scheme yields highly accurate

estimates of APS from noisy covariance matrices as well as

array response vectors, and (ii) it leads to accurate estimation

of the DL covariance matrix in massive MIMO channels in

the frequency division duplex (FDD) mode.
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The rest of the paper is organized as follows. After stating

the APS estimation problem in Section II, we present the

proposed algorithm, and relation to prior work in Section

III. The simulation results in terms of APS and DL channel

covariance matrix estimation error are presented in Section IV,

followed by conclusions in Section V.

Notation: The vector spaces of real, complex, and natural

numbers are denoted by R, C, and N. R+ denotes positive

real space. We use boldface to denote vectors and matrices.

(·)T and (·)H denote respectively the transpose and Hermitian

transpose. Throughout this paper, (·)u and (·)d denote the UL

and DL systems, respectively.

II. PROBLEM STATEMENT

For simplicity, we consider the MIMO channel between a

single-antenna user equipment (UE) and a base station (BS)

with N ∈ N antennas in a 2D (azimuth-only) scenario [1], [2],

[6]. The UL covariance matrix is given by

R
u =

∫ π/2

−π/2

ρ⋆(θ)au(θ)au(θ)Hdθ, (1)

where ρ⋆ : [−π/2, π/2] → R+ is the APS, which determines

the average received/transmitted power per unit angle,

a
u(θ) =

1√
N

[

1 ej2π
d
λ
sin θ · · · ej2π

d
λ
(N−1) sin θ

]T

(2)

is the response vector of the uniform linear array (ULA) with

the antenna spacing d ∈ R, and wavelength λ ∈ R.

In this paper, we seek to estimate ρ⋆ satisfying (1), given

R
u and a

u(θ). In the next section, we propose a method

to solve this problem. Previous methods employ algorithms

that estimate the APS from the observed covariance matrix

R
u [1], [2]. However, this generally requires solving an ill-

posed inverse problem. Therefore, we propose a new method

to estimate the APS with high accuracy by modeling the APS

as the sum of Gaussian functions, using prior knowledge about

the APS.

III. PROPOSED METHODS

First, we present the adopted APS approximated model

using Gaussian functions. Second, we present time-varying

cost functions which will be reduced in an online fashion by
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multikernel adaptive filters. Third, we explain the dictionary

construction scheme which is a part of the multikernel adaptive

filtering algorithm. Fourth, the update rule for the model

parameters is explained. Finally, the relation to the existing

studies is presented.

A. APS modeling

Let us define a dictionary of some prespecified size p as the

following set of functions:

D := {k(·; cj , ξj)}j=1,··· ,p , (3)

where k(·; cj , ξj) : [−π2, π2] → R+ : θ 7→ exp(−(θ−cj)
2/ξj)

is the Gaussian function with centers (cj)j=1,···p and scales

(ξj)j=1,···p. (The dictionary construction will be discussed in

Section III-C.) Our APS model is then given as follows:

ρ̂(θ) =

p
∑

j=1

αjk(θ; cj , ξj), (4)

where (αj)j=1,···p ⊂ R
p
+ are the weights of the Gaussians.

Note here that we pose nonnegativity on αj to ensure non-

negativity of ρ̂. The modeling in (4) relies on the fact that the

APS is typically a sparse and smooth function.

Due to the symmetric (Hermitian) structure of the covariance

matrix, let ru ∈ R
N

r
u denote a vectorization of the upper

triangular parts of R{Ru} and I{Ru}, where Nru := N(2N+
1), and R{·} and I{·} represent the real and imaginary parts,

respectively.1 Then, the mth component of ru is given by

rum =

∫ π/2

−π/2

ρ⋆(θ)gum(θ)dθ m = 1, 2, · · · , Nru , (5)

where gum : [−π/2, π/2] → R is the mth component of the

analogous vectorization of the matrix a
u(θ)au(θ)H.

Replacing the true APS ρ⋆ in (5) by its estimate ρ̂ in (4),

the corresponding estimate r̂um of rum is given as follows:

r̂um =

∫ π/2

−π/2

ρ̂(θ)gum(θ)dθ

≈ π

M

M
∑

i=1





p
∑

j=1

αjk(θi; cj , ξj)



 gum(θi), (6)

where θ1, θ2, · · · , θM ∈ [−π/2, π/2] are sample points.

