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Abstract— Early screening for the Obstructive Sleep Apnea 
(OSA), especially the first grade of Apnea-Hypopnea Index 
(AHI), can reduce risk and improve the effectiveness of timely 
treatment. The current gold standard technique for OSA 
diagnosis is Polysomnography (PSG), but the technique must be 
performed in a specialized laboratory with an expert and 
requires many sensors attached to a patient. Hence, it is costly 
and may not be convenient for a self-test by the patient. The 
characteristic of snore sounds has recently been used to screen 
the OSA and more likely to identify the abnormality of breathing 
conditions. Therefore, this study proposes a deep learning model 
to classify the OSA based on snore sounds. The snore sound data 
of 5 OSA patients were selected from the opened-source PSG-
Audio data by the Sleep Study Unit of the Sismanoglio-Amalia 
Fleming General Hospital of Athens [1]. 2,439 snoring and 
breathing-related sound segments were extracted and divided 
into 3 groups of 1,020 normal snore sounds, 1,185 apnea or 
hypopnea snore sounds, and 234 non-snore sounds. All sound 
segments were separated into 60% training, 20% validation, and 
20% test sets, respectively. The mean of Mel-Frequency Cepstral 
Coefficients (MFCC) of a sound segment were computed as the 
feature inputs of the deep learning model. Three fully 
connected layers were used in this deep learning model to 
classify into three groups as (1) normal snore sounds, (2) 
abnormal (apnea or hypopnea) snore sounds, and (3) non-snore 
sounds. The result showed that the model was able to correctly 
classify 85.2459%. Therefore, the model is promising to use 
snore sounds for screening OSA. 

I. INTRODUCTION 

Obstructive Sleep Apnea (OSA) is the most common sleep-
related breathing disorder and comprises up to one-seventh of 
the world’s adult population [2]. The consequences of OSA 
both physically and mentally affect the health condition 
because insufficient sleep may cause hypersomnia, leading to 
microsleep and narcolepsy, diabetes mellitus, coronary artery 
disease, heart attack, ischemic stroke, and depression, etc [3-
5]. At present, Polysomnography (PSG) is the gold standard 
technique to screen sleep apnea [4-6] that identify sleep 
disorders from the physiological changes of the body signals, 
i.e. electroencephalogram (EEG), electrocardiogram (ECG), 
heart rate, eye movement, depth and breathing patterns, snore 
sounds, blood oxygen levels, and skeletal muscle activity. 
However, the technique requires a specialized laboratory with 

an expert and many sensors attached to a patient, hence costly 
and not convenient for a self-test. Screening OSA using the 
characteristics of snore sound is then a potential alternative 
because it is convenient, simple, and useful for subjects to 
proceed by themselves. Snore sounds can be one of the 
information to diagnosis OSA because it is directly related to 
abnormality of breathing conditions caused by obstruction of 
the upper respiratory tract [4, 5]. 

Detecting sleep apnea has currently gained significant 
interest. According to the literature review [7], ECG sensor-
based signals are most commonly and widely used for sleep 
apnea classification, but which sensors or signals are the best 
is still an active question. On the other hand, obstructive sleep 
apnea is directly related to snore sounds. Therefore, 
obstructive sleep apnea classification using snore sounds is 
also a potential method and interesting for study.   

In snore sound classification, the sound characteristics 
between normal and abnormal snore sounds are different due 
to different sources of sounds [8-10]. Therefore, the 
characteristic of snore sounds can be exploited for OSA 
screening application of the normal and abnormal snore 
sounds. Feature extraction is an important step before the 
learning process of sound classification. The feature can be 
divided into three main groups: the time domain features [11], 
frequency domain features [8], and time and frequency 
domain feature or wavelet transform [10]. Among many 
feature extraction methods used in snore sound classification, 
the Mel-Frequency Cepstral Coefficients (MFCC) is widely 
chosen as it provides promising accuracy [12]. In addition, the 
various classification methods such as Bayes classifier [13], 
logistic regression [9], AdaBoost classifier [14], Support 
vectors machines (SVM) [15] can also be used along the 
sound features to classify the severity of OSA. However, no 
studies clearly identify which feature extraction and 
classification method provide the optimum result.  

