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Abstract—This paper addresses the direction-of-arrival (DOA)
estimation-based source localization problem by using the convo-
lutional neural network (CNN) and root-MUltiple SIgnal Classi-
fication (MUSIC) technique. Existing grid-less neural network-
based approach employs a LeNet-based CNN, where its network
complexity depends on the number of sensors. To overcome this
issue, we propose a LeDIM-net CNN that works for a uniform
linear array with an arbitrary number of sensors. The proposed
LeDIM-net architecture maintains spatial resolution throughout
the network while exploiting non-local spatial information.
Simulation results demonstrate the effectiveness of the proposed
LeDIM-net over the existing grid-less LeNet-based approach and
root-MUSIC at low SNRs for arrays with different sensors by
maintaining the same network complexity.

Index Terms—Direction-of-arrival (DOA) estimation, convo-
lution neural network, deep learning, array signal processing,
gridless DOA estimation

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is important for

radar [1], sonar [2], and acoustics [3] applications. Subspace

methods such as multiple signal classification (MUSIC),

Root-MUSIC, and estimation of signal parameters via rota-

tional invariance techniques (ESPRIT) rely on long snapshots

and high signal-to-noise ratios (SNRs) to achieve reasonable

performance [4–9]. These methods decompose spatial infor-

mation into the noise and signal subspaces before exploiting

them for DOA estimation. With sufficient snapshots, although

these approaches are effective under high SNR conditions,

DOA accuracy often deteriorates under low SNRs. In addi-

tion, compressive sensing-based methods [10–13] have been

proposed to achieve high-resolution DOA estimation.

Approaches based on deep learning have gained increasing

attention as they achieve satisfactory performance for target

localization applications, especially under low SNR scenar-

ios [14]. In general, the DOA estimation process is formulated

as a multi-label classification task [15, 16], where a deep neu-

ral network (DNN) estimates probabilities of source directions

within a pre-defined grid of a specified angular resolution.

This approach allows the DNN to estimate multiple sources
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within a given grid resolution. However, such approaches

result in performance degradation due to grid mismatch.

In recent years, gridless-based neural network approaches

have been proposed to alleviate the grid mismatch prob-

lem [14]. These approaches employ DNN for the estimation

of the noise-free spatial covariance matrix (SCM). A gridless

DOA estimate is then achieved by employing post-processing

modules such as Root-MUSIC described in [14]. However,

such a regression-based approach is inefficient since the num-

ber of parameters of a noise-free SCM scales quadratically

with the number of sensors resulting in overfitting issues

for the DNN. In [14], the Toeplitz property is employed

to reduce the number of unknown parameters to the same

order of magnitude as the number of sensors for SCM

estimation. While the estimation accuracy of the SCM has

been improved, the LeNet-based convolution neural network

(CNN) [17] employed in [14] is designed specifically for an

array with four sensor elements. One of the most parameter-

efficient approaches that cater to the extension of the CNN to

an arbitrary number of sensor elements is proposed in [18].

However, this technique still requires a significant number

of neural network parameters with the increasing number of

sensor elements.

To this end, we propose LeDIM-net — a CNN for recon-

structing the noise-free spatial covariance matrix for gridless

DOA estimation. The proposed LeDIM-net extracts non-local

spatial information via dilated inception modules (DIMs).

Each of these modules comprises convolution operations of

various dilation rates leading to a large receptive field at

earlier layers of the network. The use of DIM also reduces

the number of convolutional layers required to achieve a

similar receptive field, allowing the proposed LeDIM-net to

be extended to a uniform linear array (ULA) with arbitrary

sensor elements without increasing the neural network pa-

rameter complexity. Furthermore, the proposed LeDIM-net

architecture maintains the spatial resolution throughout the

network, allowing it to operate on an array of an arbitrary

number of sensors. Simulation results show the efficacy of

the proposed LeDIM-net architecture, which outperforms the

approach in [14] and Root-MUSIC, especially in low SNRs

scenarios for a uniform linear array (ULA) with different

numbers of sensor elements while maintaining the same
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Fig. 1. The framework of the gridless DOA estimator with the proposed LeDIM-net and root-MUSIC.

network parameter complexity.

