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Abstract—Medical imaging is an essential part of disease
diagnosis, which makes use of technologies such as X-ray,
Magnetic Resonance Imaging (MRI), Ultrasound scan, and many
more. X-rays are ionizing radiation and cannot be used for
frequent examinations, whereas MRI is non-ionizing, but it is
costly and time-consuming. Ultrasound scan is frequently used
in scanning and is noninvasive but suffers from the problem
of low image quality, which can lead to incorrect diagnoses.
The efficiency of these methods depends on how invasive, fast,
and accurate the imaging method is. Recently, a new method
called Photoacoustic Tomography (PAT) is gaining attention due
to its ability to produce images with high resolution and high
contrast in long penetration depths. A system matrix could be
developed from the pseudospectral matrix by evaluating it on
different time samples for different sensor locations. Compressive
Sensing (CS) algorithms can thus be developed using the system
matrix obtained, and their performance could be evaluated. CS is
based on how sparse the reconstruction could be. This is mainly
based on the regularizer used along with the prior information.
In this paper, we propose split Bregman formulation of isotropic
and anisotropic total variation with l1 and l2 regularization for
efficient PAT image reconstruction. The proposed methods have
better reconstruction efficiency in terms of computation time and
image quality while maintaining the sparsity. When evaluating the
various TV formulations for PAT image reconstruction, it is ob-
served that anisotropic TV-l2 is the most efficient one, generating
superior image quality and accomplishing the reconstruction in
less than 1 second, enabling quick medical imaging and early
diagnosis.

Index Terms—Total variation, Photoacoustic Tomography,
Compressive Sensing, Split Bregman, Cancer Detection

I. INTRODUCTION

Photoacoustic tomographic (PAT) imaging is a non-invasive
biomedical imaging technique based on the photoacoustic
effect utilized to obtain high-quality images at rapid speeds [1].
It is a significant technique for diagnosing morphological,
physiological, and biochemical anomalies in human systems.
In recent years, PAT imaging has made it possible for sev-
eral intriguing imaging applications, such as the detection of
hemoglobin, rheumatoid arthritis, functional brain imaging,
oxygen saturation detection, ocular imaging, small animal
imaging, and pre-clinical cancer diagnostics [2], [3].

In comparison to other functional imaging methods, photoa-
coustic imaging is exceptional in that it can access deep tissue
structures and generate images with higher resolution [4]

By finding the linear inverse, an image can be extracted from
a linear system. The least-squares (LS) or regularized LS so-
lutions can thus be used as a general method to approximately
solve a linear inverse. The solution can be rendered sparse if l1

regularization is used instead of l2 regularization. Sparsity is
crucial since it enables quick computation and dimensionality
reduction. Also, regularization avoids the problem from being
ill-posed and constrains it to have a unique solution.

The growth of compressive sensing (CS) theory has drawn
a lot of attention to l1 norm regularization. A new paradigm
in image processing called CS allows for the reconstruction
of images with fewer samples [5]. Both data compression and
sparse recovery have made extensive use of it. The benefits
of adopting CS include reduced memory storage, a higher
data transfer rate, a decrease in power consumption, and a
lower necessity for sensory equipment. Therefore, CS might
be used with PAT imaging to provide a high-resolution deep
tissue imaging system with reduced computational effort

In this paper, initially, anisotropic Total Variation (TV) and
isotropic TV for both l1 and l2 regularization are simulated and
compared with some existing CS algorithms for PAT image
reconstruction in terms of image quality and computation
time. TV algorithms has been widely used for denoising and
deblurring applications [6], [7], [8]. An analysis of weighted
difference regularization of TV model, and comparison of
difference of convex algorithms and Bregman iteration for
image denoising and deblurring is investigated in [9].

The paper is arranged as follows. An overview of CS
algorithms is provided in Section II. Section III describes the
details of the proposed TV algorithms. In Section IV, results
are discussed and a comparison of the proposed algorithms
with some existing CS algorithms is done. The paper is
concluded in Section V which also outlines future directions
for CS reconstruction research.

II. COMPRESSIVE SENSING

In PAT, the desired part of the tissue is heated using laser
pulses and the sound waves that propagate are captured using a
sensor [10]. The raw data (sensor measured data) is then used
for image reconstruction. Accurate model-based methods can
be utilized to efficiently reconstruct an image from the sensor
measurements using the pseudospectral method. It is suggested
to produce the same results as that of the k-Wave toolbox in
MATLAB [11]. A system matrix could be developed from
the pseudospectral matrix by evaluating it on different time
samples for different sensor locations, to obtain the sensor data
as
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y = Mx, (1)

where y ∈ RNsNt×1 is the measurement vector obtained,
M ∈ RNsNt×N2

in is the system matrix and x ∈ RN2
in×1 is

the image to be reconstructed (in vectorized form); Ns, Nt and
N2

in are the number of sensors, number of time samples and the
number of imaging grid points respectively [12]. CS algorithms
can thus be developed using the system matrix obtained, and
their performance could be evaluated. CS allows to reconstruct
an image from fewer samples and this sparsity is enforced
by using a regularization parameter with prior info. In this
section, different CS algorithms starting from Least-Squares
(LS) are discussed with l1, l2, and Total Variation regularized
LS problems. Some commonly employed CS algorithms are
listed as follows.

