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Abstract—Voice can represent a person’s identity. Thus, it
can be used in automatic speaker verification (ASV) systems
for authenticating secure applications. Unfortunately, existing
ASV systems are vulnerable to spoofing attacks. A replay
attack is a widely used spoofing technique because it is
simple but difficult to detect. Hence, many methods are
proposed for countermeasures against replay attacks. Most
work inseparably considers voice and non-voice sections in the
detection’s performance. In this work, we investigate the spoof
detection performances when the voice, non-voice, and both with
different percentages of voice are used to obtain the optimal
section. We also propose a method for detecting replay attacks
using the optimal section of a signal. Mel-frequency cepstral
coefficients are calculated from the optimal section as a feature,
and the ResNet-34 model is used for classification. We evaluated
the proposed method using a dataset from the ASVspoof 2019
challenge. The results depict that the optimal section for replay
attack detection is when 10% and 20% of voice are included in
the non-voice sections. It also showed that the proposed method
outperforms the baselines with a 7.52% relatively improvement
or an equal error rate of 1.72%.

I. INTRODUCTION

Speech and voice can represent our identity as biometrics
for authenticating secure systems using automatic speaker
verification (ASV) systems. At the same time, an ASV is
currently vulnerable to spoofing attacks in which someone
disguises as another and illegitimately accesses a secure
system. Hence, countermeasures against spoofing attacks are
necessary to verify whether the claimed voice is a genuine or
fake representation. Attackers might merely replay someone’s
voice to ASV, called replay attacks [1]. Other spoofing
techniques, e.g., speech synthesis and voice conversion, might
need advanced algorithms and expertise, whereas a replay
attack is simple, using only a recorder and playback device.
However, detection of replay attacks is challenging since
current methods still have accuracy issues. Therefore, this
paper focuses on detecting replay attacks.

In the past, many methods have been proposed to
counter replay attacks by using different speech features
or applying a variety of classifiers, such as the Gaussian
mixture model (GMM), deep neural networks (DNN), and
convolutional neural networks (CNN) [2–18]. Although most
of the methods unitized the whole utterance for feature

extractions, it was reported that non-voiced segments contain
vital information from recorders and playback devices [10–
15]. Eliminating non-voice segments also decrease the
classification performance or causes the over-fitting problem
[11, 17, 18].

A few methods thus exploited these clues for replay attack
detection. For example, a method proposed by Saranya et al.,
utilized only non-voiced sections [11]. Three GMM classifiers
were trained from three feature extractions. The final decision
was the voting from scores of these three models. Chettri et
al. showed that weights of the CNN model are heavily present
in the first and last 400 ms of the utterances [13]. Recently,
Wang et al. proposed a method utilizing both voice and non-
voice segments and fusing scores of the two models [16].

However, there is no research investigating the contribu-
tions of the proportional voice and non-voiced sections for
replay attack detection. Therefore, this paper investigates the
effects of using non-voice sections added with percentages of
voice sections to obtain the so-called optimal section. Mel-
frequency cepstral coefficients (MFCC) are calculated from
these optimal sections as a feature. Then, ResNet-34 [19] is
used as a classifier to detect whether the extracted feature of
the optimal section is genuine or a replay attack.

The rest of this paper is organized as follows. Section II
presents the investigation of voice and non-voice sections on
replay attacks. In Section III, the proposed scheme based on
the optimal section from the signal is described. Sections
IV is experiments and evaluations. We discuss the finding in
Section V. Lastly, Section VI is the conclusion of this paper.

II. VOICE AND NON-VOICE ANALYSIS

We investigate the clues in non-voice sections of spoofed
signals, i.e., the difference between voice and non-voice
sections. Thus, the utterance is segmented to be voice and
non-voice sections using voice activity detection (VAD).