II. SIGNAL MODEL

We assume K far-field narrow-band uncorrelated source

signals impinging onto an M -element ULA. The M × 1
received signal vector is given by

y(t) = A(r,θ)s(t) + n(t), (1)

where t = 1, . . . , T denotes the time index with T being

the number of snapshots, s(t) = [s1(t), . . . sK(t)]T ∈ CK×1

denotes the signal vector, n(t) ∈ CM×L is the Gaussian white

noise, and (·)T denotes the transpose operator. Here, the M×
K array steering matrix

A(r,θ) = [a(r, θ1), . . . ,a(r, θK)] (2)

comprises K columns of of the array steering vector such that

each vector a(r, θk) = [1, ejπr sin θk . . . , ejπ(M−1)r sin θk ]T ∈
CM×1 models the phase of the kth source signal arriving from

θk. The parameter r defines the number of half-wavelengths

between array sensors and θ = [θ1, . . . , θK ]T ∈ RK×1 is the

true DOA vector.

Arising from the above, the spatial covariance matrix

(SCM) of the received signal can be expressed as

Ry = E
{
y(t)yH(t)

}

= E
{
A(r,θ)s(t)sH(t)AH(r,θ)

}
+ E

{
n(t)nH(t)

}

= A(r,θ)RsA
H(r,θ) + σ2

NIM , (3)

where E {·} is the expectation operator, Rs = E
{
s(t)sH(t)

}

is the source covariance matrix, σ2
N is the noise power,

IM ∈ RM×M is an identity matrix, and (·)H is the conjugate

transpose operator. Here, we note that the noise-free covari-

ance matrix R = A(r,θ)RsA
H(r,θ) ≊ A(r,θ)AH(r,θ)

encompasses DOA information of the sources. In general, due

to the limited number of snapshots in practical applications,

the sample SCM is computed via

R̃y =
1

T

T∑

t=1

y(t)yH(t). (4)

Given the received signals {y(t)}Tt=1 and r, the goal of the

proposed gridless DOA estimation approach is to estimate the

source DOAs θ̂ = [θ̂1, . . . , θ̂K ]T ∈ RK×1.

Dilated inception module (DIM)

Concatenate feature maps

Input feature maps

Output 128 feature maps

Conv2D with dilation rate , filter shape of , and "same" padding

Conv2D with dilation rate , filter shape of + Norm. Layer + Activation

Normalization layer

Activation

DIM

DIM

DIM

Fig. 2. The architecture of the proposed LeDIM-net for estimating the
noise-free covariance matrix in low SNR. The LeDIM-net comprises three
dilated inception modules (DIM), followed by four convolution modules. The
dimension of the features maps is denoted on the right of each arrow, and
each output feature map has a shape of M ×M .

III. THE PROPOSED LEDIM-NET ARCHITECTURE

The proposed CNN-based gridless DOA estimation frame-

work is shown in Fig. 1. A new covariance reconstruction

neural network based on CNN is first employed to reconstruct

the noise-free SCM from R̃y . With the estimated noise-free

SCM R̂, the Root-MUSIC is employed to achieve source

DOAs. To cater for the ability to extend the number of

sensor elements without increasing the neural network param-

eters, we proposed the LeDIM-net CNN—a dilated inception

module-based method as shown in Fig. 2. The proposed

LeDIM-net consists of seven layers expressed as

R̂ = f7(. . . f1(R̃y)), (5)

where R̃y =

[
R

(
R̃y

)
, I

(
R̃y

)]
∈ R

2×M×M and R̂ =[
R

(
R̂

)
, I

(
R̂

)]
∈ R

2×M×M are the real-imaginary compos-

ites of the sample SCM and the reconstructed noise-free SCM,

respectively. Here, R(·) and I (·) are operators that extract the
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Fig. 3. Variation of the number of network parameters with the number of
sensor elements.

real and imaginary components, respectively.

