
Skeleton Constrained Dual-Resolution Modeling

for Sketch-Based Deformation

Bing-Yu Chen∗ Fu-Che Wu† Tsung-Yi Lin† Meng-Chang Su†

National Taiwan University
∗ E-mail: robin@ntu.edu.tw

† E-mail: {joyce,wildsun,kyatapi}@cmlab.csie.ntu.edu.tw

Abstract—In this paper, a dual-resolution modeling framework
for a sketch-based animation editing system is presented. For the
easy-to-use purpose, a sketch-based user interface is often used
for editing a skeleton-based animation model. However, due to
the loss of relationship information about the details of the model,
a shape deformed from the skeleton in some cases will produce
unexpected artifacts. To reduce these artifacts, in our system,
we first generate a coarse mesh as an abstract layer from the
input model based on quadratic error metrics while considering
the skeleton constraints. Then, the original model is projected to
the abstract layer to construct a displacement map to preserve
the difference between the original model and the simplified one.
Hence, when we apply a Laplacian-based smoothing operator to
reduce the deforming artifacts, the smoothing operator can only
be applied to the coarse mesh and provide the corresponding
changes to the original model to obtain a smooth but feature
preserved editing result.

I. INTRODUCTION

To produce a 3D character animation, it is needed to provide

the key-poses of a 3D character model, and the animation can

then be generated by interpolating the key-poses. However, to

edit the 3D character model is not very easy, since there may

be many degrees of freedom (DOF) that need to be controlled.

Although traditional or commercial model editing systems can

help talented animators to provide high quality 3D character

animation, these systems are usually hard to use. Even for the

talented animators, they still need to read a lot of documents

and manuals before using the systems and always need to

spend a lot of time for editing. Therefore, we propose an

easy-to-use animation editing framework with a sketch-based

user interface in this paper. An easy-to-use framework usually

implies low quality editing result. To prevent this disadvantage,

we also provide a surface smoothing operator with a dual-

resolution meshes editing structure in this framework. Hence,

even for a novel user, he or she can also easily generate a

character animation in a short time with acceptable quality.

Our system basically consists of two modules. One is

an automatic skeleton extracting module which is used to

automatically construct the skeleton and skin binding of a 3D

character model for further editing. The other is a sketch-based

key-frame editing module which is used to edit the key-poses

of the character model with the extracted skeleton and skin

binding. This editing module contains a smoothing operator

and a dual-resolution meshes structure which uses the original

mesh and its simplified version for editing. The smoothing

operator is only applied to the simplified mesh and provides

the corresponding changes to the original one to obtain a

smooth but feature preserved editing result.

The key-pose editing in this framework is based on the

skeleton-driven deformation. First, an automatic skeleton ex-

tracting module (Sec. III-A) is introduced to automatically

construct the skeleton and skin binding of a 3D character

model for further editing. Then, a sketch-based key-frame

editing module (Sec. III-B) is provided to let a user adjust

the auto-generated skeleton to create the key-poses of the

character model. Since a skeleton-based deformation system

may produce notorious artifacts, a Laplacian-based smoothing

operator is introduced in the editing module to smooth these

undesired artifacts (Sec. IV-B). Based on the smoothed shape,

we recalculate the skin binding in the animation to produce

a better result (Sec. IV-C). To avoid the details of the editing

model to be over-smoothed caused by the smoothing operator

and to increase the interactivity of the editing, the editing

model is simplified first to generate a coarse mesh as an

abstract layer. Then, the original model is projected to the

abstract layer to construct a displacement map to preserve

the difference between the original model and the simplified

one. Hence, the smoothing operator can only be applied to

the coarse mesh and provide the corresponding changes to the

original one to obtain a smooth but feature preserved editing

result. Since we are using two kinds of meshes for editing a

3D model, this structure is so-called dual-resolution meshes

structure (Sec. IV-D) in this paper.

II. RELATED WORK

To edit the key-poses or key-shapes of a 3D model, some

deformation methods are proposed. Free-form deformation

(FFD) introduced by Sederberg and Parry [1] is one of the

model editing methods. Since the user needs to handle many

control points, the editing process is not easy to handle

well. Some other methods deform an object by its skeleton

intuitively because the skeleton describes the pose of a shape

well. For example, Magnenat-Thalmann et al. used such

technique to provide a linear blend skinning method [2], [3].