Now, the set of our kernel parameters to learn is β :=
{(αj , ξj , cj)}j=1,··· ,p ∈ R

p
+ × R

p
+ × R

p. Let α :=
[α1, α2, · · · , αp]

T ∈ R
p
+. Given the dictionary D, our cost

function to minimize is given as follows:

J(β) :=

N
r
u

∑

m=1

(r̂um − rum)2 + λΩ(α), (7)

where Ω(α) is a sparsity promoting regularizer with the

regularization parameter λ > 0.

1If the matrix R
u has a Toeplitz structure, the size of ru could be reduced

further to 2N by stacking the real and imaginary parts of only the first column,
for instance.

B. Time varying cost function

We presented the basic idea of our APS modeling in the

previous subsection. In practice, the number, as well as the

locations and widths, of peaks in the APS is unknown. The

dictionary and its size are therefore updated during the learning

process. The time-dependent dictionary of time-variable size

pn is defined as

Dn := {k(·; cj,n, ξj,n)}j=1,··· ,pn
, n ∈ N, (8)

where cj,n ∈ R and ξj,n > 0 are the center and scale

parameters at time n, respectively. The estimate at time n is

then defined accordingly as follows:

ρ̂n(θ) :=

pn
∑

j=1

αj,nk(θ; cj,n, ξj,n), j = 1, · · · , pn. (9)

Since the locations, widths, and heights of peaks of the

APS ρ⋆ are unknown, the parameters αj,n, cj,n, and ξj,n need

to be need to be learned from the measurements, or more

specifically, from the covariance information ru1 , ru2 , · · · , ruN
r
u

.

The estimate r̂um,n is given by

r̂um,n :=
π

M

M
∑

i=1





pn
∑

j=1

αjk(θi; cj , ξj)



 gum(θi). (10)

We define the set of kernel parameters at time n as βn :=
{(αj , ξj , cj)}j=1,··· ,pn

∈ R
pn

+ × R
pn

+ × R
pn . Let α :=

[α1,n, α2,n, · · · , αpn,n]
T. Then, given the dictionary Dn of size

pn, the cost function is given by

min
βn

Jn(βn) :=

N
r
u

∑

m=1

(r̂um,n − rum)2 + λΩn(α), α ∈ R
pn ,

(11)

where Ωn(α) :=
∑pn

j=1 ωj,n|αj | + ιRpn
+
(α), and λ > 0 is the

regularization parameter. Here,
∑pn

j=1 ωj,n|αj | is the weighted

ℓ1 norm with weights ωj,n > 0, and the indicator function

ιRpn
+
(α) returns 0 if α ∈ R

pn

+ , and it returns +∞ if α /∈ R
pn

+ ,

guaranteeing nonnegativity of the weights. The regularizer

Ωn sparsifies the vector αn, and those dictionary elements

associated with zero weights will be discarded to reduce the

dictionary size.

Multikernel adaptive filtering algorithm updates the param-

eters based on instantaneous measurements. Since the number

of “data” to be used for learning is finite (which is Nru to be

specific), we use those data periodically. Our “instantaneous”

cost is thus given as follows:

J inst
n (βn) := (r̂um(n),n−rum(n))

2+λΩn(α), α ∈ R
pn , (12)

where m(n) := (n mod Nru) + 1 ∈ {1, 2, · · · , Nru}.

C. Dictionary construction

The formulation in (11) is nonconvex, meaning that a

typical iterative solution would depend on the initial value

of the parameter βn. To mitigate sensitivity to the initial

condition, we use the multiscale screening method [5] which
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builds the dictionary by conducting novelty tests hierarchically

with multiple “layers” corresponding to different “scales” of

Gaussian kernel. The first layer has the coarsest “lens” corre-

sponding to the largest scale, and the last layer has the finest

one corresponding to the smallest scale. The low frequency

component of the function is captured at the first layer, and the

middle to high frequency components are gradually extracted

in the subsequent layers. The novelty test at each layer involves

two conditions: (i) the coherence condition [7], and (ii) the

error condition. The new function is regarded to be novel

(i) if it is sufficiently different from any of the dictionary

elements, and (ii) if the estimation error is sufficiently large.

