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Abstract—In this paper, we propose a non-parallel voice
conversion method based on the minimization of the free energy
of a restricted Boltzmann machine (RBM). The proposed method
uses an RBM that learns the generative probability of acoustic
features conditioned on a target speaker, and it iteratively updates
the input acoustic features until their free energy reaches a local
minimum to obtain converted features. Since it is based on the
RBM, only a few hyperparameters need to be set, and the number
of training parameters is very small. Therefore, training is stable.
In determining the step size of the update formula in accordance
with the Newton-Raphson method to obtain the feature that gives
the local minimum of the free energy, we found that the Hesse
matrix of the free energy can be approximated by a diagonal
matrix, and the update can be performed efficiently with a
small amount of calculation. In objective evaluation experiments,
the proposed method outperforms StarGAN-VC in Mel-cepstral
distortions. In subjective evaluation experiments, the performance
of the proposed method is comparable to that of StarGAN-VC
in similarity MOS.

I. INTRODUCTION

Voice conversion (VC) is a speech signal processing tech-
nique that converts certain aspects of the information conveyed
by speech while preserving the linguistic content. The informa-
tion to be converted by the VC method includes the speaker’s
identity, the speaker’s emotion, and the impression the voice
gives. Converting such information allows, for example, a
synthesized speech sound to be made that sounds like a specific
person, the identity of one’s own voice to be changed to protect
privacy, and accents to be changed to sound more fluent when
speaking a foreign language.

Methods that do not require speech content to be aligned
across domains to be converted are called non-parallel VC
methods. The task of recording speech samples whose lin-
guistic content is aligned across domains is labor-intensive.
Non-parallel VC not only facilitates data collection but also
allows the range of applications to be expanded, such as
training speaker identity conversion models of different native
languages or adapting a model to convert voice in a new
domain by introducing a new dataset for a previously trained
model.

Many methods that utilize generative models have been
proposed for non-parallel VC. Examples include methods that
use adversarial learning [1] to obtain a mapping function
between source and target acoustic features [2]–[4] and a

method that uses an encoder-decoder model to create a latent
space in which the speech content and voice information of the
input acoustic features is disentangled and the disentangled
information is then recomposed before being input to the
decoder to obtain acoustic features of the target voice [5]–[7].

As a different approach from the methods listed above, we
propose a method that uses the minimization of the free energy
of a restricted Boltzmann machine (RBM) that learns probabil-
ity distributions of the acoustic features of target voices. The
proposed method requires a relatively small number of model
parameters and can be easily trained with a single model. The
encoder-decoder model sometimes has a problem with feature
quality degradation caused by using different combinations
of latent variables and target voice codes from those used in
training. The proposed method, in comparison, transforms the
input acoustic features to eliminate mismatches between latent
variables and target voice codes, so it is expected that similar
quality degradation is unlikely to occur.

The contributions of our paper are as follows. We propose
a voice conversion method with reasonable performance based
on a lightweight generative model with few hyperparameters.
Since the proposed method is based on RBM, the only hy-
perparameter is the number of hidden units. This not only
makes the model easy to train but also reduces the number
of parameters compared with other methods based on deep
generative models. We also show that using a step size that
approximates an inverse Hesse matrix in the Newton-Raphson
method for the update formula for feature conversion allows
for efficient updating, and that the update formula has a
connection to mean-field approximation [8].

II. RELATED WORKS

Generative adversarial nets (GAN) [1] are a generative
model widely used for various tasks due to the high quality
of the generated data. GAN-based methods have also been
proposed for VC methods, such as CycleGAN-VC [2], [3],
and StarGAN-VC [4].