1) l2 regularized LS: An l2 regularized LS problem also
known as Tikhonov regularization [13], [14], is formu-
lated as

x∗ = min
x
∥y −Mx∥22 + λ ∥x∥22 , (2)

where λ > 0 is the regularization parameter. This type
of regularization can preserve edges when compared to
the LS without regularization but still suffers from poor
reconstruction due to error distribution [15].

2) Smoothed l0 norm (SL0): The most sparse regularization
that could be applied is l0 norm regularization. As l0
norm is NP-hard, a smoothed approximation is applied
for its effecient implementation [16]. Generally, lp norms
for 0 ≤ p < 1, are non convex and non-differntiable,
but could be solved effeciently when approximations or
relaxations are used [17], [18], [19]. This is formulated
as

x∗ = min
x
∥y −Mx∥2 + λ ∥x∥p . (3)

3) l1 − l2 minimization: It can be formulated as

x∗ = min
x

(∥x∥1 − ∥x∥2) s.t Mx = y. (4)

Two existing approaches that can solve a l1 − l2 mini-
mization are Difference of Convex Analysis (DCA) [20],
and Forward-Backward Splitting (FBS) [21], [22]. Both
of these techniques work well for reconstructing a
sparsity-preserving image, but they both compromise on
image quality [21].

4) Basis Pursuit (BP): BP is a well known formulation
which is both sparsity preserving and error tolerant [23],
formulated as

x∗ = argmin
x
∥x∥1 s.t Mx = y. (5)

The existing tools to solve a BP problem, namely CVX
[24] and l1-MAGIC [5] suffers from being computation-
ally expensive [25]. In this paper, BP using ADMM
formulation is considered, which is sought to be the
efficient method of formulating the BP problem.

5) Total variation (TV) regularized LS: Another regulariza-
tion that is commonly being used in medical imaging
is TV, proposed by Rudin, et.al [26], is capable of
preserving edges. It is formulated as

xTV = min
x
∥Dx∥p s.t. Mx = y, (6)

where D is a difference matrix defined as:

D =


−1 1

−1 1
. . . . . .

−1 1

 .

When p = 1, (6) is referred to as an anisotropic TV
problem and as isotropic-TV when p = 2. Different
applications of TV regularized LS problems have been
discussed in [27], [28] and [29] for filtering, de-noising
and restoring images.

Among the above-mentioned algorithms, BP and TV have
been proved to be efficient. But, BP takes more computation
time to converge to a solution when compared to TV, when
different formulations of the two are considered.

III. TOTAL VARIATION

In this section, isotropic and anisotropic TV formulation
using split Bregman method is proposed and derived. It is
seen to produce better results than the other algorithms. Instead
of reducing the non-differentiable convex function, as in (6),
Bregman iteration (BI) allows one to find the extremum of
a convex function by minimizing the Bregman distance. If
a linearization is not applied, BI becomes computationally
expensive. In contrast to BI, Split Bregman (SB) divides the
original problem into equivalent subproblems and solves them
through an iterative process [30], [31]. Therefore, it is possible
to precisely minimize the subproblems, which enables effective
computation. Additionally, SB employs variable splitting and
can be applied with augmented Lagrangian to reconstruct
high contrast images with fewer staircase effects. Here we
focus on isotropic and anisotropic TV formulation based on
split Bregman, and solve the subproblems iteratively for all
formulations and their performances are finally compared (as
in Section IV). Initially, we define the TV norm as primarily
the l1 norm of derivatives, and a TV regularized LS problem is
formulated as in (6). It can be transformed to an unconstrained
equation as

x∗ = argmin
x
∥Dx∥p +

β

2
∥Mx− y∥22. (7)

A regularization term α
2 ∥x∥q , where q = 1 corresponds to l1

regularization and q = 2 corresponds to l2 regularization, is
added to (7) as:

x∗ = argmin
x
∥Dx∥p +

β

2
∥Mx− y∥22 +

α

2
∥x∥q. (8)
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Transforming (8) into a constrained problem by introducing a
new variable d = Dx , to enable decoupling as:

(x∗,d∗) = argmin
x,d
∥d∥p +

β

2
∥Mx− y∥22 +

α

2
∥x∥q

s.t. d = Dx. (9)