In (5), each of the first three functions {fl(·)}l=1,2,3

represents a DIM [19] with 128 two-dimensional filters of

shape 2× 2 and while each of the following three functions

{fl(·)}l=4,5,6 represents a series of convolution blocks with

512, 256, and 128 filter of shape 1 × 1. The last function

f7(·) represents a convolution layer with two filters of shape

1× 1. It is important to highlight that the network parameter

complexity of the LeNet-based CNN in [14, 18] increases

significantly with M , while the proposed LeDIM-net in (5)

is not dependent on M . Specifically, the number of network

parameters in each function {fl(·)}l=1,...,7 are 1408, 65920,

65920, 67072, 131840, 33152, and 258, respectively.

The Root-MUSIC algorithm [5] is subsequently employed

to achieve DOA estimation without pre-defined grids via

θ̂ = fR−MUSIC(R̂, r), (6)

where θ̂ = [θ̂1, . . . , θ̂K ]T is the estimated DOA vector and

fR−MUSIC(·) denotes the Root-MUSIC function.

Similar to the CNN in [14], the proposed approach employs

the convolution operation along the spatial dimensions. By

doing so, the network can leverage parameter sharing and

equivalent representation across different sensors resulting in

more efficient parameter learning than conventional fully-

connected layers. In contrast to the LeNet-based CNN in [14],

where each convolution layer extracts adjacent spatial features

of its input feature maps, the dilation property of the convo-

lution filter [19–22] within the DIM enables the extraction of

non-local spatial information in the earlier layers of LeDIM-

net without increasing the network parameter complexity.

Specifically, the proposed approach can achieve a receptive

field of lD elements at its lth layer compared to that of

l+1 elements in LeNet-based CNN [18]. Hence, the proposed

LeDIM-net can avoid the need of appending additional convo-

lution layers to the CNN in [18] to obtain a larger receptive

field. While the network complexity increases in terms of

floating point operations, we note that the network parameter

complexity does not increase with M .

The proposed architecture can easily be extended to M

channels since each function {fl(·)}l=1,...,7 in (5) generates

output feature maps with the same spatial resolution as its

input feature maps, i.e., f1(·) : R2×M×M → R128×M×M .

This is achieved by padding the input features with zeros

before the convolution operation in {fl(·)}l=1,2,3. With this

structure, the spatial resolution is preserved throughout the

neural network, and the architecture of the proposed LeDIM-

net can therefore operate with R̃y for arbitrary M .
To train the parameters of the LeDIM-net, we employ a

mean squared error (MSE) as the loss function via

LMSE(R̂,R) =
1

2M2

2∑

q=1

M∑

j=1

M∑

i=1

(
R̂(q, j, i)−R(q, j, i)2

)
,

where LMSE(·) is the MSE function, R =
[
R

(
A(r, θ)AH(r, θ)

)
, I

(
A(r, θ)AH(r,θ)

)]
∈ R2×M×M , q, j, and i

are indices for the real-imaginary composite, row, and

columns of the covariance matrices, respectively. It is

worth noting that we do not impose the Toeplitz property

when estimating the noise-free SCM by using the proposed

LeDIM-net. This allows the proposed neural network to have

the potential to be extended to other array configurations that

cannot leverage the Toeplitz property.

IV. SIMULATION RESULTS

A. Training and testing dataset

To train the proposed LeDIM-net, we simulate a dataset

DM with 500, 000 training, and 50, 000 validation data points

for each M ∈ [4, 6, 8]. A ULA with r = 0.5 wavelength

is employed. Each data point in the dataset has T = 256
snapshots and K = 2 angles uniformly generated from

[−60◦, 60◦] with SNR uniformly generated from −15 dB

to 5 dB. For each data point, the angle between sources in

the datasets is at least 2
3 × θ3dB apart, where θ3dB denotes

the halfpower beamwidth. For testing, we generate 10, 000
testing samples for each M ∈ [4, 6, 8], and scale its SNR∈
[−12,−9,−6,−3, 0] dB.