Since there are many VAD algorithms, in this study, we
use an algorithm based on energy and spectral spread analysis
[20]. The detection of either voice or non-voice is done at a
frame level. The energy of each frame is used for calculating
a histogram. The decision threshold is then calculated from
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the histogram of all frames. The threshold T is determined
as follows [20]:

T =
W ×M1 +M2

W + 1
, (1)

where M1 and M2 are the first and second local-maxima
positions, respectively, and W is a ratio of the weight of M1

to that of M2. W is set to 5 by default in a MATLAB function
used in our experiment, affecting the duration of voice and
non-voice sections. In our proposed method, the voice section
duration is intentionally varied to investigate how it affects
classification performance. Therefore, the choice of W alters
only the percentage of voice duration used in our simulation
without significantly changing the conclusion.

From preliminary experiments, we found that the quality
of replay equipment makes it difficult for spoof detection
since they seem to be identical, as shown in Fig. 1. The voice
sections from almost the same conditions, including the same
speaker, sentence, and environment, but one is genuine, and
another is a replay attack.

On the other hand, a non-voice section shows meaningful
clues that should be easier for distinguishing spoof signals
from genuine ones. Examples of non-voice sections from the
same utterance above are shown in Fig. 2.
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Fig. 1: Voice sections: (a) genuine and (b) spoof.
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Fig. 2: Non-voice sections at the beginning of utterances: (a)
genuine and (b) spoof.

Therefore, the clues of the replay process, including an
attacker’s microphone and loudspeaker, are presented in the
early section of the voice. We then further investigate the

TABLE I: Dimensions of the MFCC calculated from the voice
and non-voiced sections.

whole utterance voice non-voice

Dimensions 60×723 60×448 60×610

classification performance of each section and find the optimal
section to be a feature used in a replay attack scheme.

III. PROPOSED METHOD

The proposed method concludes with four steps, as shown
in Fig. 3. The sub-processes include VAD, optimal section
selection, feature extraction, and classification model. Note
that the optimal section is obtained from the experiments.

A. Optimal voice and non-voice ratio

From the input signal, four types of sound sections are
identified to obtain the optimal section, including the whole
utterance, voice only, non-voice only, and non-voice with
percentages of voice. For voice only and non-voice only,
VAD is done on the audio to get boundaries of silence. For
non-voice with percentages of voice, we add a non-voice
section with a percentage of the following the voice part. The
percentage of the voice part is calculated from its boundary.

Fig. 4 illustrates the start and end boundaries of each section
using the VAD. The red area is the silence or non-voice
section, and the green areas are the additive of the voice part.
The optimal section is, therefore, the concatenation between
red and green areas. The percentage of the voice section
(green area) will be determined in the next section.

B. Feature

In this work, we chose mel-frequency cepstral coefficients
(MFCC) to be a front-end feature since it takes less
computational power compared to others, such as constant-
Q cepstral coefficients (CQCC) [21]. MFCC is a speech
feature based on the human auditory system. It has been used
for many speech signal processing and speech recognition,
as well as replay attack detection [11, 22]. The MFCC
is calculated by applying a cosine transform of the real
logarithm of the short-term energy spectrum [23]. This short-
term energy spectrum is expressed on a mel-frequency scale
using a mel-scale filterbank.

For obtaining the optimal section, the MFCC of the section
is calculated that are 19 coefficients of MFCC, delta, delta-
delta, as well as the energy. Since there are four types of the
section, the dimensions of the features are shown in Table I.
An example of the MFCC feature extracted from the different
sections of utterance is shown in Fig. 6. These features are
then used as an input for the classifier.

C. Classifier

Deep residual neural networks (ResNets) are used to
classify the feature extracted from the optimal voice and non-
voice sections and to discriminate between genuine and replay
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Fig. 3: Block diagram of the proposed method.

Fig. 4: Optimal sections for detecting replay attacks. Red
boundaries indicate non-voice and silence. Green boundaries
indicate extended regions from a percentage of the width of
the voice region.

signals. ResNet, a deep convolutional neural network (CNN),
was proposed for image classification [19]. Its effectiveness
has been demonstrated in many researches not only in the
area of image processing but also audio and speech signal
processing, as well as spoofing-replay-attack detection [10,
12].