Lazarus et al. used an axis instead of using a lattice to try to

provide an efficient and intuitive deformation method called

axial deformations (AxDf) [4]. Chang and Rockwood used a

Bézier curve to define the desirable skeleton of the deformed

object [5], and Singh and Fiume used wires for deformation

[6].

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

09-0100010007©2009 APSIPA. All rights reserved.



To provide a much simple and intuitive model editing

environment, some sketch-based editing systems are proposed

recently. Teddy [7] is a sketch-based shape modeling tool.

Using Teddy, the user can draw some 2D free-form strokes

interactively on screen and the Teddy system then can auto-

matically construct the plausible 3D polygonal surface. Chaud-

huri et al. provided a sketch-based 2D to 3D interface [8].

Using this interface, a base mesh of the 3D character model

can be modified to closely match to an input sketch with

minimal user interaction. Motion Doodles [9] is a novel system

for sketching the motion of a character. Using this system, a

user can only draw a continuous sequence of lines, arcs, and

loops, and an animated motion can then be created for the

character. Hua and Qin developed a scalar-field based FFD

(SFFD) [10]. With the SFFD method, users can directly sketch

a scalar field of an implicit function to control the deformation

of any embedded model.

Yoshizawa et al. developed a new scheme for free-

form skeleton-driven global mesh deformations [11]. In their

method, a Voronoi-based skeletal mesh is first extracted from

a given model, and the skeletal mesh can then be modified

by FFD. Duncan and Swain introduced a new tool that allows

animators to change the position of some sets of controls with

mouse strokes [12]. Their system works well with pen-based

input devices and provides an interface for posing complex

skeleton intuitively. Kho and Garland developed a sketch-

based mesh deformation system [13]. In their system, a user

can just use a 2D sketch to easily deform a mesh in 3D space.

In their system, they also provide many operators such as

twisting, indirect control, smoothing, and adaptive refinement.

Capell et al. [14] proposed a framework for the skeleton-

driven animation of elastically deformable characters. A char-

acter is embedded in a coarse volumetric control lattice, which

provides the structure needed to be deformed by the finite

element method. Nealen et al. [15] presented a method based

on this idea for the intuitive editing of surface meshes by

means of view-dependent sketching. This system lets the user

easily determine the handle, either by silhouette selection

and cropping, or by sketching directly onto the surface.

Zhou et al. [16] presented a novel technique for large defor-

mations on 3D meshes using the volumetric graph Laplacian.

They first construct a graph to represent the volume inside the

input mesh. This graph’s Laplacian encodes the volumetric

details as the difference between each point in the graph

and the average of its neighbors. Preserving these volumetric

details during deformation imposes a volumetric constraint that

prevents unnatural changes in volume. Huang et al. proposed

a subspace technique that builds a coarse control mesh around

the original mesh and projects the deformation energy and

constraints onto vertices of the control mesh by using the mean

value interpolation [17].

For easy implementation and suitable for an arbitrary mesh,

a bind weight approach is adopted. However, there are artifacts

when deforming the shape of a model. To reduce these arti-

facts, a dual-resolution approach is often used. Zorin et al. [18]

proposed a multi-resolution representation based subdivision

for interactive editing. To avoid the requirement of the subdi-

vision connectivity, Kobbelt et al. [19] used a discrete fairing

technique to define the decomposition and reconstruction op-

erations by separating the high-frequency details from the low-

frequency shape and eventually recombine the two information

to recover the original mesh.

III. MOTION CREATION

In our system, the motion of a 3D character model is

created based on the skeleton of it. A skeleton tree plays a

major role in the definition of motion. It is also useful to

apply a motion data for editing by sketches. To achieve this

purpose, an automatic skeleton extracting process is proposed.

Following, each skeleton can be assigned a motion data or

edited by stoke curves drown by sketches.

A. Skeleton Extraction

Our goal for extracting the skeleton from a 3D model is to

find a concise skeleton that is suitable for animation control

and editing. To avoid the problem that a generated skeleton

is too complex to control, our skeleton is represented as the

composition of a set of some important points with linkages.

There are three main stages for generating such a control

skeleton.

• Feature detection: This initial procedure detects the

features of a 3D character model to find some suitable

positions to represent skeletal points inside the model.

• Connection construction: To preserve the topology rela-

tion of the model, the neighborhood relationship of each

skeletal point is inherited from the edge connectivity of

the surface mesh.

