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Abstract— Specific emitter identification technology aims to 
identify the signal emitted by a specific emitter from multiple 
signals. Existing techniques for specific emitter identification 
are faced with the problem that the identification performance 
decreases with the passage of time. In this paper, we propose a 
method for specific emitter identification at different time. The 
method treats the signals of radiation sources at different time 
as signals of separate domains, and resolves the influence of 
time on specific emitter identification by eliminating the factor 
of different domains. The experimental results show that the 
method has better performance on both data corresponding to 
the time involved in training and data corresponding to the 
time not involved in training compared with both domain-free 
migration and ordinary domain migration methods. At the 
same time, the proposed tagging flexible loss function is more 
efficient in the face of new time tag free data.  
Index Terms: Specific emitter identification, Domain migration, 
Convolution Neural Network, Radiation fingerprint 

I. INTRODUCTION 

Specific emitter identification is the technology to match 
the electromagnetic characteristics of the radiation source 
with the individual radiation source. Due to the difference of 
hardware equipment technology and nonlinear components, 
the electromagnetic signals emitted by the same type of 
equipment produced by the same manufacturer are slightly 
different. Therefore, unknown radiation sources can be 
individually identified by the subtle characteristics of 
different radiation sources. The subtle characteristics of 
radiation source signal can be divided into transient 
fingerprint feature and steady fingerprint feature. 

Traditional specific emitter identification mainly focuses 
on the extraction of transient features. Existing methods 
include transform domain processing of the original 
transient signal [1], and the instantaneous amplitude, phase 
angle, power, transform domain coefficient and other 
parameters of the transient signal are taken as fingerprint 
characteristics [2,3,4]. There are also single feature methods 
for single domain feature of signal or one-sided 
measurement of signal, including feature matching of pulse 
envelope front [5], high-order moment characteristics of 
pulse impulse envelope front [6], Empirical Mode 
Decomposition based on Empirical Mode Decomposition 
(EMD) method for extracting stray features [7], feature 
optimization based on fuzzy function [8] and based on time 
spectrum singular value and singular vector [9], etc. 
However, the features extracted by traditional radiation 

source specific recognition methods are relatively simple 
and one-sided, which makes it difficult to effectively and 
completely characterize the individual information of 
radiation sources and achieve the classification of radiation 
sources. 

Deep learning can effectively extract steady-state 
fingerprint features of radiation sources because of its 
powerful feature extraction and nonlinear fitting capabilities. 
There are methods of sending three-dimensional images 
composed of traditional features into deep convolutional 
neural network (CNN) for classification [10], methods of 
directly using three-layer neural network to identify radar 
signals [11], and methods of radar radiation source 
recognition based on fuzzy ARTMAP neural network 
integrating two neural networks [12]. 

At present, the individual identification algorithm based 
on deep learning has high accuracy in the identification of 
radiation source signals which in the same time period. 
However, the subtle characteristics of the radiation source 
will vary over time, which leads to the poor performance of 
the existing algorithms in identifying the radiation source 
signal at different time from the training data. And the 
longer the time spins, the lower the recognition accuracy of 
existing algorithms. 

To address the problems above, we proposed a cross-time 
specific emitter identification method based on multi-
domain transfer learning, which can realize the specific 
emitter identification quickly and accurately, and can 
effectively address the problem that the radiation source 
identification accuracy decreases greatly with time. We 
apply the instance - based transfer learning algorithm in 
transferring learning to radiation source identification and 
improves it. Instance migration learning algorithm based on 
how the source domain and target domain confusion 
together, thus using the model obtained from the source 
domain training can also be used for the recognition of the 
target domain, generally move for only two areas namely 
source domain and target domain. Multi-domain transfer 
learning proposed by us takes the constant changes of the 
fingerprint of the radiation source into account, and regards 
every radiation source signal in each time period as a data 
domain. The ultimate goal is to ensure that the model 
performs well in each domain through comprehensive 
training in several existing fields.  

Our contributions of the proposed method can be 
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summarized in the following two folds: 
1. We propose a cross-time specific emitter identification 

method based on multi-domain transfer learning (see Fig. 1),  

 
Fig. 1   Cross-time specific emitter identification framework. 

which takes the radiation source signal in each time period 
as a data domain. By mixing different data fields, the 
influence of the characteristics of the radiation sources 
changing with time on specific emitter identification is 
eliminated. 