Training the ResNet is also easier compared to other models
with a similar number of layers because of learning residual
functions with reference to the input technique [19]. The
leaning residual function is defined as:

y = F(x, {Wi}) + x, (2)

where x and y are input and output vectors of a considering
layer. F(x, {Wi}) stands for the residual mapping function.
The square weight matrix, Wi, is optimized so that the
difference between input and output (residual) is close to zero.
This function can be represented by a block diagram as shown
in Fig. 7. There are many modifications of ResNets, and the
number of layers is also different (from 18 layers up to more
than 150 layers). However, we mainly consider the effect of
using voice and non-voice sections as a feature. Hence, we
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Fig. 5: Non-voice sections after applying VAD: genuine (a)
and spoofs (b, c, d). The spoofs are from the same utterance
but different quality recorders (from low to high) where the
other configurations are the same, i.e., in a small room with
a size of 2− 5 m2, reverberation T60 of 200− 500 ms, and
a talker-to-ASV distance of 10− 50 cm [16].

utilize ResNet-34, consisting of 34 convolutional layers, to be
our classifier in this study.

IV. EXPERIMENTS AND EVALUATIONS

TABLE II: Performance comparison between parts of voice
used to create a model. The optimal model is the smallest
EER. The voice and non-voice sections are split by applying
voice activity detection. Note that MFCC and ResNet-34 are
the features and classifiers of all conditions.

EER (%) Accuracy (%)

Dev Eval Eval

Whole utterance 1.72 1.86 98.90
Voice only 32.04 31.45 68.55
Non-voice only 2.05 2.90 97.10
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Fig. 6: MFCC of non-voice sections: (a) bonafide signal and
(b,c,d) spoofed signal where the spoofed signals are from
different quality of the recorders (from low to high) [16].
Note that these signals are under the same configurations,
including room size of 2− 5 m2, T60 of 500− 200 ms, and
a talker-to-ASV distance of 10− 50 cm.

Fig. 7: Residual block in the ResNet.

A. Dataset

The dataset is from the ASVSpoof 2019: replay spoofing
attacks in a physical access (PA) scenario [16]. This dataset
includes 54, 000 audio files for training, 29, 700 files for
development, and 135, 000 files for evaluation. The utterances
were produced by 20 speakers, including 12 women and eight
men for training, four males and six females for development.
In contrast, a larger evaluation set consists of 21 for males
and 27 for females. The range of the signals is between
1.45 and 10.31 seconds. We cut the longest signal to 8.23
seconds to make consistent dimensions between the training
and evaluation sets. All files have a sampling rate of 16 kHz.

The details of configurations in the dataset include room size,
reverberation, replay device quality, and talker—attacking
distance variables, including attacker-to-ASV distance. Note
that this dataset is imbalanced.

B. Implementations

The segments of a signal were justified by the VAD
algorithms [20] in MATLAB 2020a1. The MFCC was then
calculated as a feature from each signal (whole utterance,
voice, non-voice, and percentage of voice in the non-voice
section). The ResNet-34 models2 and their training were
implemented on GoogleColab Pro+ in Python 3.7 with
associated libraries, e.g., TensorFlow 2.1, Scikit-learn, and
Librosa. We also trained the models from the training set
and evaluated their performance using all trials from the
development and evaluation sets.

C. Evaluation metrics

The evaluation metrics are an equal error rate (EER), which
is a value where false accept rate is equal to false reject rate.
The EER is commonly used as a prime metric of anti-spoofing
[1]. Apart from the EER, the other classification metrics are
also used, including accuracy, recall, and F-score.

D. Results

Table II shows the comparison results of three configura-
tions: using the whole signal, using only the voice section, and
using the only non-voice section. The results from a model
using the only voice section are worse in all sets. It seems
that the voice-only model suffers from over-fitting. In contrast,
results show extraordinary performance from using the non-
voice section and full signal. However, the model using the
full signal still outperforms the non-voice model.