Hence, (9) can be transformed to an unconstrained problem
as:

(x∗,d∗) = argmin
x,d
∥d∥p +

β

2
∥Mx− y∥22 +

γ

2
∥d−Dx∥22

+
α

2
∥x∥q. (10)

Now, introducing the Bregman parameter b to (10) as

(xk+1,dk+1) = argmin
x,d
∥d∥p +

β

2
∥Mx− y2

2 +
α

2
∥x∥q

+
γ

2
∥d−Dx− b∥22, (11)

and b is updated as:

bk+1 = bk + dk −Dxk+1. (12)

From (11), the different cases of TV formulations can be
considered as follows. The update of Bregman parameter b,
has the same equation for all cases. The difference is with the
updates of x and d as explained below.

Case 1: Isotropic TV-l2; p = 2, q = 2

xk+1 ← (αI+ βMTM+ γDTD)−1(βMTy

+ γDT (dk − bk)) (13)

dk+1 ← Dxk+1 + bk. (14)

Case 2: Isotropic TV-l1; p = 2, q = 1

xk+1 ← Shrink((βMTM+ γDTD)−1(βMTy

+ γDT (dk − bk)),
1

α
) (15)

dk+1 ← Dxk+1 + bk. (16)

Case 3: Anisotropic TV-l2; p = 1, q = 2

xk+1 ← (αI+ βMTM+ γDTD)−1(βMTy

+ γDT (dk − bk)) (17)

dk+1 ← Shrink(Dxk+1 + bk,
2

γ
) (18)

Case 4: Anisotropic TV-l1; p = 1, q = 1

xk+1 ← Shrink((βMTM+ γDTD)−1(βMTy

+ γDT (dk − bk)),
1

α
) (19)

dk+1 ← Shrink(Dxk+1 + bk,
2

γ
) (20)

Shrink(·) in the above equations is the soft thresholding
function defined as:

Shrink(θ, η) =

{
(|θ| − η) sgn(θ) if |θ| > η

0 otherwise . (21)

Altogether, the SB-TV algorithms can be summarized as in
Algorithm 1.

Algorithm 1 Split Bregman Iteration for TV minimization

Require: α, β, γ > 0, tol, maxit
Initialize: k = 0, NMSE = ∞, xk = 0 , dk = bk = 0
while NMSEk > tol ∨ k < maxit do

xk+1,dk+1 ←


(13), (14); for Isotropic TV-l2
(15), (16); for Isotropic TV-l1
(17), (18); for Anisotropic TV-l2
(19), (20); for Anisotropic TV-l1

bk+1 ← bk + dk+1 −Dxk+1

NMSEk+1 ← ∥xk+1−xk∥2
2

∥xk+1∥2
2

k ← k + 1
end while

IV. RESULTS

In this section, the proposed Anisotropic SBTV-l1,
Anisotropic SBTV-l2, Isotropic SBTV-l1, and Isotropic SBTV-
l2 are compared with LS, regularized LS, BP, LASSO, iterative
sparsification projection (ISP) of l0 norm using alternating
direction method of multipliers (SL0-ADMM), DCA and FBS
(for l1− l2) formulations. The following measures are used to
evaluate the performance.

1) Structural similarity index (SSIM) [32] : Its value ranges
from −1 to +1 and is used to evaluate image quality.
Its value is around +1 when the reconstructed image
resembles the original image.

2) Normalized mean-squared error (NMSE): It is the nor-
malized mean-squared error between the reconstructed
image and the original image defined as:

NMSE =
∥x̂− x∥22
∥x∥22

(22)

where x̂ is the estimated image (or the reconstructed
image from measurements).

3) Gini index (GI): GI is used to measure sparsity. The
higher the value of GI, the more sparse the image is. Its
value ranges from 0 to 1. In the simulations below, the
original image has a GI of 0.5785.

4) Computational complexity: When calculating the com-
putational complexity, the runtime is taken into account.

5) Iterations: The algorithm’s convergence is assessed by
the number of iterations required. Otherwise specified,
the simulation’s maximum iteration count is typically set
at 100.
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Fig. 1: Comparison of sensor data from K-wave and from
pseudo-spectral matrix for one particular sensor, for 75 sam-
ples with 0.1mm spacing.