Deep learning-based classification is of great interest to 
many classification research due to its promising accuracy 
and ability to adapt to new data. In this study, a deep learning 
technique to classify OSA using only snore sounds is 
proposed.  
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II. METHOD 

A. Snore Dataset  
The snore sound data of 5 adult OSA patients (2 female/   3 

male) were selected from the opened-source PSG-Audio data 
for full-night PSG study by the Sleep Study Unit of the 
Sismanoglio-Amalia Fleming General Hospital of Athens [1]. 
The snore sounds were recorded together with the full-night 
PSG at the sleep disorders laboratory using a microphone 
placed over the tracheal of the patients with the sampling rate 
48 kHz. 2,439 snoring and breathing-related sound segments 
with an average time duration of 18 seconds were extracted 
according to the PSG annotations of nasal and respiratory 
events by the medical team. All segments were divided into 3 
groups of 1,020 normal snore sounds, 1,185 apnea or 
hypopnea snore sounds, and 234 non-snore sounds as shown 
in Table I. The sound segment data was then separated into 3 
groups of 60% training, 20% validation, and 20% test sets for 
the classification model. 

 
TABLE I 

THE NUMBER OF SNORE SOUNDS AND  
BREATHING-RELATED SOUND SEGMENTS 

 
Group/ Type of 
Abnormalities Number of Segments 

Hypopnea or Apnea 
Snore 1,185 

Normal Snore 1,020 

Non-snore 234 

Total 2,439 

 

B. Data Preprocessing 
Feature extraction was applied to extract the characteristic 

of snore sounds as data input of the deep learning model. Fig. 
1 shows an example of a snore sound segment from the 
dataset. The Mel-Frequency Cepstral Coefficients (MFCC), a 
representation of the short-term power spectrum of a sound 
based on a linear cosine transform of a log power spectrum on 
a nonlinear Mel-scale of frequency, was computed as the 
feature of the snore sounds. The number of MFCCs were 
typically 128 for any short window of a sound segment, hence 
comprising a 2D array of MFCCs for one sound segment. In 
this study, the mean of 2D MFCCs was computed to reduce 
the dimension of the input for the classification model as 
show in Fig. 2. 

 
 

 

Fig. 1. The Signal Example of A Snore Sound Segment. 

 

 

Fig. 2. The Dimension Reduction on MFCCs to Mean MFCCs for 
Model Inputs. 

 

C. Deep Learning Classification Model 
A deep learning model for the snore sound classification 

was constructed by three fully connected layers as shown in 
Fig. 3. The number of nodes in hidden layers are 100, 200, 
and 100 nodes, respectively. All hidden layers were added 
with 50% dropout to prevent the model overfitting. The 
rectified linear activation function (ReLu) was used as the 
activation function for all hidden layers. The softmax 
activation was used for the output layer for a multi-class 
classification on the three groups of snore sounds as: (1) 
normal snore sounds, (2) abnormal (apnea or hypopnea) snore 
sounds, and (3) non-snore sounds. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Feature Input 

n=128 

 

Hidden Layer                                      
(3 Layers with Dropout 50%) 

)  

Output Layer 

3 Nodes 

100 Nodes 

200 Nodes 

100 Nodes 

ReLu Function 

 

Softmax Function 

 

 P(y = Normal Snoring |x)  

 

X1 

X2 

X3 

X4 

X5 

Xn 

 
P(y = Non Snoring|x)  

 

 
P(y = Apnea or Hypopnea Snoring |x)  

 

 

Fig. 3. The Proposed Deep Learning Classification Model. 
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D. Model Training and Validation 
The mean of MFCCs of each sound segment were used as 

data input for the model with number of batch size=32. The 
data were randomly separated into 3 groups as 60% training, 
20% validation, and 20% test sets, respectively. The learning 
rate and the number of epochs for training and validation sets 
was set to 0.001 and 200, respectively. The ADAptive 
Moment estimation (Adam) optimization algorithm was used 
for network weight update during the model training. The 
categorical cross entropy was used as a loss function for the 
multi-class classification. The accuracy on correct estimation 
was tracked during the training and also evaluated on the 
validation set.  