2. we propose a label flexibility loss function and 
combine it with the maximum mean discrepancy (MMD) 
loss [13] to form a multi-domain combined loss function. 
Our experiments show that the proposed combining loss can 
better deal with the time-varying fingerprint of radiation 
sources in real data than the non-domain migration and 
traditional domain migration methods. 

II. RELATED WORK 

In this section, we will briefly introduce related 
technologies and methods in two aspects: deep learning 
methods for specific emitter identification and transfer 
learning. 

A. Deep learning methods for specific emitter 
identification 

Deep learning proposes a method for computer to 
automatically learn pattern features, and integrates feature 
learning into the process of model building, which can 
reduce the imperfection caused by artificial design features, 
skip the stage of manual design of fingerprint features, and 
save a lot of scientific research costs. In addition, the deep 
learning method characteristics of data compression in the 
form of greed dream step by step, can make the final extract 
fingerprint characteristics have lower dimensions, in low 
dimension characteristics of effective characterization of 
individual communication source at the same time also can 
dock with the traditional classifier and general, solves the 
problem that common classifier can't complete use of the 
fingerprint characteristic information. 

Shamnaz Riyaz[14] used the deep convolutional network 
to realize the reliable specific emitter identification, and 
compared the performance of support vector machine and 
logistic regression method, proving the effectiveness of 
convolutional neural network in identifying individual 
radiation sources. Qingyang Wu[15] uses Long short-term 

Memory (LSTM) in Recurrent Neural Network (RNN) to 
effectively capture the long-term and short-term hardware 
characteristics of radiation sources. It is proved that LSTM 
architecture has high detection accuracy for individual 
identification of radiation source. Yiwei Pan[16] proposed 
an individual identification method of radiation sources 
based on Deep Residual Network, and demonstrated that 
compared with CNN Network, Deep Residual Network has 
lower computational complexity and better individual 
identification performance. Compared with traditional 
methods for individual identification of radiation sources, 
the method proposed in this paper can adapt to the changes 
of radiation source fingerprints over time, thus significantly 
improving the stability of individual identification of 
radiation sources. 

B. Transfer learning 
Traditional machine learning methods usually assume that 

training data and test data have the same distribution. 
However, in the practical application, the change of channel 
environment and various disturbances leads to frequent and 
unpredictable changes in data. The emergence of transfer 
learning breaks through the limitations of traditional 
machine learning. Despite the difference in data distribution 
between source domain and target domain, the knowledge of 
source domain can still be used to train the classification 
model of target domain [17]. Generally, existing knowledge 
is called source domain, and new knowledge to be learned is 
called target domain. The core idea of transfer learning is to 
realize the reuse and transfer of knowledge between related 
fields by virtue of experience and ability acquired in 
auxiliary domain [18].  

Deep transfer learning methods can be described from 
three aspects: feature extraction, fine-tuning network and 
building a new learning framework. In 2014 PRICAL 
Conference, DaNN[19] proposed that the characteristic of 
this network is the MMD adaptation layer after the feature 
layer, which calculates the RKHS spatial distance between 
the source domain and the target domain and optimizes its 
loss. The main idea of DDC[20] method is to fix the first 
seven layers and add MMD metric in front of the classifier 
layer to realize the transfer learning of deep network. DAN 
network [21] adopted MK-MMD, combined with the idea of 
multi-core, which has stronger characterization ability and 
achieved better classification effect. In the 2017 ICML 
conference, JAN[22] proposed the method of extending the 
adaptive method of data to the adaptive method of categories, 
and proposed the JMMD (Joint MMD) metric. In addition, 
due to the development and superiority of generative 
adversarial network GAN[23], research on the transfer 
learning method based on generative adversarial network 
has also made some progress [24][25][26]. Compared with 
the common domain adaptation method, this paper treats the 
changes of radiation source fingerprints with time as 
different data domains and performs domain adaptation on 
an infinite data domain, which is more adaptable to the 
changes of domains. 
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III. PROPOSED METHOD 

Most of the existing methods for specific emitter 
identification can only identify the signals of radiation 
sources at similar time, but the recognition accuracy of the 
signal with a long-time span is low or even cannot be 
recognized. Motivated by transfer learning methods like [22], 
we propose a time-independent method for specific emitter 
identification, in which the signals of radiation sources at 
different time are regarded as different signal domains, and 
the individual recognition system of radiation sources is not 
affected by time through domain adaptation method. 