CycleGAN-VC is an application of CycleGAN [9], which
was proposed as an image-to-image translation model, to
the voice conversion task. CycleGAN is a model in which
a generator that takes data from one domain as input and
outputs fake data translated to another domain is trained by
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adversarial loss, while the fake data is also translated in the
reverse direction so that cycle consistency is maintained. This
training framework yields a generator that translates from one
domain to the other while preserving the common structure
across domains in the data. CycleGAN-VC is a method for
converting the voice of speech to a target voice while preserv-
ing its linguistic content by taking advantage of CycleGAN’s
tendency to preserve the common structure among domains.
StarGAN [10] is a generalized model of CycleGAN. A domain
label is input along with input data to a single generator,
which specifies the target domain for conversion. The generator
is trained simultaneously with a discriminator as well as a
classifier that classifies the domains to which the real and fake
data belong. The parameters of the generator are updated by
adversarial loss to fool the discriminator, cycle consistency loss
to maintain a common structure across domains before and
after the conversion, and classification loss to ensure that the
fake data is classified in the target domain by the classifier. This
training framework allows us to build a single network that is
capable of converting to multiple target domains regardless of
input, rather than a network for one-to-one conversion. Thus,
StarGAN-VC is a method that can convert to a variety of voice
domains by training on a non-parallel data set.

Autoencoders (AEs) and their stochastic versions, varia-
tional autoencoders (VAEs) [11], are another group of gen-
erative models used as base models for voice conversion.
AEs and VAEs consist of encoder-decoder networks, where
the encoder maps the input data to the latent space and the
decoder reconstructs the original data from the features on
the latent space. By well-directed training, the features on the
latent space can be trained to be factorial representations of
the input data. When using these models for voice conversion,
the decoder is conditioned on voice domain codes to facilitate
the encoder in extracting information outside the conditioned
domain. Voice conversion can be performed by replacing the
original voice domain code with the target one and inputting
it to the decoder along with latent features.

Voice conversion methods that have been proposed on the
basis of these models include VQVC [5], [6] and AutoVC [12].
VQVC is a method that strongly encourages the latent vari-
able to be the encoding of the linguistic content by vector
quantization [7]. AutoVC is based on vanilla autoencoders
and is a method that encourages the latent variable to contain
linguistic content without over- or under-encoding by limiting
the number of dimensions of the latent variable.

Both GAN- and VAE-based voice conversion methods have
their own weaknesses. GANs are generally unstable in training
because the generators and discriminators are trained in an
adversarial manner, and it takes a lot of effort to adjust the
hyperparameters for stabilization. It has also been noted that
even with a high generation quality, the generated data tend to
lack diversity [13]. In voice conversion, this problem becomes
a concern because the GAN generators may not be able to
represent a wide variety of phonemes of speech. Weaknesses
in VAEs can occur during conversion. During conversion,

VAEs condition the decoder on a domain code that is different
from the original voice domain. Since this situation is not
experienced during training, the mismatch between the latent
variable and the domain code tends to lower the quality of the
generated data.

VoiceGrad [14], a non-parallel VC method based on the
denoising score matching method [15], [16], has been shown
to have performance comparable to GAN-based VCs. The
key idea of VoiceGrad [14] is considering VC as a problem
of finding a path to a stationary point in the log-density
distribution of the acoustic features of target voices, starting
from input acoustic features. The gradient of the target log-
density distribution is called the score function. Various levels
of Gaussian noise are added to the data during training,
and the score function of the noisy data is estimated by a
noise conditional score network. VC is performed by using
Langevin dynamics to gradually transform source speaker
acoustic features along the direction of the estimated gradient.
Training with various noise levels allows for a wide range of
movement within the feature space during the transformation.
This method is closely related to the proposed method in
that the conversion is based on a common key idea. That
is, it defines an update formula for the transformation of the
features, and the update gradually transforms the features to
achieve the target voice while preserving the linguistic content.
Transforming the features in accordance with a score function
is equivalent to transforming the features so that the free energy
is reduced in the RBM. The proposed method, however, does
not train on data with various noise levels as VoiceGrad does
and can transform features only in accordance with the free
energy for clean data. The reason the proposed method does
not need to set multiple noise levels is probably because the
step size of the update formula is chosen to be theoretically
efficient.

