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Abstract—The muscle-skeleton body structure and learning

ability allow natural creatures to adapt to the complex environ-

ment. These can also make robots more adaptive in human-robot

interaction scenarios. In this work, we implement a humanoid

muscle-skeleton robot elbow joint actuated by two antagonistic

pneumatic artificial muscles (PAMs). A reinforcement learning

algorithm based on soft actor-critic (SAC) is adopted to learn

the control policy of the proposed elbow joint. Lower action

space and hindsight experience replay (HER) further reduce

training time, and the temperature factor is fixed during the

training process for small steady-state error. An elbow model is

implemented in the simulation to verify the training procedure

for our real robot elbow platform. The experimental results show

that the RL learning procedure can learn control policies in the

robot elbow prototype, and the steady-state error is within 0.64%

after 1 s of control time.

I. INTRODUCTION

In the past few decades, humanoid robots have received
more and more attention in the robot research field. Compared
with traditional robots, the ability to use tools and infras-
tructure designed for humans makes humanoid robots more
flexible in human-robot interaction environments.

Currently, most robots are actuated by electric motors, while
some inherent characteristics of the motors restrict further
development of the robot design. For example, low power-
to-weight ratios of electric motors result in a large mass,
making it dangerous in a collision when high stiffness control
performance is desired [1]. Besides, the motors installed on
the joint rotation axis lead to an unnatural appearance.

Inspired by the muscle-skeleton system of natural creatures
living in complex and variable environments, we want to
implement a muscle-skeleton robot with skeleton links and
pneumatic muscles. PAMs share a similar appearance and
character with bionic muscles, and the muscles produce trac-
tive force through an axial contraction when the pressures are
applied. The PAM’s high power-to-weight ratio significantly
reduces the robot’s inertia. Robots driven by PAMs show
more natural appearances due to the similar driving method
to biological creatures. In addition, PAM provides compliance
even after applying pressure due to the air compressibility,
which can reduce the impact force in collisions [1].

Except for the muscle-skeleton body structures and appear-
ance, continuously evolving motor skills also play a crucial
role for natural creatures. Therefore, a humanoid robot elbow
not only shares a similar struct and appearance with humans

but also has similar evolving body control skills. Existing
humanoid pneumatic robots, like the 7 degree-of-freedoms
(DoFs) robot arm actuated by antagonistic PAMs in [2] and
[3], stuck on traditional PID control or reproducing postures
via fix pressure sets.

The applications of reinforcement learning (RL) algorithms
in robotic fields have achieved tremendous success, like dex-
terous manipulation [4], Ball-in-a-Cup[5] and locomotion[6].
RL algorithms enable robots to learn policies for specific tasks
by exploring environments, and this kind of learning ability is
an indispensable part of humanoid robots.

In this paper, we implement a 1-DoF joint with a similar
structure to the human elbow, and the RL algorithm is adopted
to control the proposed robot elbow.

Our robot elbow consists of skeleton links and two antago-
nistic PAMs. 3D printed joint and carbon fiber tube construct
the skeleton links, and the contraction of PAMs leads to the
movement of the joint. The RL algorithm based on SAC [7]
is adopted to learn a control policy for our robot elbow. We
have demonstrated that RL can be used to control a muscle-
skeleton robot arm in the simulation environment [8]. However,
the algorithm still requires a large number of data to obtain the
optimal policy. Reducing the environment complexity is vital
for real robot control applications.

The main contributions of this paper are two folds. The
first is the construction of a humanoid muscle-skeleton robot
elbow actuated by PAMs, and the second is an RL learning
framework for controlling the proposed joint. The rest of this
paper is organized as follows: A survey of related works about
robot arms driven by PAMs and off-policy RL algorithms is
presented in Section II. The design and implementation of
the robot elbow and RL learning procedure are illustrated in
Section III. Experimental results are presented and discussed
in Section V, and conclusions are summarized in Section VI.

II. RELATED WORKS

A. Pneumatic Robot Arm

While there have been many research attempts about pneu-
matic robots, our literature review mainly focuses on humanoid
robot arms driven by PAMs.

Pneumatic humanoid robots can be grouped into two cate-
gories based on their muscle configurations: antagonistic and
humanoid configurations. For the robot arms with antagonistic
muscle configuration, every DoF is actuated by a pair of
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antagonistic PAMs. This muscle configuration leads to an easy-
to-control structure because of the decoupling DoFs.