B. Baselines and training hyperparameters

Due to the limitation of LeNet-based CNN employed

in [14], which has been designed explicitly for M = 4,

we added two additional convolutional blocks resulting in

M = 6 and 132k additional network parameters (36%
increase), and four more resulting in M = 8 and 264k

additional network parameters (72% increase). This extension

is similar to the architecture described in [18]. For clarity, we

denote the LeNets following its number of layers as LeNet-7,

LeNet-9, and LeNet-11 which are trained using D4,D6 and

D8, respectively. For the proposed LeDIM-net, we employ

D = 4, batch normalization layer [23], and Leaky ReLU

as activation [24]. One LeDIM-net is trained for each DM

without modification to its architecture.
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Fig. 4. The RMSE-SNR performance curve of the proposed LeDIM-net, LeNets, and Root-MUSIC for (a) M = 4, (b) M = 6, and (c) M = 8.

For updating the LeDIM-net and LeNets parameters, we

employed Adam [25] with an initial learning rate of 0.001.

The learning rate is subsequently halved after the validation

root mean squared error (RMSE) of its DOA plateaus for five

epochs. We set a batch size of 256 and trained each network

for fifty epochs. The loss objective of LeNets is the MSE

between the estimated and the actual row vector of the noise-

free SCM [14]. As such, for a fairer comparison between

LeNets and LeDIM-net, instead of using validation loss to

select the best parameter from each model for testing, we

used the lowest validation RMSE of its estimated DOA. It

is important to note that both frameworks employ the same

input space and Root-MUSIC to achieve source DOAs.

C. DOA estimation

The test performance of the gridless framework with the

proposed LeDIM-net is compared with Root-MUSIC and

the LeNets with Toeplitz property [14]. The RMSE results

are plotted in Fig. 4 for different SNRs. The number of

network parameters associated with each network is plotted

in Fig. 3. The proposed LeDIM-net generally outperforms the

LeNets for M ∈ [4, 6, 8] and SNR ∈ [−12,−9,−6,−3, 0] dB

despite employing the same number of parameters. This

result highlight that the proposed approach can be extended

to different M without an increase in network parameters.

Notably, both LeNets and LeDIM-net suffer from modestly

lower performance than that of Root-MUSIC at SNRs of

−3 dB and 0 dB. This result is consistent with that in [14],

and is attributed to artefacts being introduced to the estimation

of the noise-free SCM at higher SNRs.

D. Effectiveness of dilated inception modules

To compare the efficacy of the dilation in the proposed

LeDIM-net, we perform an ablation study where the standard

convolution is employed, i.e., D = 1. We then compared
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Fig. 5. The RMSE performance curve of the proposed LeDIM-net (D=1,
D=4), and Root-MUSIC for (a) M = 4, (b) M = 6, and (c) M = 8.

its performance with that of D = 4. Here, it is important

to note that LeDIM-net with D = 4 and D = 1 requires the

same number of network parameters. Fig. 5 illustrates the test

RMSE results. Since LeDIM-net with D = 4 can capture non-

local spatial information and a larger receptive field at each

layer, it achieves a lower RMSE than LeDIM-net with D = 1.

It is useful to note that LeDIM-net with D = 1 outperforms

Root-MUSIC by 21.7%, 34.1%, and 40.4% in terms of RMSE

for 4, 6, and 8 sensors elements, respectively.

V. CONCLUSION

We propose a LeDIM-net-based gridless DOA estimation

algorithm that can be extended for a ULA with different

sensor elements without increasing the neural network pa-

rameter complexity. Specifically, the proposed LeDIM-net in

the framework maintains the spatial resolution throughout its

network to extend to a different number of sensor elements.
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Further, to avoid increasing the network parameters with an

increasing number of sensor elements, the proposed LeDIM-

net employs a range of dilation at earlier layers to exploit non-

local spatial information. Simulation results indicate that the

proposed approach outperforms existing LeNet-based CNN

and Root-MUSIC algorithms.
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