We previously proposed RBM-based methods [17], [18]
based on a different idea than that behind the proposed method.
RBM [19], [20] is a generative model that consists of a
network of visible layers and one hidden layer, with undirected
connections only between the visible and hidden layers. The
model is lightweight yet capable of learning the generative
probabilities of data consisting of high dimensions as joint
probabilities with hidden variables that cannot be observed
but are certainly considered to exist. Adaptive RBM (ARBM)
and its derivatives are designed so that universal phonological
information is represented in the hidden layer by applying
different adaptation matrices for each voice to the RBM weight
parameters. Therefore, voice conversion can be performed
by encoding phonological information from input acoustic
features into the hidden layer using model parameters adapted
to the input voice and then obtaining output acoustic features
using model parameters adapted to the target. This method
enables voice conversion in a simple way, but for the conver-
sion to work, the hidden layer must be trained to represent
universal phonological information. Therefore, the number of
units in the hidden layer must be narrowed down, but this is
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a trade-off against the quality of the features generated.

III. PROPOSED MODEL

In this section, we will introduce the training of the RBM
used in the proposed method and how the voice conversion
is performed using the trained RBM. Although the proposed
method can be used for a variety of voice conversion tasks, we
will assume a speaker identity conversion task in the following
for the purpose of explaining the method.

A. Speaker-conditional RBM

To estimate the probability distribution of the acoustic fea-
tures x ∈ RI of the speech of the target speaker, we consider
an RBM with hidden variables h ∈ {0, 1}J , conditioned on
the speaker one-hot vector s ∈ {0, 1}K ,

∑K
k=1 sk = 1, as:

Pθ(x,h|s) =
1

Z(s)
e−Eθ(x,h,s) (1)

Eθ(x,h, s) =
1

2

(x
σ

)T (x
σ

)
− xTWh− bTx (2)

− cTh− sTVh

Z(s) =

∫ ∑
h

e−Eθ(x,h,s)dx (3)

where W ∈ RI×J ,V ∈ RK×J , b ∈ RI , c ∈ RJ , and σ ∈ RI
+

are a matrix of visible-hidden connection weights, a matrix
of speaker-hidden connection weights, a visible bias vector, a
hidden bias vector, and the deviation vector of v, respectively;
Z is a normalization term; ·

· is element-wise division.
Defining the free energy of this RBM as Fθ(x|s) ≡

− log
∑

h e−Eθ(x,h,s), the marginal probability distribution of
the visible variable Pθ(x|s) can be written as:

Pθ(x|s) =
∑
h

Pθ(x,h|s) =
1

Z(s)

∑
h

e−Eθ(x,h,s) (4)

=
1

Z(s)
e−Fθ(x|s). (5)

Let Pdata(x|s) denote the empirical distribution of training
data for the acoustic features of the target speaker s; the
model Pθ(x|s) is trained with the goal of minimizing the
Kullback-Leibler divergence KL(Pdata||Pθ). By extracting the
term related to the parameter θ from KL(Pdata||Pθ), model
training is reduced to solving the maximization problem of
the following objective function f(θ):

f(θ) ≡
∑
x∈D

Pdata(x|s) logPθ(x|s), (6)

where D is training dataset. Since θ that maximizes f(θ) can-
not be obtained analytically, the parameter update is based on
the gradient descent method in accordance with the following
gradient:

∇θf(θ) =
∑
x

Pdata(x|s)∇θ logPθ(x|s)

= −EPdata(x|s) [∇θFθ(x|s)] + EPθ(x|s) [∇θFθ(x|s)] .
(7)

/a/ /e/ /i/

Fig. 1. Conceptual illustration of free-energy minimization. Input acoustic
features x(0) perceived as a certain phoneme is iteratively updated along
the free-energy gradient of the RBM conditioned on the target speaker sout
without changing the phonological information.

The second term on the right-hand side of (7) is difficult
to compute because it is an expected value based on the
probability distribution given by the model, but it can be sub-
stituted by an approximation using the contrastive divergence
method [21].

B. Voice Conversion Based on Free-energy Minimization

In this paper, we propose a voice conversion method that
iteratively updates the input acoustic feature xin along the free-
energy gradient ∇xFθ(x|s) of the RBM in the feature space in
the direction where the free energy becomes lower. Obtaining
features such that the free energy Fθ(x|s) is lower means
obtaining acoustic features that are more likely to be uttered
by the target speaker s. Therefore, as illustrated in Fig. 1, if
x̂ gives a local minimum of Fθ(x|s) in the neighborhood of
xin, and if the speech content is preserved in such a change
to x̂, voice conversion to the target speaker is achieved.