Tondu[2] designed a 7-DoFs robot arm actuated by an-
tagonistic PAMs, which share a human-like appearance and
joint range. ISAC[9] consisted of two 6-DoFs arms with
antagonistic PAMs. Encoders installed on the arms provided
angle feedback while the target object was located via vision.
Subsequently, a hyper controller was developed for ISAC[10].
A neural network was first adopted to bring the end-effector
into the neighborhood of the target object, and then PID control
with non-contact impedance was employed for precise position
control. Shin[1], [11] implemented a hybrid actuation for a
2-DoFs arm. The combination of PAMs and small on-joint
electrical motors significantly improved control performance.
Andrikopoulos[12], [13] designed a 10 DoFs two-arm robot,
and antagonistic PAMs drove all joints. ANPID was adopted
for joint angles feedback control, and the whole two-arm robot
weighs only 7.32kg.

For the robot arms with humanoid muscle configuration,
each joint may contain multiple DoFs and was driven by
redundant muscles similarly arranged to human muscles. These
robot arms are more humanoid in appearance and function, but
they are much more complex to control than their antagonistic
muscle configuration counterparts.

To control the posture of a 7 DoFs robot driven by 17
humanoid arranged PAMs, the desired internal pressures or
axial tensions of the PAMs were calculated for reproducing
posture from the teaching phase [3]. Ikemotot[14] proposed a
robot arm actuated by 25 PAMs, where the mechanical struc-
tures of the shoulder joint achieve larger ranges of movement.
And fixed sets of desired pressures were provided to generate
motions. While in [15], this shoulder joint was controlled by
an input signal converted from the surface electromyogram
signals, based on the muscle placement similar to human
anatomy.

Kengoro in [16] was a full-size musculoskeletal humanoid
robot driven by 116 PAMs, and it shared similar body propor-
tions, joint DoFs as well as muscle arrangement with humans.
A PID controller was employed for tension and length control
of each muscle. Hitzmann introduced a 10-DoFs humanoid arm
with metal, carbon fiber skeleton, and 28 PAMs with tension
sensors [17]. Pressure and tension sensors’ feedback combined
with motion tracking information were used to train a neural
network for forward and inverse kinematics. The robot arm
mentioned above had mature mechanical structures. However,
there was no sophisticated control method due to the coupling
between DoFs and muscles.

B. Reinforcement Learning Algorithm

An RL agent learns desired policy by interacting with the
environment, which can solve complex non-linear problems.
Here we focus on sample-efficient off-policy RL algorithms
due to the limitations of data collection in real robot platforms.

DDPG, an off-policy RL algorithm proposed by Lillicrap,
introduced neural networks to DPG, and utilized target net-
works and replay buffer to ensure the stability of the training

process [18]. In [19], multiple value networks were adopted to
alleviate the overestimation of the value function, combined
with delaying policy update to improve performance further.
RL algorithms mentioned above aim for optimal deterministic
policy, while the deterministic policy is brittle with respect to
the environment parameters. To obtain a more robust policy,
the maximum entropy RL methods maximize the cumulative
discount reward and an entropy term, leading to policies that
can solve tasks while acting randomly. SAC was a maximum
entropy RL algorithm that could handle high dimension input
and continuous, in which multiple value networks and delayed
policy update from TD3 were adopted [20]. In [7], Haarnoja
implemented automatically tuning of the temperature hyper-
parameter for training stability.

Replay buffer was an essential part of off-policy RL algo-
rithms. Schaul developed prioritizing replay buffer, which sam-
ples important experiences more frequently [21]. Moreover,
Andrychowicz proposed hindsight experience replay (HER),
which augmented the replay buffer for increasing learning
speed in sparse and binary reward tasks [22]. We have
demonstrated that the RL method can learn control policy for
humanoid robot arms with biological muscle configuration in
simulation environment[8]. In this work, we will apply the RL
method to our designed muscle-skeleton elbow joint platform.

III. SYSTEM CONFIGURATION

This section introduces our humanoid muscle-skeleton robot
elbow joint platform and the policy learning framework. PAMs
drive the elbow joint and can achieve similar movement ability
as the human elbow joint. The outline of the system is shown
in Fig. 1. First, the hardware platform of the muscle-skeleton
robot elbow is proposed, including the design of the joint
and air supply of the muscles. Then, we introduce the control
framework based on SAC, where HER is employed to reduce
training time.

