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Abstract—Baby cry detection in domestic environments is an
essential component in baby monitoring systems, studying sleep
cycle patterns in infants, and developing other diagnostic tools. In
this work, we explore the state-of-the-art convolutional recurrent
neural network (CRNN) and proposed replacement using depth-
wise-separable (DWS) convolutions to have a low-complexity
model for baby cry sound detection application. The studies
are carried out on a dataset curated from AudioSet, which
contains baby cry sounds and several other sounds that occur
commonly in a domestic household environment. We also perform
various data augmentation methods, and a few post-processing
techniques to enhance the robustness of our baby cry sound
detection system. The studies show that our low-complexity model
developed using DWS achieves promising results by only using
3% of the parameters of the standard CRNN system, with the
highest F-score of 0.738 on the test set.

I. INTRODUCTION

Crying is the primary way for young infants to communicate
and express their needs [1]. This makes infant cry detection
a fundamental tool in modern diagnostic applications for
research and modern baby monitoring systems designed to
alert caregivers. Baby cry detection can be regarded as an
application of sound event detection (SED) [2] with the goal
to determine the temporal onset and offset of the target sound
class in domestic environments. The SED has lately gained
popularity and has a wide range of practical uses in smart-
homes for security and surveillance [3].

In conventional baby monitoring devices, the monitoring is
conducted based on the energy levels given as the input. This
can be easily triggered by high-energy sounds, causing a false
alert for the parent or caregiver. In the other sort of monitoring
device (like walkie-talkies), the parents have to constantly
listen to the receiver during their activities. Therefore, the
SED-based systems to alert are preferred and can have a more
accurate detection in domestic environments.

The research on SED witnessed rapid growth to analyze
and recognize target sounds in real-world scenarios in recent
years. The approaches to designing a system have shifted
from the traditional methods like Gaussian mixture models
(GMMs) [4], [5], hidden Markov models (HMMs) [6], and
support vector machines (SVMs) [7] to advanced deep learning
techniques [8]–[10]. With the recent success of convolutional
neural networks (CNNs) in image recognition, they have
become the state-of-the-art recipe in the domain of acoustic
event detection and classification for feature extraction [11],

[12]. This is because of the similarities between image inputs
in computer vision and time-frequency representations of the
audio signal. However, CNNs cannot store longer temporal
context information. To alleviate this limitation, recurrent neu-
ral networks (RNNs) with the capacity to learn long temporal
context information have been applied to SED. In addition, a
hybrid network referred to as a convolutional recurrent neural
network (CRNN) [13] was proposed to utilize the advantages
of both CNNs and RNNs.

In real-world scenarios, the domestic environment contains
various background sounds from vacuum cleaners, human
speech, door opening/closing, and many others. The presence
of background sounds having similar audio quality and fre-
quency content affects the efficacy of the detection system.
The impact is even more when the model is deployed for real-
time detection on low computational devices. This shows the
importance of having a robust, low-complexity model while
designing SED applications. It is also found that the lack
of availability of labelled data for training the SED system
degrades the system performance. This projects the necessity
of carrying out data augmentations and pre/post-processing to
enhance the robustness of developed systems.

Literature shows that various studies explored depth-wise-
separable (DWS) convolutions to derive low-complexity mod-
els with a very small number of parameters. Such approaches
have been employed in the MobileNet [14] architecture for im-
age recognition, QuartzNet [15] for automatic speech recogni-
tion, and MatchboxNet [16] for speech command recognition,
all of which were built exclusively for mobile devices. It is
noted that while a VGG16 [17] model takes up around 500
MB of disk space, MobileNet just takes 16-18 MB. Due to
the small size, there can be a trade-off of accuracy in a few
cases, but that is very minor in comparison to the benefits that
we get from the small size of the model.

