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Abstract—With the development of deep learning, neural
network-based speech enhancement (SE) models have shown
excellent performance. Meanwhile, it was shown that the de-
velopment of self-supervised pre-trained models can be applied
to various downstream tasks. In this paper, we will consider
the application of the pre-trained model to the real-time SE
problem. Specifically, the encoder and bottleneck layer of the
DEMUCS model are initialized using the self-supervised pre-
trained WavLM model, the convolution in the encoder is replaced
by causal convolution, and the transformer encoder in the
bottleneck layer is based on causal attention mask. In addition,
as discretizing the noisy speech representations is more beneficial
for denoising, we utilize a quantization module to discretize the
representation output from the bottleneck layer, which is then
fed into the decoder to reconstruct the clean speech waveform.
Experimental results on the Valentini dataset and an internal
dataset show that the pre-trained model based initialization can
improve the SE performance and the discretization operation
suppresses the noise component in the representations to some
extent, which can further improve the performance.

I. INTRODUCTION

Speech enhancement (SE) aims to improve the perceptual
speech quality and intelligibility by removing the background
noises contained in the noisy input signal, which is usually
exploited as a front-end pre-processing module in many appli-
cations, such as automatic speech recognition (ASR), speaker
diarization, hearing aids [1], [2]. With the development of
deep learning, neural network-based SE models [3]–[5] can
even outperform the traditional counterparts [6], which can
be divided into two categories: time-frequency domain [7]–
[10] and time-domain methods [3]–[5]. In the time-frequency
domain, a masking matrix is usually first estimated via su-
pervised training and then multiplied with the noisy spec-
trum to estimate the clean spectrum, which is finally trans-
formed into the time domain to recover the clean speech.
For the time-domain SE models, a convolutional encoder-
decoder or Unet [11] framework can be utilized to predict
the clean speech waveform directly from noisy speech wave-
forms, where long short-term memory (LSTM) [5] or self-
attention [12] is adopted to model the temporal information. It
has been experimentally shown that these methods can improve
the speech quality/intelligibility to some extent.

0Jie Zhang is the corresponding author.

In the speech community, self-supervised pre-training mod-
els have been developed rapidly recently, which are pre-
trained using large amounts of unlabeled data and then trans-
ferred to downstream tasks, e.g., ASR, speaker recognition.
For example, contrastive predictive coding (CPC) [13] was
proposed to predict the future frames using a contrastive loss.
Wav2vec2.0 [14] leverages contextual information to predict
the information of the masked frames using a contrastive loss
function. HuBERT [15] performs offline clustering for the rep-
resentation output from the middle layer of the model, which
enables to directly predict the clustering labels at the masked
positions. On the basis of HuBERT, WavLM [16] can achieve
the state-of-the-art performance on SUPERB benchmark [17]
by using an utterance mixing training and more unlabeled data.
It was shown that there are some other pre-trained models,
e.g., [18]–[20] that are beneficial for downstream tasks in both
clean and noisy scenes.

Further, self-supervised pre-trained models can also be used
to improve the SE performance in literature. In [21], thirteen
pre-trained models are applied to the SE task, which are taken
as feature extractors to generates spectral masks to reconstruct
the clean speech waveform. It was shown that the high-level
features extracted by self-supervised pre-trained models are
also applicable to SE compared to traditional acoustic features.
In [22], the SE performance is improved by using a combi-
nation of features extracted by a self-supervised model and
traditional spectral features. However, currently these methods
can only applied to offline SE tasks and few of them considers
the application of self-supervised pre-trained models to the
real-time case. In addition, as it was shown in [23], [24] that
representation clustering can improve the noise robustness of
the ASR, inspired by the clustering representation approach in
HuBERT, it might be the case that discretizing the noisy speech
representations is more beneficial for denoising as well as the
reconstruction of clean speech waveforms.

In this paper, we therefore consider the application of a
self-supervised pre-trained model to the real-time SE task. The
overall configuration of the proposed model is shown in Fig. 1.
The basis SE model adopts the Unet-based framework by ini-
tializing the encoder and bottleneck layers of the model using
the pre-trained WavLM model and replacing the convolution
of the encoder in the WavLM with the causal convolution.
The causal attention mask is adopted for the Transformer
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Fig. 1. An illustration of the proposed speech enhancement model.

encoder in the bottleneck layer. In addition, We utilize a vector
quantization (VQ) module to discretize the representation
output from the bottleneck layer, which is then fed into the
decoder for reconstructing clean speech waveforms. Experi-
mental results on the Valentini dataset [25] and an internal
dataset show that using the pre-trained model can improve
the SE performance, and the proposed VQ module can further
improve the performance. Some enhanced speech samples and
reference code can be found at: https://zxy0001.github.io.