For computing the SSIM and GI, the built-in functions in
MATLAB were used. The maximum frequency is calculated
as Fm = c

2∆ , where ∆ is the grid spacing, and c = 1500m/s
is the speed of sound. The sampling frequency is Fs = 2Fm,
and the acquisition time is fixed at tq = 5 µseconds. The total
number of samples is thus found as Nt = tq × Fs samples.
In the setup, a grid spacing of ∆ = 0.1mm is considered. A
total number of sensors Ns = 71 is used in the simulations
distributed in a square grid around the object. The processor
used in the simulation is Intel®CoreTM i7-8565U 1.8GHz
with MATLAB®. Initially, a pseudospectral method is used
to develop the system matrix, which allows the formulation
of different CS algorithms. The measurements obtained from
the pseudospectral method, for one sensor, are then compared
with that obtained from the k-wave [11] and are found to be
approximately the same, as shown in Figure 1, with a mean
square error of 3.54e-4. The sensor data obtained from the K-
wave and the system matrix from the pseudospectral method
are then utilized to reconstruct the image by employing the
different CS algorithms.

Table. I shows the simulation results for different recon-
struction algorithms. Figure 2 shows the original image and
the reconstructed images for non-iterative algorithms (LS and
Tikhonov regularized LS). They exhibit a closed-form solution
and thus are not solved iteratively. In these, the noise and
the error get distributed and produce a highly distorted image.
Thus the non-iterative algorithms have the worst performance
and are not suited for PAT image reconstruction [15].

Figure 3 shows the reconstructed images for l1, l1 − l2
and SL0 iterative algorithms. The l1 − l2 formulations (DCA
and FBS) tend to find a solution but are not suitable for a
high contrast fast reconstruction. The l1 minimization, using
l1-MAGIC has the best SSIM of all, but they are complex
and computationally heavy (as they take very high time for
computation) and are thus not suited.

(a) original im-
age

(b) 0.2994 (c) 0.0064

Fig. 2: (a) Original Image. Reconstructed images when (b)
Tikhonov regularization and (c) LS are used and the corre-
sponding SSIM.

(a) 0.9518 (b) 0.7679 (c) 0.4595 (d) 0.6094

Fig. 3: Reconstructed images when (a) BP-ADMM (b) DCA
l1− l2 (c) FBS l1− l2 and (d) SL0- norm algorithms are used
and the corresponding SSIM.

It is observed that the proposed SBTV formulations exhibit
outstanding performance when compared to the existing al-
gorithms. The best formulation proposed is anisotropic-TV
as it produces a more high-quality image than the isotropic
formulations as in Figure 4. Moreover, the isotropic TV-l2,
exhibits a closed-form solution for all the three updates and
is thus resembling an LS solution though it is iteratively
solved and hence does not yield a suitable image. Furthermore,
the proposed algorithms have computation time in the range
of 1 second, which is most suited for a fast reconstruction
algorithm.

TABLE I: Performance analysis for PAT image reconstruction
for the case of 71 sensors.

Method SSIM NMSE GI iter time [sec]
Anisotropic SBTV-l1 0.9880 9.0e-7 0.5772 27 0.960
Anisotropic SBTV-l2 0.9841 9.0e-7 0.5745 28 0.997

Isotropic SBTV-l1 0.9771 1.5e-6 0.5758 51 1.798
Isotropic SBTV-l2 0.7638 9.3e-7 0.5710 29 0.920

BP-ADMM 0.9518 6.7e-3 0.5822 48 13.90
DCA l1 − l2 0.7679 1.8e-3 0.5751 19 12.70
FBS l1 − l2 0.4595 4.2e-2 0.5890 292 159.2
SL0-ADMM 0.6094 3.6e-2 0.7716 51 3.945

l1-MAGIC LASSO 1.0000 5.0e-4 0.7714 28 150.0
l1-MAGIC BP 1.0000 1.3e-7 0.7714 8 1941

RLS(0.01) 0.2994 3.3e-1 0.7103 NA 13.69
LS 0.0064 9.0e+3 0.9995 NA 13.33

V. CONCLUSION

In this paper, a performance analysis of different formula-
tions of TV algorithms, for PAT image reconstruction algo-
rithms is carried out. The key feature of our algorithms is the
use of Bregman splitting for decoupling the l1 and l2 norms
to make convergence faster. Furthermore, SBTV exhibited
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(a) 0.9880 (b) 0.9841 (c) 0.9771 (d) 0.7368

Fig. 4: Reconstructed images when (a)Anisotropic SBTV-
l1 (b)Anisotropic SBTV-l2 (c)Isotropic SBTV-l1 (d)Isotropic
SBTV-l2 are used and the corresponding SSIM.

a great reduction in the runtime and allow a way quicker
reconstruction (< 1 seconds). The simulation results showed
it had enhanced performance over other algorithms. For their
runtime complexity and image reconstruction quality, SBTV
algorithms demonstrate to have promising outcomes for PAT
image reconstruction. We believe that the presented approaches
can be expanded for more image processing applications and
show promising application potential in the area of PAT medi-
cal imaging. The research’s proposed next step is to construct
the iterations utilizing layers of neural networks, which could
increase the efficacy even more.
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