In this work, inspired by the success of DWS, we pro-
posed to replace the standard 2D convolutions with depth-
wise-separable (DWS) convolutions to reduce the number of
parameters in a standard CRNN system. In addition, a few
popular data augmentation approaches are used to increase the
system’s robustness. The studies are conducted on a database,
which we curated from AudioSet, that contains baby cry
sounds and several other sounds that occur commonly in a
domestic household environment. The contributions of this
work can be summarized as follows:
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• Development of a baby cry sound detection dataset in the
domestic environment

• Proposal of low-complexity CRNN models for baby cry
detection

• Explore various data augmentations for system robustness
The remainder of the paper is structured as follows: Sec-

tion II introduces the neural network architectures studied to
detect baby cry sounds in domestic environments. In Sec-
tion III, the details of the experimental setup are described.
The results and analysis are reported in Section IV. Finally,
Section V concludes the work.

II. CONVOLUTIONAL RECURRENT NEURAL NETWORKS

The hybrid system of CNN and RNN is termed the CRNN,
which remains state-of-the-art in the polyphonic SED task. We
use this CRNN network as a reference system for our studies
in this work. We describe the architectures of the baseline
model and the proposed low-complexity models in detail in
the following subsections.

A. Baseline Model

The 5-Layer CRNN architecture used as the baseline (CNN-
5) [18] is depicted in Fig. 1. It consists of four 2D convo-
lutional blocks (Conv-Blocks) with a kernel size of 5 × 5.
In Fig. 1, 5 × 5 @ 64 depicts a convolutional-block (Conv-
Block) employing standard convolution with kernel size of
5 × 5 and output feature map with size of 64. In the Conv-
Block of Fig. 2, batch normalization is applied after each 2D
convolution. Thereafter, ReLU function is used as the non-
linear activation function. To reduce the feature map size, we
used average pooling of 2 × 2 after each 2D Conv-Block.
The baseline (CNN-5) consists of 64, 128, 256, and 512
feature maps in each consecutive block. To learn the temporal
context, the Conv-Blocks are followed by a bidirectional gated
recurrent unit (Bi-GRU) [19] with 256 hidden units. Finally,
the feed-forward layers perform the classification by producing
sound event activity probabilities based on the input from
the recurrent layer. The total number of parameters (PN)
of the baseline is 4.3M. The model learns using gradient-
based optimization to minimize the binary cross-entropy loss
function (lBCE) given in Eq. (1), where yk is the label (1 for
‘baby-cry’ and 0 for ‘other’) and pk is the predicted probability
of the point being ‘baby-cry’ for all K points.

lBCE(p, y) =

K∑
n=1

[yk ln pk + (1− yk) ln(1− pk)] (1)

B. Low-complexity Models

Conventional CNNs have a high computational cost that
makes them unsuitable for use in mobile vision and embedded
applications. In the CRNN network proposed in this work,
depicted in Fig. 1, we replaced the 2D CNN utilized in the
baseline with 2D DWS convolutions [20]–[22] which resulted
in a low-complexity feature extractor. The DWS convolution,
as shown in Fig. 3 factorizes the standard convolution into
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Fig. 1. Architecture of the baseline CNN-5 and the proposed low-complexity
models DWS-5 and Tiny (T)-DWS-5.

depth-wise convolution and point-wise convolution. The differ-
ence in the complexities of these two convolutional operations
is also depicted in Fig. 3. Using those values, we can calculate
the Ratio (R) of Complexity (C) of DWS convolution to
standard convolution as:

R =
C(DWS Convolution)

C(Standard Convolution)
=

O2 × Cin × (k2 + Cout)

O2 × Cin × k2 × Cout

=
1

k2
+

1

Cout
(2)

Thus, for the case where Cout = 100 and k = 512, we
get Ratio (R) = 0.01. This indicates the DWS convolution
performs around 100 times fewer multiplications compared to
the standard convolution for this case. As a result, we can
attain comparable accuracy with less complexity. To investigate
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Fig. 2. The structural comparison between Conv-Block and DWS-Block.
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Fig. 3. The comparison between complexities and operations of standard
convolution and DWS convolution.