C. Step Size Based on Newton-Raphson Method

To update xτ to xτ+1 in accordance with ∇xFθ(x|s), let
us consider the following update formula:

xτ+1 = xτ − α∇xFθ(x
τ |s), (8)

where α indicates step size. For efficient updating, α must
be set appropriately. Therefore, we consider following the
Newton-Raphson method, which chooses the inverse Hesse-
matrix ∇2

xFθ(x|s)−1 as the step size. First, ∇xFθ(x|s) of
the RBM based on (1) becomes:

∇xFθ(x|s) =
∑
h

Pθ(h|x, s)∇xEθ(x,h|s)

= EPθ(h|x,s) [∇xEθ(x,h|s)]

=
x

σ2
− b−WEPθ(h|x,s) [h|x, s]

=
x

σ2
− b−WS(WTx+VTs+ c),

(9)

where ·2 is an element-wise power, and S(·) is an element-wise
sigmoid function. If we then write ĥ = S(WTx+VTs+ c),
we get

∇2
xFθ(x|s) = ∆(

1

σ2
)−W∆(ĥ)∆(1− ĥ)WT, (10)
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where ∆(·) is a function that returns a diagonal matrix with
vector · as its diagonal component. Here, each element of ĥ is
the output of a sigmoid function, many of which take values
close to 0 or 1. Therefore, by approximating ĥj(1− ĥj) to 0,
the Hesse matrix ∇2

xFθ(x|s) is considered a diagonal matrix,
and the inverse matrix is easy to calculate. Therefore, in this
paper, we used ∇2

xFθ(x|s)−1 ≃ ∆(σ2) as the step size, and
the update formula becomes:

xτ+1 = ∆(σ2)
(
WS(WTxτ +VTs+ c) + b

)
. (11)

The iterative update by (11) has the same operation as the
alternating update of x and h by mean-field approximation [8].
The update by this method is based on the Newton-Raphson
method, so the update is efficient, and the step size is positive,
so the update is stable.

IV. EXPERIMENTS

To evaluate the performance of the proposed VC method,
we conducted both objective and subjective evaluation ex-
periments. Among existing non-parallel VC methods, we
chose the adaptive restricted Boltzmann machine-based VC
(ARBM-VC) [17], which is RBM-based but with different
conversion methods, and StarGAN-VC [4], which is a GAN-
based method, as comparison methods. Note that StarGAN-
VC is a method that uses two-dimensional data consisting
of feature dimensions and time frames as input features, and
its performance cannot be directly compared to the proposed
method. VoiceGrad, which is based on an idea common to the
proposed method, currently has no publicly available code,
including unofficial open-source implementations. We also
tried to implement VoiceGrad, but the quality of the converted
speech was apparently worse than that reported in the paper,
so we did not include it with the comparison methods in this
experiment.

A. Materials & Configurations

For the experiments, we used the CMU ARCTIC
dataset [22], which consists of recordings of 18 speakers each
reading the same 1,132 English sentences. All the recorded
speech was sampled at 16,000 Hz. For the target speakers,
we used two female speakers, “clb” and “slt,” and two male
speakers, “bdl” and “rms.” We used a set of 400 sentences for
training data and used another set of 100 sentences for test
data. We divided the training 400 sentences into 4 subsets of
100 sentences and assigned subsets to the 4 target speakers to
simulate a non-parallel training scenario so that the training
data would not contain the same sentences across speakers.

A 32-dimensional Mel-spectrum normalized over each di-
mension was used for input acoustic features. The Mel-
spectrum was calculated from the smoothed spectrum obtained
with the speech analysis and synthesis system WORLD [23]
every 5 ms.

The number of hidden units both in the RBM and the ARBM
was set at 400. Both models were trained in Adam [24] with
a batch size of 100, learning rate of 0.001, β1 = 0.9, β2 =

TABLE I
MEL-CEPSTRAL DISTORTION COMPARISONS.