• Refinement for shape variation: Two skeletal points

connected by a straight line cannot suitably describe the

variation of the shape. Hence, we introduce a force field

to force the skeleton path to follow the shape’s varied

form.

To select some important feature points as the essential

skeletal points, we develop a procedure to evaluate which parts

are suitable as the end points, connection points, and joint

points, where are three kinds of essential points of our skeletal

model. Fig. 1 shows different stages in the algorithm. The

input model is shown in Fig. 1 (a). Initially, a Voronoi diagram

is constructed to locate the initialized candidates (Fig. 1 (b)),

and some essential domain balls are extracted (Fig. 1 (c)).

An end point is defined as locally far from the main part:

a geodesic distance is measured on the surface, and then a

watershed algorithm is applied to detect where an end point is

(Fig. 1 (d)). Then, a visibility repulsive force field is introduced

to adjust all other skeletal points except the end points to the

local minima and form the connection points (Fig. 1 (e)).

Following this, a neighborhood relationship from the mesh

connectivity is determined (Fig. 1 (f)), and then the point that

has more than two connection linkages is assigned as a joint

point. Finally, a snake algorithm based on the repulsive force

field is applied, and all linkages are adjusted to fit the shape

variation (Fig. 1 (g)). For more details, please refer to [20].

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Different stages in skeleton extracting algorithm.

B. Key-pose Editing

To edit the key-poses of the 3D model for each key-

frame is to determine the variation of the local frame among

the selected skeleton. Based on the above results, all of the

skeletons consist of many axis line segments, which are fit by

NURBS curves and defined as:

C(u) =

∑n
i=0 Ni,p(u)wiPi

∑n
i=0 Ni,p(u)wi

,

where Pi is the control point, wi is the weight, Ni,p(u) is

the i-th B-spline basis function of degree p and is defined

recursively as following:

Ni,p(u) = u−ui

ui+p−ui
Ni,p−1(u) +

ui+p+1−u

ui+p+1−ui+p
Ni+1,p−1(u),

Ni,0(u) =

{

1 ifu ∈ [ui, ui+1)
0 otherwise

.

To fit a NURBS curve into these sample points, the number

of control points is determined by the skeleton length. A knot

vector is calculated by the cord length and a least square

approximation is adopted.

To deform a skeleton for the key-poses, each skeletal point

is embedded in a local frame. There are six DOF that need to

be controlled including the position and the rotation angle. The

position can be determined by drawing a stroke on the screen.

To edit a 3D curve by a sketch, we provide two projection

planes. One is the view plane, and the other is the ground

plane as shown in Fig. 2.

The user can rotate the model to the best view point

to edit the shape. After a skeleton curve is selected as a

target, the mouse curser is snapped on this curve to select

a (connection) point to begin the deformation. After the left

button is pressed, the user can draw a new skeleton curve. All

of the changes are constrained on the planes that are parallel to

the projection plane. Since there are two continuous curves, at

each (connection) point we can thus determine its direction of

the tangent line. Therefore, the rotation angle is determined

by the change of direction on their tangent lines. When we

draw a new curve, the system predicts the final curve to let

the user be able to understand the final result and the new

position of the end point. After the left button is released, the

cursor will move to the shadow curve of the target skeleton

to edit in the ground plane. Fig. 2 shows the editing sequence

of the sketch-based editing module.

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) The user can easily rotate or scale the 3D model by a pop-up
window. (b) Initially, a target skeleton is selected. (c) The user draws a new
skeleton curve on the view plane. (d) The user can draw another curve for
z-axis through its projected skeleton in shadow on the ground plane. (e) and
(f) Two different views of the editing result.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. The sequence of edited key-poses.

C. Motion Interpolation

If the key-poses have been edited as Fig. 3, the anima-

tion may be discontinuous between the key-frames. In the

previous methods, the space-time constraints problem has

been discussed widely [21], [22], [23]. We do not focus on

this problem too much and adapt an interpolation approach

based on interpolating the skeleton curve to generate the in-

between poses for smoothing the motion. We assume that the

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



begin and the end of the key-frames are represented as the

static poses. Thus, the motion consists of acceleration and

deceleration processes. If the configuration of the begin pose

is θb and that of the end pose is θe, the in-between poses

are defined as θ(t) = w(t)θb + (1 − w(t))θe, where w(t)
is a normalized slow-in/slow-out weighting function. If the

user has specified more than one key-poses, an interpolation

sequence is generated only based on these key-poses. The final

motion is the interpolated motion sequence composed of the

original key-poses.