E. Classification Evaluation 
In this study, the performance of the deep learning model 

on snore sound classification for OSA screening was 
evaluated on the test set in terms of accuracy (ACC) and 
positive predictive value (PPV). The results are shown in 
terms of confusion matrix comparison between actual and 
predicted values and shown in terms of true positive (TP), 
false negative (FN), false positive (FP), true negative (TN), 
and overall accuracy and PPV. The accuracy and PPV were 
calculated as:   

 

 
                                                          

 
    
    

III. RESULTS 

A. Feature Extraction  
 

 

Fig. 4. The Mean MFCCs of Each Group of Snore Sounds. 
 

Fig.4 shows an example of mean MFCC of each snore 
sound segment type from the dataset. The mean MFCC of 
normal snore sounds has evidently larger peak difference and 

stable than the other groups. The peak difference is smaller in 
the case of apnea or hypopnea snore sounds. No peak 
difference is clearly observed on the non-snore sounds. 

B. Classification Performance 
  

TABLE II  
THE CONFUSION MATRIX COMPARISON  

 

  Predicted 
 

  Normal 
Snore 

Hypopnea 
or Apnea 

Snore 

Non-
snore Total 

Actual 

Normal 
Snore 165 27 0 192 

Hypopnea 
or Apnea 

Snore 
30 211 7 248 

Non-
snore 6 2 40 48 

 Total 201 240 47 488 

 

 
 

 
TABLE III  

THE CLASSIFICATION RESULT 
 

Group of 
Data TP FN FP TN ACC (%) PPV (%) 

Normal 
Snore 165 27 36 260 85.9375 82.0896 

Hypopnea 
or Apnea 

Snore 
211 37 29 211 85.0806 87.9167 

Non-
snore 40 8 7 433 83.3333 95.1034 

 
Table II shows the confusion matrix comparison between 

actual and predicted values on the test set of 192 normal snore 
sounds, 248 apnea or hypopnea snore sounds, and 48 non-
snore sounds. The overall accuracy for snore sound 
classification model is 85.2459% on the test set. The 
performance of the classification model of each group of 
snore sounds is summarized in Table III. The classification 
accuracy on normal snore sounds is 85.9375% and slightly 
drops to 85.0806% on hypopnea or apnea snore sounds. The 
accuracy on non- snore sounds apparently drops to 83.3333% 
possibly due to less number of data relative to the others. On 
the other hand, the PPV is highest on the non-snore sounds at 
95.1034% and apparently reduced on the hypopnea or apnea 
snore sounds and normal snore sounds at 87.9167% and 
82.0896, respectively. 

1155



Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai Thailand 

 

IV. DISCUSSION AND CONCLUSION 

In this study, the deep-learning classification based on 
snore and breathing-related sounds for screening OSA were 
proposed. The results showed that the snore sound 
characteristic obtained from the mean MFCCs of three sound 
groups can be used to classify the snore sounds with 
promising overall accuracy of 85.2459%. The classification 
results on each sound group are 85.9375% accuracy and 
82.0896% PPV for normal snore sounds, 85.0806% accuracy 
and 87.9167% PPV for apnea or hypopnea snore sounds, and 
83.333% accuracy and 95.1034% PPV for non-snore sounds. 
The accuracy of the proposed method is also in agreement to 
the accuracy range of 80-95% as reported in the research 
community [9, 12, 16]. Yet, it is worthy to note that the 
accuracy might not be directly compared due to different data 
sources and accuracy evaluation methods. 

The prediction error on each sound group is possibly due to 
the imbalance of the number of the data in each group. The 
confusion of classification between the group of normal snore 
and apnea or hypopnea snore might be from the similarity of 
the mean MFCCs of both groups. The recent update on the 
event annotation of the PSG signal from the data source [1] 
can also affect to the performance of the model. The 
hyperparameters such as number of learning rate, number of 
epochs, as well as the number of layers and nodes to be used 
in the model can be investigated more to improve the 
classification results. 

On the future work, more input data of each sound group 
for the model with optimized hyperparameters of training is 
one approach to improve the performance of the model. The 
balanced number of each snore sound group and updated 
annotation of the PSG signal on the event of snoring and 
breathing-related sound should be also considered.  
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