In addition, our system is equipped with a specially 
designed combined loss function, which has been 
experimentally proved to be more efficient in the 
identification of time-related radiation sources signals. 

A. The Proposed System 
In the specific emitter identification system of the 

proposed method ， a time-independent radiation source 
fingerprint extraction network is used as feature extraction. 
The temporal IQ signal of the radiation source is processed 
by carrier frequency shifting, filtering and variable sampling 
rate. The processed signals are then input into the time-
independent fingerprint extraction network to generate the 
128-dimensional fingerprint feature vector of the radiation 
source. After that, the fingerprint feature vector of the 
radiation source is passed through the separation layer and 
then input into the individual classification layer of the 
radiation source to obtain the final identification result. 

In the feature extraction, we used multiple residual 
modules in tandem [27] and reduced dimensions at the same 
time, and used the SwitchNormalization layer to ensure the 
stability of the feature extraction network (see Fig. 2). The 
feature extraction network is composed of two convolution 
layers and four residual modules, each of which contains 
three convolution layers and hops between input and output. 
The classification layer consists of a fully connected layer 
and equipped with Sigmoid activation, and each other layer 
of the model is equipped with P-Relu activation. 

 

Fig. 2   Network structure diagram. 
It's important to note that, in order to make the result not 

affected by the time domain, loss constraint should be added 
to the feature vector, but there is still inconsistency between 
feature loss and classification loss in training optimization. 
In terms of loss value, it is very likely that classified loss 

will always decrease while feature loss will increase first 
and then decrease. The optimization process of the two will 
affect each other, making the final result learned not optimal. 
Therefore, we proposed to add BNNECK layer between 
feature extraction network and classification layer, and its 
formula is: 

 
Where lx represents the feature graph at layer l of the 

network, ( )lE x and ( )lVar x represents the mean and variance 

of the feature graph respectively, and α and β represent 
learnable parameters to adjust the distribution of features 
after BNNeck. Because BNNeck smoothed the optimized 
inconsistencies between the two losses, the learned 
embedding layer clustering characteristics are better, and 
thus has better performance in the process of test inference 
identification. 

B. Combinative Loss Function 
MSE is the commonly used loss function in specific 

emitter identification, and MMD is the commonly used loss 
function in transfer learning. Although simple combination 
of them can have some effects, they cannot deal with the 
lack of data's label in the new time period. Considering this 
inevitable situation, we proposed a multi-domain and 
flexible labels(MDFL) loss function for specific emitter 
identification. The loss function is composed of domain 
adaptation and individual prediction: 

 
1λ  =0.2 and 2λ =0.8 are the weights values of the two 

branches loss respectively. FL MSEL −  is the individual 

recognition loss function improved from MSE, and FL MMDL −  
is the time domain adaptation loss function improved from 
MMD. 

Data labels consist of two parts: individual labels and time 
labels. Time labels are easy to obtain at the time of 
collection, but individual labels are often difficult to obtain. 
For data that has only a time label but no individual label, its 
individual label is treated as None. Based on this, FL MSEL −  
can be written as: 

 
When the individual label is None, it is ignored when 

calculating the classification Loss function. 

FL MMDL −  is a parameter to examine the mixing degree of 
signals from different time periods, which requires the 
feature vectors of the two signals. During the signal 
combination of two different time periods, if both signals 
have individual labels, the two signals are required to be the 
same individual. If there are signals without individual 
labels in the two signals, the individual of the signal pair is 
not required. The expression is as follows: 
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Where 1aF  and 2aF  represent the feature vectors of 

individual a, 1F  and 2F  represent the feature vectors of any 

individual, and 
Η

 represents the distance between two 
vectors in Hilbert space. 

In this way, the improved loss function can not only make 
full use of the signals with individual labels, but also make 
use of the signals without individual labels on the basis of 
ensuring the completion of individual identification and time 
domain adaptation. 