IV. SHAPE DEFORMATION

Since to create the motion of a 3D character model by

editing its skeleton may produce notorious artifacts, in this

section, the shape deformation due to the motion of the

skeleton is described. First, the initial character pose is referred

to the ”dress pose”. Each vertex on the surface of the model

is assigned a set of influences. Each influence has different

skin bindings which define the binding relationship between

its skin (surface of the model) and skeleton. After the skeleton

has deformed, the new position of each vertex is calculated by

the following equation [24]:

v′

d =
∑n

i=1
wiMiD

−1
i vd,

where v′

d is the new position, vd is the original position at

the dress pose, wi are the influence weighting, Mi is the

transform matrix, and D−1
i is the inverse of the dress pose

matrix associated with the i-th influence.

To deform the shape according to the deformed skeleton.

First, we determine the skin binding relationship between

the shape and the skeleton. Then, a smoothing operator is

introduced to solve the artifacts on the shape due to the

skeleton deformation. To avoid the details of the editing model

to be over-smoothed caused by the smoothing operator, a dual-

resolution mashes structure is also proposed.

A. Initial Skin Binding

In general, the skin binding relationship is defined as the

mapping among the nearest features between the shape and

the skeleton. However, sometimes it is hard to find a proper

mapping. For example, around the joint of the skeleton, it may

produce wrong skin binding since the geometric distance is not

so reliable for finding the skin binding. To avoid this case, we

need to preserve the correct topological relationship.

First, we build many domain balls on the skeleton as the

representable feature points. The surfaces of the domain balls

constitute a control surface. Then, we define a geometry cost

function based on the distance between the control surface and

the mesh surface. For the two surfaces Ω and Ψ, we calculate

the normalized geodesic distance. Let {p1, p2, · · · , pn} and

{q1, q2, · · · , qn} be the feature sequence in Ω and Ψ, respec-

tively. Then, 0 ≤ d(p1) ≤ d(p2) ≤ · · · ≤ d(pn) ≤ 1, where

d(pi) is the normalized geodesic distance. If p ∈ Ω and q ∈ Ψ,

a cost function for mapping them is defined as:

E(p, q) = Ct(p, q) + λCg(p, q),

where Ct(p, q) and Cg(p, q) are the topology and geometry

costs, respectively, and λ is the weighting. The topology cost

is defined as the difference of the covering range between

the two binding nodes, which is represented as max(d(pi))−
min(d(pj)), ∀pi, pj ∈ M(q), where M(q) represents the

feature set that is matched to q. The covering range in mesh

space is defined as the neighborhood area at the binding

position.

To reduce the computational cost, if a face is very close to

a control surface, we can bind them first. Then, we recover

the rest parts until all of the faces have defined their binding

relationship based on the cost function. Each vertex on the

mesh needs a definition corresponding to the skeleton. Thus,

after one patch on the mesh surface is bound to the skeleton,

we can determine its skin binding on each vertex based on its

neighboring faces. Fig. 4 shows the result.

Fig. 4. The faces on the mesh are bound to the domain balls on the skeleton.

B. Smoothing Operation

To deform a model by editing its skeleton is simple, but

there may exist many notorious artifacts, such as the following

examples:

• In the joint part of two different skeletons (linkages), it

is hard to deform it well.

• Large deformation at elbow-like position causes artifacts.

• Twist operation makes the volume decreased.

To avoid these artifacts on the surface, we provide a smooth-

ing operator to solve this problem. Because the Gaussian filter

is shrinkage, the Fourier descriptor, x′ = f(k)x, which can

be applied N times iteratively, i.e., xN = f(k)Nx, can be

used as a low-pass filter. However, the exact projection of

the subspace of low frequency is just not longer feasible.

Taubin [25] provided a transfer function to approximate a

Fourier descriptor as:

f(k) = (1 − λk)(1 − µk),

where µ and λ determine the pass-band frequency and kpb =
1
µ

+ 1
λ

> 0. In our implementation, we set λ = −0.5 and

µ = 0.526, respectively, and k = ∆x is the discrete Laplacian.

The discrete Laplacian of a discrete surface can be defined by

the following weighted average over the neighborhoods:

L(xi) =
∑

j∈i∗
wij(xj − xi),

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



where wij is defined as:

‖vj − vi‖
−1

∑

k∈i∗ ‖vk − vi‖
−1 .