and evaluate the performance of DWS-based convolution with
the baseline, we constructed two DWS convolution-based
architectures termed DWS-5 and tiny (T)-DWS-5. It is noted
that T-DWS-5 has only 6% of the total parameters of DWS-5,
as shown in Fig. 1. The 5× 5 @ 64 - DWS of Fig. 1 depicts
a DWS-block as in Fig. 2 employing DWS convolution with a
kernel size of 5× 5 and output feature map with a size of 64.
Both the architectures used, have four DWS blocks but have a
different number of channels in each consecutive block and a
different number of hidden cells in the Bi-GRU. The DWS-5
contains four DWS blocks with a kernel size of, 5×5 consisting
of the same number of feature maps as in the baseline. As a
result, DWS-5 has a total of 1.5M parameters. Similarly, T-
DWS-5 has the same number of DWS blocks with the kernel
size of 5×5 consisting of 16, 32, 64, and 128 feature maps in
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Fig. 4. The detailed framework for baby cry SED system.

each block respectively. The Bi-GRU cell in T-DWS-5 consists
of 128 hidden units, resulting in a total of 104k parameters. To
summarize, the DWS-5 and T-DWS-5 have 36% and 6% of the
parameters of the considered baseline (CNN-5), respectively.

III. EXPERIMENTAL SETUP

The detailed framework of the developed SED system is
illustrated in Fig. 4. It can be viewed under two stages: the
training stage and the testing stage. In the training stage, the
system uses encoded strongly labelled annotations to train the
SED model. The input audio signals are processed to extract
mel-spectrograms. We also apply various data augmentation
methods to increase the amount of training data and variability.
During the testing stage, the trained model is used to infer
on the test set and compare it with ground truth annotations
to evaluate the performance. This section further contains
the database details and other experimental settings in the
following subsections.

A. Database

The dataset constructed for this study is a subset of the Au-
dioSet [23]. The AudioSet is a growing ontology comprising
632 audio event classes of human labelled clips with a duration
of 10 seconds, derived from YouTube videos. The curated
dataset is divided into the development set and evaluation set,
incorporating the previously released strongly labelled annota-
tions for the subset of AudioSet. The development dataset is
further split into the training (Train) and validation (Val) sets.
Since the focus of this work is to detect baby cry sounds in
domestic environments, the dataset has been categorized into
two primary classes: ‘baby-cry’ and ‘other’. The ‘other’ class
comprises various sound clips from the domestic household
environment. The recurrence of the events in the labels for
each clip does not overlap. It is also noted that the dataset
contains an almost equal distribution of clips between ‘baby-
cry’ and ‘other’ classes.

After filtering the metadata files for the specific classes
from the AudioSet ontology, the dataset was downloaded using
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TABLE I
DATA DISTRIBUTION SUMMARY OF THE STRONGLY LABELLED BABY CRY

DATASET CURATED FROM AUDIOSET.

Class
Development Evaluation

Train Val Test

baby-cry 492 39 25

other 480 39 40

Total 972 78 65

YouTube-DL. The audio segments are then trimmed using
FFmpeg in accordance with the onset and offset specified in
the filtered metadata. The audio clips shorter than 10 seconds
are padded with silence to make them 10 seconds long. The
dataset described in this paper has been made available on
GitHub1. Table I summarizes the composition of the database.

B. Pre-Processing and Feature Extraction

The audio clips are re-sampled to 32,000 Hz mono channel
audio waveform and packed into hdf5 files, to speed up the
training process. Following that, they are segmented using a
window size (WS) with consecutive frames of 1024 samples
and a hop length of 500 samples. Additionally, we experi-
mented with different window sizes, keeping the hop length
constant. Then, the segmented waveforms are transformed into
spectrograms by performing Short Time Fourier Transform
(STFT). The log-mel spectrogram was obtained by applying
64 mel-filters spanned from 0 to 8kHz in the frequency domain
followed by logarithmic operation using librosa. The extracted
mel-spectrograms are normalized with global mean and stan-
dard deviation over the entire training set. Thus, with these
values, each audio signal is represented by 640 frames. With
64 mel-bins and 640 frames, each audio clip is represented
with an input dimension of 1× 640× 64.