II. METHOD

A. The self-supervised pre-trained WavLM model

WavLM [16] is a pre-training model based on HuBERT,
which contains a convolutional encoder and a Transformer
context encoder, where the convolutional encoder has several
layers (each contains a time-domain one dimensional (1D)
convolutional layer), a normalization layer, and a Gaussian
error linear unit (GELU) activation layer. In the Transformer
context encoder, relative position information is introduced for
the attention network by gated relative position encoding to
better model the local information. In the pre-training stage,
WavLM randomly transforms the input speech waveform, e.g.,
by mixing two waveforms or adding background noise. After-
wards, about 49% of the speech signal is masked randomly in
a sentence, and the discrete labels corresponding to the masked
positions are predicted at the Transformer output, where the
discrete labels are generated by discretizing the continuous
signal via K-means clustering. It was shown that WavLM can
improves the performance of SUPERB benchmarks for various
speech tasks with more unlabeled data and model parameters.
For more details on WavLM, please refer to [16].

B. The model architecture

The proposed SE model is built based on the U-net structure,
which contains an encoder : X 7→ Z, a bottleneck f : Z 7→ C,
a V Q : C 7→ Q and a decoder : Q 7→ Y , and the
corresponding model structure is shown in Fig. 1. The encoder

has D layers, and each contains a 1D causal convolution layer,
a normalization layer and a GELU activation layer, where the
convolution kernel size is K, the stride size is S and the
number of channels is H . The decoder also has D layers,
and each contains a 1D causal transpose convolutional layer,
a normalization layer and a GELU activation layer. A skip
connection is employed between the output of the i-th encoder
and the input of the i-th decoder. The bottleneck contains N
Transformer encoder layers, each of which contains a multi-
head self-attention layer and a position-wise fully connected
feed-forward layer. Skip connection and layer normalization
are also utilized for each layer.

Specifically, given a noisy speech waveform x, the feature
z = encoder(x) is obtained by the encoder, which is then in-
put to the bottleneck layer to obtain the contextual representa-
tion c = f(z). Given the context representation c, the discrete
representation is calculated by the VQ module as q = V Q(c),
which is finally exploited by the decoder to reconstruct the
enhanced speech waveform, i.e., ŷ = decoder(q). As shown
in Fig. 1, in order to ensure the causality of the proposed SE
model (i.e., at time-frame t only the information of previous
frames can be used), we adopt a causal attention masking
matrix to mask out the information after time t. Since the
convolutional receptive fields of the WavLM model and the
SE model are different, we only utilize a few layers of the
WavLM-base1 model to initialize the encoder and bottleneck
of the SE model.

We obtain a finite set of representations by discretizing
the bottleneck layer output via production quantization [26],
which is involved similarly to [14]. Given G codebooks,
each with V learnable d-dimensional codewords, we first map
the bottleneck representations c to l ∈ RG×V logits, and
then select the discrete vectors by the Gumbel-softmax [27]
operation in a differential way. The probability of choosing
the v-th codewords from the g-th codebook is given by

pg,v =
exp(lg,v + nv)/τ∑V
k=1 exp(lg,k + nk)/τ

, (1)

where τ is a non-negative temperature coefficient, nv =
− log(− log(u)) with u uniformly distributed over [0, 1]. In
the forward stage, the vector i is selected as i = argmaxvpg,v ,
and in the backward propagation stage the true gradient
of the Gumbel-softmax output is utilized. The quantization
expects to utilize more codewords by maximizing the softmax
distribution l, so we use the diversity loss function Ld, which
is given by

Ld =
1

GV

G∑
g=1

V∑
v=1

pg,v log pg,v. (2)

C. The total loss function
The total loss function Ltotal consists of an SE loss Lse and

the diversity loss Ld, which reads

Ltotal = Lse + λLd, (3)

1https://github.com/microsoft/unilm/tree/master/wavlm
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where λ is the balancing hyper-parameter. Note that the SE
loss function Lse contains both the time-domain loss and the
frequency-domain loss, which is similarly derived as in [5],
[12], where the time-domain component adopts `1 loss and
the frequency-domain component utilizes the multi-resolution
STFT loss. As a result, Lse can be formulated as

Lse =
1

T

(
‖y − ŷ‖1 +

M∑
i=1

L
(i)
stft(y, ŷ)

)
, (4)

where

Lstft(y, ŷ) = Lsc(y, ŷ) + Lmag(y, ŷ), (5)

Lsc(y, ŷ) =
‖|STFT(y)| − |STFT(ŷ)|‖F

‖STFT(y)‖F
, (6)

Lmag(y, ŷ) =
1

T
‖log |STFT(y)| − log |STFT(ŷ)|‖1 . (7)

where M denotes the number of STFT loss functions and ‖ ·‖
the Frobenius norm. The multi-resolution loss L(i)

stft utilizes the
STFT loss with the number of FFT bins ranging from {512,
1024, 2048}, hop size from {50, 120, 240} and window length
from ∈ {240, 600, 1200}, respectively.