A. Robot Elbow Implementation and Muscle Configuration

As we aim to implement an easy-to-control humanoid robot
arm, several guidelines are followed. First, the designed robot
elbow should have a similar movement ability to the human
elbow joint. Then, sliding friction should be avoided to reduce
the possibility of damage. Moreover, encoders should be
installed at every DoF to provide feedback signals for the
control system.

The human elbow joint can be treated as a single DoF hinge
joint. Four bearings are adopted for smooth movement, and the
encoder is fixed on the rotation axis. The joint’s movement
range is 0 ⇠100�. Carbon-fiber tubers are used as skeletons,
and two Festo PAMs are fixed on the skeleton. Non-elastic
and durable Dyneema acts as biological tendons that connect
muscles and joint.

B. Air Pressure Control System

The air supply system, marked as red arrows in Fig. 1,
consists of an air compressor, a reducing valve, and two
proportional valves (ITV2030-212S-X154, SMC). The air
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Fig. 1. System of the humanoid muscle-skeleton robot elbow.

compressor provides compressed air of 0.7 MPa, and the
proportional valves regulate the air pressure according to the
control commands before actuating the PAMs. The input signal
of the proportional valves is a voltage analog signal between
0 ⇠ 5 V, corresponding to 0.005 ⇠ 0.5 MPa output air
pressure. The proportional valves can also output a voltage
analog signal between 1 ⇠ 5 V, indicating current output air
pressure.

Blue arrows in Fig. 1 represent electric signals. After the
control policy inferencing muscle supply air pressure accord-
ing to system observation, an Arduino Mega 2560 board
receives valve control commands and sends them to a DAC
board via SPI. The DAC board output control voltage to the
proportional valves to change muscle supply air pressure.

Due to the antagonistic configuration of the PAMs, we use a
single control variable for the pressure of both PAMs to reduce
the complexity. The control signal is between �1 ⇠ 1, and the
supply pressures are

(
P1 = P1,0 +�P

P2 = P2,0 ��P
(1)

where P1, P2 are the pressures of the PAMs, and P1,0 =
P2,0 = 0.25 MPa is the initial air pressure. �P is as follows:

�P = � · c (2)

where c is the control signal and � = 0.25 is a scale factor.

C. Reinforcement Learning Training Framework

An RL agent learns optimal policy of Markov decision pro-
cess (S,A, p, r) via interacting with the environment. S is state
space, A is action space, p is state transition probability and
r is reward. A maximum entropy optimal policy is obtained

through maximizing cumulative discount rewards augmented
with an extra entropy term:

⇡⇤ =argmax
⇡

1X

t=0

E(st,at)⇠⇢⇡

" 1X

l=t

�l�tEsl⇠p,al⇠⇡[r (st,at)

+ ↵H (⇡ (· | st)) | st,at]

#

(3)
where ⇢⇡ is the state-action marginal of the trajectory dis-
tribution under the policy ⇡, ↵ is the temperature parameter,
and � is the discount factor. The extra entropy term makes
the learned policy inferences actions as random as possible
while solving the task, which encourages exploration during
the training stage and shows better robustness in the face of
environment drift and observation errors.

As for the control system, we want the learned policy to
control our designed arm to given positions. That is, given the
current state of the elbow and target elbow angle, the control
policy outputs pressure values of corresponding muscles, and
the muscles drive the elbow joint to reach the target joint angle.
Therefore, we adopt SAC to obtain such a control policy.
SAC is a maximum entropy off-policy actor-critic algorithm
that utilizes an experience replay buffer, target networks,
and double value network for stable and fast training. We
recommend [7] for more details about SAC. The objective of
updating the policy is

J⇡(�) = Est⇠D
⇥
Eat⇠⇡� [↵ log (⇡� (at | st))�Q✓ (st, st)]

⇤

(4)
where D is replay buffer storing environment transition tuples,
⇡� is current policy with parameters �, Q✓ is the action-value
function with parameters ✓. The action-value function Q can
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Algorithm 1 SAC with HER
1: Randomly initialize network Q✓(s, a), ⇡�(s), initialize

target network Q✓̄(s, a) with weights ✓̄  ✓
2: Initialize replay buffer R
3: for Episode = 1, M do