C. Data Augmentation

Data augmentation methods have been proven well to in-
crease the system robustness, which motivated us to apply them
in the development of our SED system. We used SpecAug-
ment [24] in all the experiments, including the baselines, which
is directly applied to the feature inputs of the neural network.
The SpecAugment is widely used in tasks such as speech
recognition, where it masks blocks of consecutive frequency
channels and time frames. Additionally, we experimented with
Time-Shift [25], Pitch-Shift [26], Soft-Mixup [27], and Hard-
Mixup [28] as a few other data augmentation methods in this
work. The Time-shift shifts the audio clip along the time axis
circularly, whereas the Pitch-Shift randomly raises or lowers
the pitch of the audio clip. The Hard-Mixup directly adds all
the sound clips and labels the mixture with all the classes in the
original samples. On the other hand, the Soft Mixup generates
pseudo data (x̂, ŷ) by mixing different data points (xi, xj) and
their corresponding labels (yi, yj) chosen at random as shown
below:

x̂ = λxi + (1− λ)xj (3)

1https://github.com/tanmayy24/Baby_Cry_Detection_Database

ŷ = λyi + (1− λ)yj (4)

where λ ∈ [0, 1] determines the degree of mixing.

D. Detection Procedure and Post-Processing
We investigated different post-processing steps through

smoothing, normalizing, and thresholding on the clip-wise and
frame-wise event probabilities. In the first step, we applied a
constant threshold of 0.5 to the output (y) of the feed-forward
layer to get the binarized results, as depicted below:

y =

{
1, if y ≥ 0.5

0, otherwise
(5)

In the second step, as different sound events have their own
event duration, we experimented with median filtering (MF)
by manually searching for the optimal length from 1 to 49
with an increment of 2 for the ‘baby-cry’ class. After getting
the smooth binarized results, we compare the results for the
640 segmented frames with the ground truth labels for per-
formance evaluation. We also experimented with normalizing
mel-spectrogram (N-Mel) and reducing noise (NR) in the audio
waveform. Further, we experimented with threshold values
ranging from 0.1 to 0.9 in an increment of 0.1.

E. SED System Development
The weights of the SED model were initialized using Xavier

initialization and all the biases were initialized to zero. The
model is implemented in PyTorch and trained using Adam-
optimizer (β1=0.9, β2=0.999, ϵ=1e-8, decay=0.0) with a batch
size of 32. The learning rate was initialized to 0.001 and then
subsequently reduced every 200 iterations by multiplying by
0.9 for a total of 2000 iterations. After each iteration over the
training set, we assessed the loss on the validation set. Finally,
after completion of training, we evaluated the model on the
strongly labelled testing set.

F. Evaluation Metric
We used segment-based evaluation to compare the system

output and the reference labels on a fixed temporal duration.
This metric is more tolerant compared to the event-based
metric to brief pauses and errors in event boundaries. At
each segment level, we tallied the detected events in terms of
true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). From these values we calculated
Precision (P), Recall (R), and F-score (F) for each experiment
for comparison, as depicted below:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

F =
2PR

P + R
(8)

We placed more emphasis on the F-score as it elegantly sum-
marizes the predictive performance of a model by combining
recall and precision, which are otherwise conflicting metrics.
Also, we focused on recall so that the system does not miss
out on the baby-cry sound.
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TABLE II
PERFORMANCE OF THE BASELINE WITH THE PROPOSED MODELS.

Model
CNN-5

(Baseline) DWS-5 T-DWS-5

F 0.641 0.681 0.666

P 0.829 0.765 0.780

R 0.522 0.613 0.580

TABLE III
EFFECT OF WS IN PERFORMANCE FOR THE PROPOSED MODELS.

WS 512 1024 2048 4096

DWS-5

F 0.656 0.681 0.711 0.620

P 0.836 0.765 0.785 0.748

R 0.539 0.613 0.649 0.528

T-DWS-5

F 0.559 0.666 0.674 0.608

P 0.775 0.780 0.752 0.774

R 0.437 0.580 0.610 0.500

IV. RESULTS AND ANALYSIS

This section presents the results for the studies related to
baby cry sound detection in the following subsections.

A. SED System Comparison

In this subsection, we compare the performance of the
baseline systems depicted in Fig. 1. As presented in Table II,
both of the proposed models DWS-5 and T-DWS-5 perform
better on segment-based F-score compared to the CNN-5
baseline system. When compared to CNN-5, the DWS-5 has
a 6.24% higher F-score, while T-DWS-5 has a 3.9% higher F-
score. Considering the parameters in each, we can observe that
DWS-based models outperform the standard CRNN even with
fewer parameters. Additionally, the DWS-based models have
a higher recall, resulting in more output-sensitive predictions
for the baby-cry event.