III. EXPERIMENTAL SETUP

A. Datasets and evaluation metrics

The Valentini [25] dataset contains 28.4 hours of clean and
noisy speech pairs at a sampling rate of 48 kHz. These data are
collected from 84 speakers at 4 signal-to-noise ratios (SNRs)
(i.e., 0, 5, 10 and 15 dB) in the training set and 4 SNRs (2.5,
7.5, 12.5 and 17.5 dB) in the test set. We downsampled the
raw speech waveforms to 16kHz and then applied the same
remix augmentation and bandmask augmentation methods as
in [5]. In addition, we also validate the proposed model using
the internal challenging 100-hour noisy data.

In addition, in order to show the generalizability of the pro-
posed model, we also evaluate the performance on a self-built
dataset, which is more challenging than the Valentini dataset
in principal. The training set of the internal dataset involves
100 hours data from Librispeech clean and noisy speech [28],
where the noisy mixtures are generated by mixing the clean
speech and the noise sources from the Freesound [29] noise
dataset at a SNR randomly chosen from [0, 10] dB. The testing
set has 15 hours speech consisting of 5000 utterances from 10
speakers recorded in the real traffic and in-car environments.
The sampling frequency is 16 kHz.

The performance of the proposed method is evaluated using
objective metrics, including 1) perceptual evaluation of speech
quality (PESQ) [30], 2) short-time objective intelligibility
(STOI) [31], 3) mean opinion score (MOS) prediction of
distortion of speech signal (SIG) [32], 4) MOS prediction
of intrusiveness of background noise (BAK) [32], 5) MOS
prediction of overall quality (OVRL) [32]. Some enhanced
speech samples and reference code can be downloaded from
https://zxy0001.github.io.

B. Model configuration

In order to enable the initialization of the proposed SE
model using the pre-trained WavLM, the entire SE model
utilizes a 3-layer (D = 3) 1D convolution for the encoder,
a 2-layer (N = 2) Transformer encoder for the bottleneck and
a 3-layer 1D transposed convolution for the decoder. Both the
encoder and decoder have a dimension of 512 (H = 512). The
Transformer encoder in the bottleneck layer has a dimension
of 768, the feedforward neural network has a dimension of
2048, and the self-attention module has 12 heads. For the 1D
convolution in encoder, the convolution kernel size and stride
size are (10, 3, 3) and (5, 2, 2), respectively. For the VQ
module, we adopt G = 1 codebook with V = 320 learnable
128-dimensional vectors in each codebook, and λ in (3) is
set to be 0.01 due to the range of the diversity loss. We use
the Adam optimizer to train the SE model for 1M iterations,
where the batch size is 64 and the maximum learning rate is
2×10−4. All models are trained on 4 Tesla-V100-32G GPUs.

IV. EXPERIMENTAL RESULTS

Comparison methods: We first measure objective eval-
uation metrics on the noisy test set as a baseline. The
time-domain SE comparison methods include SEGAN [33],
SEGAN-D [35] and MetricGAN [36], which are based on the
generative adversarial networks (GAN). The time-frequency
domain SE comparison approaches include MMSE-GAN [8],
which is also relied on the GAN model, and DeepMMSE [37],
which estimates the noise spectral density using the minimum
mean square error (MMSE) criterion. Wave U-Net [34], DE-
MUCS [5] and CleanUNet [12] are also compared, which
utilize the Unet network for the time-domain SE.

Table I shows the experimental results of the comparison
methods on the Valentini dataset. It is clear that the proposed
model achieves a PESQ of 3.13 and an STOI of 96.1%,
respectively using the pre-trained WavLM for initialization and
the extra quantization module, which outperforms DEMUCS
and CleanUNet. For the real-time SE case, our model achieves
a PESQ of 3.02 and an STOI of 95.8%, respectively, which are
also better than the best off-the-shelf models, e.g., DEMUCS
and CleanUNet. As the average input SNR of the Valentini
dataset is moderately high, in order to show the generality
of the proposed method we employed a more challenging
internal dataset for testing, and the obtained results are shown
in Table II. As CleanUNet and DEMUCS obtain the best per-
formance among all chosen comparison methods, we will only
compare them with the proposed method in the sequel. We can
see that the performance of the proposed method with random
initialization is comparable to that of the CleanUNet model,
since both employ self-attention modules as bottleneck and
the amounts of model parameters are roughly equal. In case
WavLM is adopted to initialize our model, the performance is
clearly improved compared to the random initialization. Note
that using the VQ module in addition to the WavLM-based
initialization does not always mean a positive performance
gain, which should be dependent on the number of learnable
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TABLE I
PERFORMANCE COMPARISON OF OBJECTIVELY EVALUATION METRICS ON THE VALENTINI TEST SET.