4: Reset environment and receive observation s0
5: Reset path buffer P
6: for Step = 1, T do

7: Sample action at ⇠ ⇡�(at|st)
8: Execute action at, receive reward rt and next

observation st+1

9: Store transition (st, at, rt, st+1) in P

10: end for

11: Store transitions and HER augmented transitions in R

12: for Update = 1, U do

13: Update Q✓(s, a) according to Eq.5
14: Update ⇡�(s) according to Eq.4
15: Update target network ✓̄  ⌧✓ + (1� ⌧)✓̄
16: end for

17: end for

be trained though minimize

JQ(✓) =E(st,at)⇠D


1

2

�
Q✓ (st,at)� (r (st,at)+

� (Q✓̄ (st+1,at+1)� ↵ log (⇡� (at+1 | st+1))))
�2
�

(5)
where Q✓̄ is the target action-value network with parameters
✓̄.

HER is a data augmentation method for off-policy RL algo-
rithm using replay buffer. For the environments where specific
goals need to be achieved, like a robot arm reaching a given
position, HER samples new goals from future states in the
trajectory and combines new goals with original states to form
a new transition tuple. HER increases data accumulation and
further accelerate the training process. Our training algorithm
is described in Alg. 1.

Each episode has a data collection phase and a network
updating phase. In the data collection phase, after sampling a
new target angle from the joint movement range, the policy
outputs control action according to current observation. Then,
the action is executed on the pneumatic elbow platform, and
the learning agent receives the reward and the next observation.
This process repeats until the episode finish. The collected
transitions are augmented via HER and stored in the replay
buffer. In the network updating phase, policy and action-value
networks are updated according to their objectives. After that,
the target network is ‘soft’ updated.

Observations include current joint angle and angular veloc-
ity, action from the last step, and target joint angle. These give
rise to a 4-dimensional vector. The joint angle and angular
velocity are normalized using history training data. Policy and
action-value networks are MLP with two hidden layers of 512
units and ReLU activation. And the output layer of the policy

Fig. 2. Muscle-skeleton elbow joint MuJoCo simulation environment (left) and
the robot elbow prototype (right).

was a tanh layer to bound the action between �1 ⇠ 1. And
the reward r is the clipped negative distance between current
joint angle ✓cur and target joint angle ✓tar

r =

(
�|✓tar � ✓cur| if � |✓tar � ✓cur| > �1

�1 other
(6)

In the training process, the max training episode is M =
1000. For each episode, we choose T = 40 and U = 80 as
the number of environment steps and the number of network
update per episode. HER augmented ratio is 1, which means
40 new transitions are generated per episode. The discount
factor � = 0.99, and the ‘soft’ update factor ⌧ = 0.01. We set
the temperature parameter ↵ = 0.002 instead of automatically
adjusting its value during the training process. There are two
reasons we directly fix the value of ↵: First, we find a fixed
value of ↵ can slightly speed up training in our experiments
as a single DoF joint leads to a plain environment. Second,
a small value of ↵ significantly reduces steady-state error.
The objective in Eq. 3 tries to maximize cumulative discount
rewards and an entropy term. If ↵ does not converge to a
small value, the entropy term will overwhelm the cumulative
discount rewards, and this leads to a non-neglectable steady-
state error.

IV. EXPERIMENTAL RESULTS

We test our robot elbow joint design and training procedure
in MuJoCo[23] simulation environment. Then, we build the
hardware platform of the robot elbow and evaluate the RL
control framework on the hardware platform. Policies are
trained and tested on a PC with 16 GB memory and an
NVIDIA 3080 graphics card.

A. Robot Elbow in Simulation Environment

To verify our RL learning procedure and find suitable
learning parameters for muscle-actuated robot elbow, we con-
ceptually implement our designed elbow joint in the MuJoCo
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Fig. 3. Fixed angle step response of the humanoid robot elbow in the
simulation environment and real platform.

TABLE I
AVERAGE STEADY-STATE ERRORS OF THE FIXED ANGLE STEP RESPONSE

Environment
Steady-state errors (⇥10�3 rad)

Times (s) 1 2 3 4
Simulation 2.60 2.07 1.98 1.98

Real platform 10.28 6.98 5.25 5.17

simulation environment as shown in the left Fig. 2. Since the
main purpose of using simulation is to establish a smooth
learning procedure, we directly utilize the muscle actuator of
MuJoCo rather than laboriously modeling Festo PAMs. In the
simulation environment, every control step is 0.1 s consisting
of 20 simulation steps.