B. Effect of Window Size

As the average duration of the different sound events varies,
we are interested to investigate different window sizes used
to segment the audio waveform. Table III reports this analy-
sis, which shows that the maximum F-score and Recall are
obtained with a WS of 2048. As a result, with the highest
sensitivity for a WS of 2048, the DWS-based models are
correctly identifying most of the baby cry events.

C. Effect of Data Augmentation

We carried out various data augmentation methods described
in Section III-C on WS of 2048-based proposed models apart
from SpecAugment, which is already included in the develop-
ment of all the systems. Table IV shows the results under this
study, where the SpecAugment augmentation method is used

TABLE IV
PERFORMANCE COMPARISON WITH VARIOUS DATA AUGMENTATION

METHODS FOR THE PROPOSED MODELS WITH WS OF 2048. THE
SPECAUGMENT METHOD IS USED IN ALL THE CASES.

Method
No Aug-

mentation
Soft-

Mixup
Hard-
Mixup

Time-
Shift

Pitch-
Shift

DWS-5

F 0.711 0.764 0.264 0.563 0.670

P 0.785 0.777 0.928 0.767 0.795

R 0.649 0.750 0.154 0.444 0.578

T-DWS-5

F 0.674 0.727 0.625 0.629 0.706

P 0.752 0.811 0.774 0.712 0.791

R 0.610 0.659 0.523 0.563 0.637

TABLE V
PERFORMANCE COMPARISON OF THE POST-PROCESSING TECHNIQUES

NORMALISED-MEL (N-MEL), NOISE-REDUCTION (NR),
MEDIAN-FILTERING (MF) AND MANUAL THRESHOLDING (MT) FOR THE

PROPOSED MODELS WITH THE BEST DATA ARGUMENTATION
(SPECAUGMENT AND SOFT-MIXUP) CASE UNDER WS OF 2048.

Method None N-Mel NR MF MT

DWS-5

F 0.764 0.719 0.744 0.764 0.760

P 0.777 0.789 0.775 0.768 0.734

R 0.750 0.660 0.715 0.758 0.788

T-DWS-5

F 0.727 0.706 0.700 0.728 0.738

P 0.811 0.807 0.820 0.801 0.733

R 0.659 0.626 0.610 0.667 0.743

in conjunction with various other data augmentation methods
during training. We observe from Table IV that the Soft-Mixup
provides the best results among the rest of the methods. The
Soft-Mixup improved the F-score for both the DWS-based
models, while also providing the highest recall among the other
data augmentation methods. Next, we are interested in carrying
out a few post-processing techniques with this Soft-Mixup with
SpecAugment-based best performing system.

D. Effect of Post-Processing Techniques

In this subsection, we discuss the studies of various post-
processing techniques discussed in Section III-D. From Ta-
ble V, we observe that by applying median filtering to smooth
the output event probabilities and a configurable threshold
setting for the baby cry class, we obtain the best performance
in F-score for DWS-5 and T-DWS-5, respectively. Based on
our studies, the optimal value for the median window is 31
and the threshold value for the baby cry class is 0.4. It is also
noted that the highest recall of 0.788 for DWS-5 and 0.743
for T-DWS-5 are achieved utilizing manual thresholding.
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V. CONCLUSIONS

In this work, we focused on developing a low-complexity
model for baby cry detection in domestic environments. To
construct a low-complexity model, we proposed to replace the
standard 2D CNNs with DWS convolutions for the baby cry
detection system. We curated a dataset from the recently re-
leased strongly labelled subset from AudioSet for our studies.
The studies depict the DWS-based models perform effectively
with systems having much a lower number of parameters. The
studies for data augmentation highlighted SpecAugment with
Soft-Mixup as the best-performing model. Post-processing
techniques such as median filtering and manual thresholding
further improved the F-score for baby cry detection. In sum-
mary, this led to a 97% reduction in the number of parameters
and a reduction in the average time required per iteration for
training processes, with a superior classification performance
of 15.13% than the state-of-the-art CRNN.
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