The coherence condition is given by [7]

coherrence(q) := max
j=1,··· ,pn

∣

∣

∣k(θ; cj , ξ
(q)
init)

∣

∣

∣ ≤ δ(q), q ∈ Q,

where δ(q) ∈ (0, 1) is some prespecified threshold. The

concrete steps are presented below.

1) Let ξ
(q)
init, q ∈ Q := {1, 2, · · · , Q} be the initial kernel

scales, where ξ
(1)
init ≥ ξ

(2)
init ≥ · · · ξ(Q)

init > 0.

2) The Gaussian function k(·, θ; ξ(1)init) centered at the new

input θ for ρ(θ) enters the dictionary Dn selectively if

the novelty condition at the first layer (at the coarsest

level) is satisfied. Go to the second layer otherwise.

3) At the second layer, k(·, θ; ξ(2)init) enters the dictionary

if the novelty condition at the second coarsest level is

satisfied. Go to the third layer otherwise.

4) Repeat this procedure until the Qth (final) layer unless

the function enters the dictionary at some intermediate

layer.

D. Update of weights, scales, and centers

To derive the update equation of αn, we rewrite r̂um,n as

r̂um,n =

〈

α,
π

M

M
∑

i=1

kn(θi)g
u
m(θi)

〉

, (13)

where kn := [k(θ; c1,n, ξ1,n), · · · , k(θ; cpn,n, ξpn,n)]
T. An ap-

plication of the adaptive proximal forward backward splitting

algorithm [8], [?] to the instantaneous cost function J inst
n

yields the following update equation:

αn+1 := T
{

proxλΩn

(

αn

+µ(α)(rum(n)−αT

nκm(n),n)κm(n),n

)}

, (14)

where κm(n),n := π
M

∑M
i=1 kn(θi)g

u
m(n)(θi), the operator T

removes zero components to reduce the dictionary size. The

proximity operator proxλΩn
: R

pn → R
pn is defined as

proxλΩn
(x) := arg min

y∈Rpn

(Ωn(y)+
1
2λ‖x−y‖2),x ∈ R

pn . The

ith component is [proxλΩn
(x)]i = max

{

1− λωi,n

|xi|
, 0
}

xi.

Using Proposition 1 of [9], we have proxλΩn
(x) = PR

pn
+
(x−

λ1) for x ∈ R
pn

+ , where 1 is the vector of ones. Here,

the projection operator PR
pn
+

to the nonnegative orthant R
pn

+

ensures nonnegativity of the weight vector αn.

Proposed scheme

Fig. 1: A block diagram of the proposed scheme.

We also explain the update of the scale and the center. The

update of the scale parameter ξj,n is motivated by suppressing

the cost Jn on R+. To update the scale parameter ξj,n to reduce

the cost function Jn within R+, the mirror descent method [10]

is employed with the negative entropy, leading to the following

update equation:

ξj,n = arg min
ξ∈R+

{

〈

ξ,
∂Jn(βn)

∂ξj

〉

+
Bφ(ξ‖ξj,n)

µ
(ξ)
j,n

}

, (15)

where Bφ(ξ‖ξj,n) := φ(ξ)− φ(ξj,n)− 〈∇φ(ξj,n), ξ − ξj,n〉 is

the Bregman divergence associated with the continuous convex

function φ(x) := x log x − x, x > 0, and µ
(ξ)
j,n = ξj,nµ

(η) for

some small constant µ(η) > 0 is the stepsize parameter. The

partial differential in (15) is given by

∂Jn(βn)

∂ξj
= −2enαj,n|θ − cj,n|2k(θ; cj,n, ξj,n)

ξ2j,n
. (16)

The update equation of the kernel centers cj,n is given by

cj,n+1 = cj,n − µ(c) ∂Jn(βn)

∂cj
, (17)

where µ(c) > 0 is the stepsize parameter and

∂Jn(βn)

∂cj
= −4enαj,nk(θ; cj,n, ξj,n)(θ − cj,n)

ξj,n
. (18)

The computational complexity of the proposed scheme at each

iteration is O(N2pn). A block diagram of the proposed scheme

is shown in Fig. 1.