In our experiments, we find that observations consisting
of current joint angle, joint angular velocity, and target joint
angle have enough information for training control policy.
Moreover, the temperature factor of SAC converges to around
0.005 during the training process. Control policy with such a
small temperature factor generally leads to a very small steady-
state error. We evaluate the control policy learned by the RL
algorithm in terms of fixed angle step response and tracking a
sinusoidal signal.

Seven target angles in the joint movement range are aver-
agely chosen for fixed angle step response. For each target
angle, the policy outputs 40 actions representing a control
time of 4 s, then the joint returns to the start angle of 0�

before evaluating the next target angle. Step response in the
simulation is illustrated in Fig. 3 as green dash lines. It is
shown that the rising time of all target angles is within 1 s
before stabilizing around the target angles. The average steady-
state errors of fixed angle step responses are illustrated in
TABLE I. We can say that the RL algorithm can learn a
policy that controls muscles to drive the elbow joint to fixed
target angles and achieve a neglectable steady-state error in
the simulation environment.

Subsequently, the dynamic performance of tracking a sinu-

soidal signal is tested. The sinusoidal signal has a mean of
0.8 rad, amplitude of 0.64 rad, and period of 3 s. For every
control step, the target angle is calculated according to the
current time, then the action inferred by the control policy is
executed in the environment. This process is repeated until the
end of the dynamic performance evaluation. In the simulation
environment, the current time for calculating the target angle
is obtained by considering every step lasting 0.1 s. As can be
seen from Fig. 4 (a) and (b), the dynamic error is within 0.05
rad after the joint successfully tracks the reference sinusoidal
signal. Moreover, the average error is 0.0168 rad after the first
period.

B. Robot elbow Prototype

Our robot elbow prototype is shown on the right of Fig. 2.
There are two major differences between the simulation and
the real platform. For observations, joint states can be read
directly in the simulation environment, while sensors must be
installed on our robot elbow prototype to receive feedback
information. An encoder is mounted on the joint rotation axis
for the joint angle signal, which can be further processed to
the joint angular velocity. The proportional valves can output
the pressures of each PAMs, but we found that pressure infor-
mation has no contribution to our experiments. Following the
training configuration mentioned in Section III, observations
are current joint angle, joint angular velocity, and target joint
angle. It is worth noting that action from the last control step
is also necessary on the real platform for stable training. The
temperature factor only converges to around 0.02 in the real
platform, which results in a non-negligible steady-state error.
So, we directly set the temperature factor to 0.002.

Like the simulated robot elbow, we also test the learned
policy in terms of step response and tracking sinusoidal signal
on our robot elbow prototype. As shown in Fig. 3, for step
response, all target angles have a rising time within 1 s, and
the elbow can stay near the target angle without oscillation.
The average steady-state error is in TABLE I. The steady-state
errors decrease with running time. We can see that the control
performance of the real robot elbow is deteriorated compared
with that of the simulated joint, and it is reasonable because
of the disturbances and uncertainty in the real environment.
Furthermore, the average steady-state error is less than 0.64%
after 1 s.

The results of tracking the sinusoidal signal are different
from that of the step response, as shown in Fig. 4. The average
tracking error is 0.0102 rad after the first period, slightly better
than the simulation one. It is reasonable since the dynamic
performance of the real platform is slightly better than that of
the simulation one.

V. CONCLUSION

In this paper, we present a single DoF robot elbow actuated
by a pair of antagonistic PAMs, and the control policy is
learned via the RL algorithm. The proposed muscle-skeleton
robot elbow consists of a 3D printing joint and PAMs where an
encoder is installed on the rotation axis to provide necessary
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(a) (b)
Fig. 4. Experiment results of the humanoid robot elbow in the simulation environment and real platform. (a) Tracking a sinusoidal signal. (b) The error of
tracking the sinusoidal signal.

information for the control system. The supply pressures of two
PAMs are controlled through a single variable to reduce system
complexity. Moreover, a modified RL training procedure base
on SAC and HER is proposed, where the temperature factor
is fixed to reduce steady-state error. Experiments show that
the training procedure can learn control policy both in the
simulation and real-world platform. And the control precision
of the fixed angle step response is within 0.64% after 1 s of
control time.
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