Pair StarGAN ARBM RBM
clb-to-bdl 7.17 7.58 7.24
clb-to-slt 6.84 6.38 6.27

clb-to-rms 6.93 7.83 6.64
bdl-to-clb 7.13 7.54 6.97
bdl-to-slt 7.44 7.75 6.94

bdl-to-rms 7.34 7.03 6.39
slt-to-clb 6.73 6.29 6.17
slt-to-bdl 7.45 7.90 7.48
slt-to-rms 7.35 7.92 6.92
rms-to-clb 7.01 8.00 7.40
rms-to-bdl 7.50 7.28 7.00
rms-to-slt 7.32 7.92 7.26

TABLE II
MEAN OPINION SCORE WITH 95% CONFIDENCE INTERVALS FOR SPEECH

NATURALNESS (NAT) AND SIMILARITY (SIM).

Test StarGAN ARBM RBM Natural
NAT 3.24±.25 2.97±.20 2.66±.18 4.61±.14
SIM 3.52±.25 2.59±.30 3.18±.27 –

0.999, and 100 epochs. For StarGAN-VC, we used the open-
source implementation1. The total numbers of parameters were
14864 for RBM, 17108 for ARBM, and approximately 20M
for StarGAN.

B. Objective Evaluations

Voice conversion was performed with each method on 100
test sentences. In the conversion by the proposed method,
the feature updating by (11) was performed 10 times. In the
conversion by ARBM-VC, the value of the hidden layer of the
RBM for the input acoustic features was obtained by using
the model parameters adapted for the input speaker, and the
output acoustic features were then approximated by mean field
approximation using the model parameters adapted for the
target speaker.

Table I shows the Mel-cepstral distortion (MCD) between
the converted speech and the target speech. For most of
the conversion pairs, the best performance of the proposed
method was observed. Compared with ARBM-VC, the MCDs
of the proposed method were superior for all conversion pairs,
confirming the effectiveness of the method using free en-
ergy minimization. The proposed method was more effective,
especially for inter-gender conversions. Since the proposed
method searches for features that minimize free energy in the
neighborhood of the input features, better conversion results
could have more likely be obtained between speakers who
originally have somewhat similar voices.

C. Subjective Listening Tests

We conducted mean opinion score (MOS) tests to compare
the speech naturalness and speaker similarity of the converted
speech samples synthesized by the proposed and comparison
methods. For these tests, eight listeners participated in both
naturalness and similarity tests.

1https://github.com/liusongxiang/StarGAN-Voice-Conversion

254



Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

We generated an acoustic waveform of converted speech
using the WORLD vocoder from a converted Mel-spectrum,
linear transformed F0 contours, and aperiodicities.

For the naturalness test, we included a natural speech
condition in which samples were synthesized from the acoustic
features directly extracted from real speech samples. The lis-
teners evaluated the naturalness by selecting from 5: Excellent,
4: Good, 3: Fair, 2: Poor, or 1: Bad for each utterance. In
the similarity test, paired utterances of converted and natural
speech of the corresponding target speaker were presented to
the listeners. The listeners evaluated how likely they were to be
produced by the same speaker by selecting from 5: Definitely,
4: Likely, 3: Fair, 2: Not very likely, or 1: Unlikely. In each
test, the listeners evaluated 40 samples randomly selected from
the test speech samples.

The results of the MOS test with 95% confidence intervals
are shown in Table II. For the naturalness test, the proposed
method was inferior to StarGAN-VC but was comparable
to ARBM-VC. For the similarity test, the proposed method
outperformed ARBM-VC and was comparable to StarGAN-
VC. Since StarGAN-VC can use the time series information
of features, it is thought that the naturalness of the converted
speech is easily preserved. The proposed method is also
expected to improve naturalness by allowing the model to train
on the time-series information of features.

V. CONCLUSIONS

In this paper, we proposed a non-parallel voice conversion
method that iteratively updates input acoustic features until
the free energy of the RBM, conditioned on a target speaker,
reaches a local minimum, and the updated acoustic features
are used as conversion features. The proposed method has less
than one-thousandth the number of parameters of StarGAN-
VC, yet the performance of the target speaker similarity of
the converted speech is comparable to that of StarGAN-VC.
The proposed method is adaptable not only to RBM but also to
energy-based models in general. In the future, we would like to
investigate its performance with more expressive energy-based
models.
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