We carried out further experiments to observe the
contribution of voice and non-voice combinations to detecting
replay attacks. We used the model trained from the
whole utterance as a baseline model. Then, the different
combinations of voice and non-voice sections as input are
fed to the model trained from the whole signal.

Table III shows the analysis results of using the non-
voice section with different percentages of voice section.
Interestingly, the model taking input features from the non-
voice + 10% and 20% voice yields the outstanding EERs on
all sets. It also outperforms the regular method using the full
signal. Furthermore, the non-voice + 20% voice shows the
best results for all classification metrics (accuracy, F-scores
(0.5, 1, 2), and recall).

V. DISCUSSION

Even though we can distinguish spoofs more precisely
using non-voiced regions, some remaining issues and
limitations should be discussed as follows.

1https://www.mathworks.com/help/audio/ref/detectspeech.html
2https://pypi.org/project/image-classifiers/
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TABLE III: Analysis of voice and non-voice sections for feature extraction and classification on replay attack detection. Note
that MFCC and ResNet-34 are feature and classifier of all conditions. The optimal section is the smallest EER.

Feature (MFCC) EER (%) Accuracy (%) F0.5 (%) F1 (%) F2 (%) Precision (%) Recall (%)
Dev Eval Eval

Whole utterance 1.72 1.86 98.14 99.39 98.91 98.45 99.71 98.14
Non voice + 5% voice 1.63 1.89 98.11 99.38 98.90 98.42 99.70 98.10
Non voice + 10% voice 1.43 1.76 98.24 99.42 98.98 98.54 99.72 98.24
Non voice + 20% voice 1.53 1.72 98.28 99.44 99.00 98.56 99.73 98.28
Non voice + 30% voice 1.62 1.77 98.22 99.42 98.97 98.52 99.72 98.22
Non voice + 40% voice 1.71 1.77 98.23 99.42 98.97 98.52 99.72 98.22

Firstly, spoofing recorded by a perfect quality recorder is
still difficult to distinguish. Fig. 5 shows an example of spoof
attacks using a perfect recorder. We can see that the signals
are almost identical. Such cases might cause the remaining
errors in the proposed method.

Secondly, there are other forms of spoofing attacks, e.g.,
replacing non-voiced sections with genuine noises or adding
silence and removing silences [10]. Such spoofing techniques
might pose a threat to the proposed method. Nevertheless,
we use some voice information from extended non-voiced
boundaries instead of relying on only non-voiced regions.
Hence, the proposed method should be robust against such
spoofing techniques. However, we will improve our model
by using continuity detection algorithms in future works.
Consequently, replacing spoof noises with genuine noise will
cause a discontinuity in the signal.

Thirdly, this study shows that instead of using the whole
utterance for processing in the spoof detection scheme, only
the important sections can gain more effectiveness. The results
indicate that the optimal section combines the non-voice
section and 10− 20% of voice. However, the precise portion
of voice regions is still unclear. Thus, finding the more precise
optimal voice percentage might decrease the EER, which can
be improvised and improved further.

VI. CONCLUSION

This paper proposed a method for detecting replay
attacks using the optimal sections of a speech signal.
We investigated the difference between spoof and genuine
on non-voice sections in both time domain and cepstral
analysis. We then conducted the experiments using various
combinations of voice and non-voice sections to find the
optimal section. In this study, the spoof detection scheme
took MFCC as a feature, and ResNet-34 was a classifier. The
result suggests that the non-voice section contains essential
information regarding the record and playback devices, and
the combination of the non-voice and voice section from 10
to 20% is the optimal section. We incorporated the optimal
section into the spoofing detection scheme. The proposed
method yielded a 7.52% relative reduction in equal error rate
compared to the baseline using the whole utterances. In future
work, we will investigate whether or not our method can be
applied to detect other types of spoofing attacks, such as voice
conversion and deepfake speech.
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