IV. EXPERIMENT 

A. Experimental setup 
The AD signals collected by 16 different radio stations 

from April 25 to May 05, 2022 and May 24 to 27, 2022 were 
used as data sets. Specifically, the data collected on April 25, 
26, and 27 in 2022 are used as the original data set, and the 
data collected on April 28, 29, and 30 in 2022 are used as 
the unlabeled data set. All radiation sources are FM radio 
stations, and multiple signal samples are generated in each 
time period of each radiation source (the received signals are 
all received under actual conditions, so the SNR of each 
signal sample is a random value under actual conditions), 
and 7,346,500 signal samples are finally obtained. The 
length of all samples was 8192 sampling points, which were 
divided according to 9:1 to obtain the data of training set and 
test set. During the training, only the original training data 
set and the unlabeled training data set were involved in the 
training, while the data at all times were involved in the test. 
To verify the model, we respectively set up not using the 
migration method of controlled trials (using the original 
training set for training only) and the use of a conventional 
migration method of controlled trials (the original training 
set as the source domain, no labels training set as the target 
domain to migrate training), so as to verify the model of the 
radio signal recognition effect after across time. Each 
method was trained with 100 epochs, and the initial learning 
rate was set to 1e-5. 

B. Experimental results 
We conducted comparative tests between the 

experimental group and the two control groups in all time 
data, and the results were shown in Figure 3.  

 

Fig. 3   Effect comparison of different methods at different times  
The horizontal axis in Figure 3 represents the different 

times tested. On the same horizontal axis, the blue bar chart 
on the left corresponds to the control group without the 
migration plan, the orange bar chart in the middle 
corresponds to the control group using the traditional 
migration plan, and the gray bar chart on the right 
corresponds to the multi-domain migration method. The 
vertical axis represents the recognition accuracy of different 
training methods at different times.  

It can be seen from Figure 3 that there is little difference 
in the accuracy of the three groups at the corresponding time 
of the original test set, because there is label training at these 
times. However, in the unlabeled test set and subsequent 
time, the recognition accuracy of the control group without 
transfer learning decreased significantly, while that of the 
multi-domain transfer method did not decrease significantly. 
At the same time, the experimental group of multi-domain 
migration method is obviously better than the control group 
of traditional migration scheme without label. The above test 
experiments show that the proposed multi-domain migration 
radiation source identification method can complete the 
identification task of different radiation sources. The longer 
the time span between the identified data and the training 
data, the better the performance of the proposed method 
compared with the traditional method. On data with partial 
dates, the non-domain adaptation method performs better 
than the traditional domain adaptation method. The reason 
for this may be that the traditional domain adaptation does 
not have enough precision when matching the unlabeled data 
to the labeled data for adaptation, thus having a negative 
optimization effect on the model. 

When only the data of April 25 is used with labels, the 
corresponding feature map of the data of May 5 after 
training without the domain adaptation method is shown in 
Figure 4. 
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Fig. 4   Feature map of May 5 without domain adaptation training  
When only the data of April 25 is used for labeling, the 

corresponding feature map for May 5 after training using 
multi-domain adaptation is shown in Figure 5. 

 

Fig. 5   Feature map of May 5 using multi-domain adaptation training  
What can be clearly found is that the data of May 5, 

which is not involved in the training and has the largest time 
span with the training time, can be more clearly 
distinguished from the characteristics of the individual 
radiation sources after the multi-domain adaptation is 
applied. 

V. CONCLUSIONS 

We propose a method for specific emitter identification 
based on multi-domain transfer learning, which emphasizes 
the mixing of signals at different time of the radiation source 
with the multi-domain transfer learning method, so that the 
specific emitter identification will not be affected by its 
fingerprint changes with time. In addition. We design a 
combined loss function to give full play to its capability. A 
large number of experiments show that this method can 
achieve high recognition accuracy in radiation source 
identification, and solve the problem that the recognition 
accuracy of traditional individual radiation source 
identification method decreases greatly with time, and 
simplifies the complex data preprocessing of traditional 
method, and retains more original signal information.In the 
future, we will continue to explore and address other factors 
that affect the effectiveness of specific emitter identification 

to significantly improve the stability of specific emitter 
identification. 
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