Model Domain PESQ (WB) STOI (%) pred.
CSIG

pred.
CBAK

pred.
COVL Causality

Noisy - 1.97 92.1 3.35 2.44 2.63 -
SEGAN [33] waveform 2.16 - 3.48 2.94 2.80 No
Wave U-Net [34] waveform 2.40 - 3.52 3.24 2.96 No
SEGAN-D [35] waveform 2.39 - 3.46 3.11 3.50 No
MMSE-GAN [8] time-frequency 2.53 93.0 3.80 3.12 3.14 No
MetricGAN [36] waveform 2.86 - 3.99 3.18 3.42 No
DeepMMSE [37] waveform 2.95 94.0 4.28 3.46 3.64 No
DEMUCS [5] waveform 3.07 95.0 4.31 3.40 3.63 No
CleanUNet [12] waveform 3.09 95.8 4.38 3.47 3.69 No
Ours (D=3, N=2) waveform 3.13 96.1 4.46 3.56 3.82 No
Wiener - 2.22 93.0 3.23 2.68 2.67 Yes
DeepMMSE [37] waveform 2.77 93.0 4.14 3.32 3.46 Yes
DEMUCS [5] waveform 2.93 95.0 4.22 3.25 3.52 Yes
CleanUNet [12] waveform 2.91 95.6 4.34 3.42 3.65 Yes
Ours (D=3, N=2) waveform 3.02 95.8 4.40 3.49 3.72 Yes

TABLE II
PERFORMANCE COMPARISON OF OBJECTIVE EVALUATION METRICS FOR

REAL-TIME SPEECH ENHANCEMENT ON THE INTERNAL TEST SET.

Model PESQ
(WB)

STOI
(%)

pred.
CSIG

pred.
CBAK

pred.
COVL

Noisy 1.32 80.8 2.54 1.87 1.86
DEMUCS [5] 1.89 86.2 3.25 2.37 2.50
CleanUNet [12] 2.17 87.1 3.61 2.54 2.62
Ours (random init) 2.04 86.5 3.53 2.49 2.55
Ours (Init) 2.29 88.1 3.70 2.61 2.72
Ours (Init, V=160) 2.20 87.3 3.65 2.59 2.65
Ours (Init, V=320) 2.35 88.6 3.79 2.66 2.78
Ours (Init, V=480) 2.37 88.9 3.80 2.67 2.81

codewords. When the context representation is quantized with
sufficient codewords, the proposed VQ module can further
improve the SE performance in terms of all metrics (e.g.,
Init V = 480 vs. Init). This is due to the fact that in case
the number of codewords is small, the quantization noise will
heavily affect the context representation as well as the diversity
loss function and a certain loss in speech context information
becomes inevitable. In general, the less the codewords, the
more the information loss and the higher the quantization noise
variance.

This can also be seen from different choices of V in Table II,
as the SE performance of the proposed model decreases in
case the number of learnable vectors decreases. Finally, we
visualize the filterbank features of speech signals in Fig. 2,
from which it can be clearly seen that SE can remove the
noise component from the noisy speech to some extent. In
addition, for the causal models we evaluate the real-time factor
(RTF), which is defined as the required processing time of
unit-second speech. The RTF is computed on a 12-core Intel
E5-2680 v3 CPU. We find that DEMUCS, CleanUet and the
proposed method obtain a comparable RTF of 0.66, which tells
that the proposed model does not increase the time complexity.

V. CONCLUSIONS

In this paper, we investigated the effect of using pre-trained
models for initialization and vector quantization for context
representations on the real-time SE problem. It was shown
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Fig. 2. A filterbank feature of an example speech.

that the pre-trained WavLM based initialization for the encoder
and bottleneck layers of the SE model can always lead to a
performance improvement compared to the random initializa-
tion, while the utilization of the VQ module should be careful.
Only when the size of representation codebook is large enough
(as the quatization noise does not dominate), it can further
improve the SE performance on the basis of the WavLM-based
initialization. In principal, applying the quantization module
to discretize the representation of the bottleneck layer output
functions as a preliminary noise reduction processor on the
speech representation.
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