In general, the result of the Taubin smoothing operation is

good enough. However, it sometimes produces over-smoothing

of the surface. To solve this problem, we provide a constraint-

based smoothing operator. First, we need to draw a reference

curve. Based on the reference curve, a region of faces is

selected as a smoothing target. Then, a domain surface that

is based on this reference curve is constructed as a constraint.

To construct this domain surface, the distance between the

reference curve and the skeleton curve is determined by the

nearest distance. The distance is represented as the radius

when a domain surface is constructed on the skeleton curve.

Let p(vi) be a projection position on the skeleton curve of

vertex vi, d(vi, p(vi)) be the distance between the vertex

vi and its projection p(vi), and rp(vi) be the radius of the

projection point, then a smoothing operator can be defined by

minimizing the following energy function:

E =
∑

vi∈R
(L(vi) + wc

∥

∥d(vi, p(vi)) − rp(vi)

∥

∥),

where R is the selected region, L(vi) is the Laplacian, and wc

is a weight of the constraint. This idea is similar to Kho and

Garland‘s approach [13]. In contrast, their approach prefers

to preserve its original position, but we prefer to preserve the

reference curve. Fig. 5 shows the smoothing result.

(a) (b)

Fig. 5. After the smoothing operator, the artifacts in (a) are removed as (b).

C. Skin Binding Adjustment

As described in the previous section, each smoothed pose

is represented as the adjusted pose. To perform a better

animation, we need to recalculate their skin binding to fit the

adjusted pose. The same idea has been presented in PSD (pose

space deformations) [26], SBE (shape by example) [27], MWE

(multi-weight enveloping ) [28], EigenSkin [29], and Morhr’s

work [24].

As described before, the new position of each vertex of the

deformed model is defined as:

v′

d =
∑n

i=1
wiMiD

−1
i vd.

However, if we use the original skin binding, it can not produce

the adjusted pose. Thus, we need to recalculate the skin

binding to fit the pose. Let vs be an adjusted pose, we adjust

the skin binding to make v′

d fit into vs. If the interpolation

result is not good enough, we can apply one more smoothing

operator on the selected key-frame. Assuming that we have

already adjusted m key-poses, then the skin binding can be

adjusted as minimizing the following equation:

∑m

i=1

∥

∥

∥
v′i

d − vi
s

∥

∥

∥

2

,

where i is a adjusted key-pose. After the skin binding is

recalculated, the animation sequence is also smoothed.

D. Dual-Resolution Meshes Structure

To avoid over-smoothing the detail features on the surface

and to speed up the interaction, we do not apply the smoothing

operator on the original model directly but a simplified one

instead as Fig. 6. Initially, we simplify the original model

into a coarse one by using the quadratic error metric (QEM)

approach [30]. It is an fast and intuitive method to simplify a

3D model, but it only takes the shape of the model into con-

sideration. DeCoro and Rusinkiewicz [31] proposed a view-

and pose-independent method for the automatic simplification

of skeletally articulated meshes. Based on their idea, we also

add the skeleton constraints to the QEM.

To take the skeleton into consideration, the new quadratic

error matric Q′

i is modified as:

Q′

i = w1 ∗ Qi + w2 ∗ Si + w3 ∗ Ei,

where Qi is the original QEM cost of vi, Si is the cost

computed by the distance from vi to the skeleton, Ei is the cost

computed by the distance from vi to the end of the skeleton,

and w1, w2, w3 are the weighting of these three functions.

Then, we determine the relationship between the coarse

model and the original one as a displacement map for the

coarse model. If a vertex of the original model can be projected

onto a face of the coarse mesh, it will bind to this face.

Otherwise, it will bind to the closest vertex. Thus, we need to

find a hyperplane on this vertex with its neighbor. A moving-

least-squares (MLS) model on the shape is adopted [32]. This

approach estimates a projection hyperplane:

Hr = {x|n · x − D = 0, x ∈ R3}, ‖n‖ = 1,

where · is the standard inner product, n is the normal vector,

and D is the distance to the plane, so that the following

quantity is minimized:
∑

i∈I
(n · ri − D)2θ(‖ri − r‖),

where r is the nearest point from the center of a cell, ri are

some neighbor points near r, I is the set of the index i, and θ

is a normal distribution function. Since the weighting function

θ(‖ri − r‖) decreases as the distance ‖ri − r‖ increases, the

resulting hyperplane Hr approximates a tangent hyperplane to

the shape near the point r.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



Fig. 6. The dual-resolution meshes of a seahorse model.