E. Relation to prior work

Previous studies [1], [2], [6] characterize a solution of the

ill-posed inverse problems stated in Section II as a common

point of multiple closed convex sets, which is computed by a

projection method. This method has a limitation in estimating

a “peaky” APS when the number of antennas cannot be large.

In contrast, the proposed method estimates such a peaky APS

efficiently as shown in the following section.
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Fig. 2: The APS estimation results.

Fig. 3: A comparison of the APS estimators: the estimation

errors vs the number of BS antennas N .

IV. SIMULATION RESULTS

We show the efficacy of the proposed algorithm for the APS

estimation for different numbers of antennas. In addition, we

show the estimation results of the DL covariance matrix R
d

in massive MIMO channels in the FDD mode measure by the

metric affine invariant distance. The true APS is modeled as

ρ(θ) =

Q
∑

q=1

αq
√

2π∆2
q

exp

(

|θ − φq|
3
2

∆2
q

)

, (19)

where Q = {1, 2, 3, 4, 5} is clusters of scatterers surrounding

the BS and the UE, αq are the weights satisfying
∑Q

q=1 αq =

1, φq is the mean from [−π/3, π/3], and ∆2
q is distributions

from [3◦, 5◦]. The domain of θ is divided into one million

segments.

The ULA wavelength is λ = c/f , where c = 3.0×108 m/s
is the light velocity and f is the frequency. The UL/DL

frequencies fUL, fDL are 1.8 GHz and 1.9 GHz, respectively.

The antenna spacing d is set to a half of the UL wavelength.

Experiment 1: APS Estimation

Fig. 2 shows the result of the APS estimation. It is seen that

the proposed method yields accurate APS estimates around

Fig. 4: A comparison of different DL covariance estimators.

the peak. Fig. 3 shows the APS estimation errors across

the number of antennas used in practical MIMO channels,

N = 4 to 16 (step 2). We randomly generate ρ(θ) satisfying

(19) with different weights, scales, and centers and take an

average of 300 times. The initial scales for each kernel are

ξ
(1)
init = 1, ξ

(2)
init = 0.1, ξ

(3)
init = 0.01, the center step size is

µ(c) = 5.0×10−3, the scale step size is µ(ξ) = 0.1, the weight

step size is µ(α) = 0.1, the regularization parameter is λ =
1.0×10−5. As can be seen in the figure, the proposed method

shows high accuracy in estimating the APS. In particular, the

results show that the APS estimation outperforms the existing

methods [1] for N = 8 and 16. We finally mention that,

in our additional experiments with different angles of arrival

(i.e., different locations of peaks), there were no significant

differences in estimation performance.

Experiment 2: Estimation of DL Covariance Matrix R
d

Next, we show the results of estimating the DL covariance ma-

trix R
d in the applied application in massive MIMO channel

in the FDD mode. The estimate DL covariance matrix R̂
d

is

expressed as

R̂
d
=

∫ π/2

−π/2

ρ̂(θ)ad(θ)ad(θ)Hdθ, (20)

where a
d(θ) is the DL array response formula. A comparison

of the results of the R
d calculation using ρ̂ estimated by our

method and a conventional method is shown in Fig. 4. The

error between the estimated covariance matrix R̂ and true

one R is defined by ‖ log(R 1
2 R̂

−1
R

1
2 )‖F , where log(A) :=

∑∞
k=1

(−1)k−1

k (A− In)
k. This is the affine invariant distance

in the Riemannian space of positive semidefinite matrices [11],

[12]. Fig. 4 shows that the proposed method outperforms the

compared methods for all array sizes.

V. CONCLUSION

In this paper, we proposed an algorithm achieving high

accuracy by modeling APS as a sum of Gaussian function

and using a multikernel adaptive filtering. In order to avoid

excessive dictionary size, the algorithm guaranteed nonnega-

tivity by removing zero and negative weights of the Gaussian
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function. We showed that the proposed method estimated

locally arriving APS with a better system than conventional

methods. As a major application, the estimation of the DL

covariance matrix in massive MIMO systems operating in

the the FDD mode was presented and its effectiveness was

successfully demonstrated. An investigation of using different

types of antennas (omnidirectional, dipole, etc.) is left as a

future work.
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