Thus, each vertex on the original model will be projected

onto the closest face or the hyperplane of the coarse model.

The resulting form is vf = Hi(u, v) + d · n, where vf is the

position of the vertex on the original model, Hi(u, v) is a

projection position on the hyperplane i, d is the distance, and

n is the normal vector.

V. RESULTS

The major goal of this paper is trying to make the key-

pose editing process easier and suitable for a novel user. To

evaluate our system, we invited a professional animator and an

eight-years-old child (Fig. 8) to use our system. The animator

has many years of experience in animation production, but the

child only has a little experience on computer operating.

Fig. 7 is generated by the animator in a few minutes. After a

little training time, he was already familiar with this system. In

his experience, the system is easy to learn and use. Although

our system has some limitations, such as the pose can be

specified only in one projection plane, the testing animator

said this system is good enough for a prototype editing to

present the idea. Fig. 9 is generated by the child also in a few

minutes.

VI. CONCLUSIONS AND FUTURE WORK

Editing an animation sequence is not an easy work; we

hence provide a friendly user interface to let this work become

intuitive and fun in this paper. In our system, a user could

select a character to generate its control skeleton automatically.

For key-pose editing, each skeleton segment can be adjusted

by drawing a new curve. The major drawback of our system is

the limitation of motion deformation along a projected plane.

To avoid the artifacts due to the sketch-based editing system,

a dual-resolution meshes structure is also provided in this

paper. Therefore, a smoothing operator can be applied only

to the deformed coarse mesh to obtain a smoothed editing

result. Then, the corresponding changes can be provided to

Fig. 8. A child is playing our system.

Fig. 9. An animation sequence generated by an eight-years-old child, a novice.

the original model to achieve a smooth but feature preserved

final result.

Furthermore, there are some work that could be improved

in the future, such as the trajectory editing, inverse kinematics

based on physical constraints and more motion templates.

Besides using the mouse to draw a new sketch curve, we

can also use a background image as a guide. Based on the

shape in the image, we can construct a skeleton of the shape.

Thus, by specifying the mapping relationship between the 3D

skeleton and the 2D skeleton, an animation sequence can be

driven from a video.

ACKNOWLEDGMENT

This work was partially supported by the National Science

Council of Taiwan under NSC97-2221-E-002-224, and also

by the Excellent Research Projects of the National Taiwan

University under NTU97R0062-04.

REFERENCES

[1] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geo-
metric models,” ACM Computer Graphics (SIGGRAPH 1986 Conference

Proceedings), vol. 20, no. 4, pp. 151–160, 1986.

[2] N. Magnenat-Thalmann, R. Laperrire, and D. Thalman, “Jointdependent
local deformations for hand animation and object grasping,” in Graphics

Interface 1998 Conference Proceedings, pp. 26–33, 1988.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



Fig. 7. Two animation sequences generated by an expert.

[3] N. Magnenat-Thalmann and D. Thalmann, “Human body deformations
using joint-dependent local operators and finite element theory,” in
Making Them Move: Mechanics, Control, and Animation of Articulated

Figures, pp. 243–262, Morgan Kaufmann, 2006.

[4] F. Lazarus, S. Coquillart, and P. Jancène, “Axial deformations: an
intuitive deformation technique,” Computer-Aided Design, vol. 26, no. 8,
pp. 607–613, 1994.

[5] Y.-K. Chang and A. P. Rockwood, “A generalized de casteljau approach
to 3d free-form deformation,” in ACM SIGGRAPH 1994 Conference

Proceedings, pp. 257–260, 1994.

[6] K. Singh and E. L. Fiume, “Wires: a geometric deformation technique,”
in ACM SIGGRAPH 1998 Conference Proceedings, pp. 405–414, 1998.

[7] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: a sketching interface
for 3d freeform design,” in ACM SIGGRAPH 1999 Conference Proceed-

ings, pp. 409–416, 1999.

[8] P. Chaudhuri, P. Kalra., and S. Banerjee, “A system for view-dependent
animation,” Computer Graphics Forum (Eurographics 2004 Conference

Proceedings), vol. 23, no. 3, pp. 411–420, 2004.

[9] M. Thorne, D. Burke, and M. van de Panne, “Motion doodles: an in-
terface for sketching character motion,” ACM Transactions on Graphics

(SIGGRAPH 2004 Conference Proceedings), vol. 23, no. 3, pp. 424–431,
2004.

[10] J. Hua and H. Qin, “Free-form deformations via sketching and manip-
ulating scalar fields,” in Proceedings of the 2003 ACM Symposium on

Solid Modeling and Applications, pp. 328–333, 2003.

[11] S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel, “Free-form skeleton-
driven mesh deformations,” in Proceedings of the 2003 ACM Symposium

on Solid Modeling and Applications, pp. 247–253, 2003.

[12] B. Duncan and M. Swain, “Sketchpose: Artist-friendly posing tool,” in
ACM SIGGRAPH 2004 Conference Abstracts and Applications, p. 7,
2004.

[13] Y. Kho and M. Garland, “Sketching mesh deformations,” in Proceedings

of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 147–
154, 2005.

[14] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović, “Interac-
tive skeleton-driven dynamic deformations,” in ACM SIGGRAPH 2002

Conference Proceedings, pp. 586–593, 2002.

[15] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or, “A sketch-based
interface for detail-preserving mesh editing,” ACM Transactions on

Graphics (SIGGRAPH 2005 Conference Proceedings), vol. 24, no. 3,
pp. 1142–1147, 2005.

[16] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y. Shum,
“Large mesh deformation using the volumetric graph laplacian,” ACM

Transactions on Graphics (SIGGRAPH 2005 Conference Proceedings),
vol. 24, no. 3, pp. 496–503, 2005.

[17] J. Huang, X. Shi, X. Liu, K. Zhou, L.-Y. Wei, S.-H. Teng, H. Bao,
B. Guo, and H.-Y. Shum, “Subspace gradient domain mesh deforma-
tion,” ACM Transactions on Graphics (SIGGRAPH 2006 Conference

Proceedings), vol. 25, no. 3, pp. 1126–1134, 2006.

[18] D. Zorin, P. Schröder, and W. Sweldens, “Interactive multiresolution
mesh editing,” in ACM SIGGRAPH 1997 Conference Proceedings,
pp. 259–268, 1997.

[19] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, “Interactive multi-

resolution modeling on arbitrary meshes,” in ACM SIGGRAPH 1998

Conference Proceedings, pp. 105–114, 1998.
[20] F.-C. Wu, W.-C. Ma, R.-H. Liang, B.-Y. Chen, and M. Ouhyoung,

“Domain connected graph: the skeleton of a closed 3d shape for
animation,” The Visual Computer, vol. 22, no. 2, pp. 117–135, 2006.

[21] L. Kovar and M. Gleicher, “Automated extraction and parameterization
of motions in large data sets,” ACM Transactions on Graphics (SIG-

GRAPH 2004 Conference Proceedings), vol. 23, no. 3, pp. 559–568,
2004.

[22] A. Witkin and M. Kass, “Spacetime constraints,” in ACM SIGGRAPH

1998 Conference Proceedings, pp. 159–168, 1988.
[23] A. Witkin and Z. Popović, “Motion warping,” in ACM SIGGRAPH 1995

Conference Proceedings, pp. 105–108, 1995.
[24] A. Mohr, L. Tokheim, and M. Gleicher, “Direct manipulation of in-

teractive character skins,” in Proceedings of the 2003 Symposium on

Interactive 3D Graphics, pp. 27–30, 2003.
[25] G. Taubin, “A signal processing approach to fair surface design,” in

ACM SIGGRAPH 1995 Conference Proceedings, pp. 351–358, 1995.
[26] J. P. Lewis, M. Cordner, and N. Fong, “Pose space deformation: A uni-

fied approach to shape interpolation and skeleton-driven deformation,”
in ACM SIGGRAPH 2000 Conference Proceedings, pp. 165–172, 2000.

[27] P.-P. J. Sloan, C. F. Rose, and M. F. Cohen, “Shape by example,”
in Proceedings of the 2001 Symposium on Interactive 3D Graphics,
pp. 135–143, 2001.

[28] X. C. Wang and C. Phillips, “Multi-weight enveloping: least-squares
approximation techniques for skin animation,” in Proceedings of the

2002 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-

tion, pp. 129–138, 2002.
[29] P. G. Kry, D. L. James, and D. K. Pai, “Eigenskin: real time large

deformation character skinning in hardware,” in Proceedings of the 2002

ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pp. 153–159, 2002.

[30] M. Garland and P. Heckbert, “Surface simplification using quadric error
metrics,” in ACM SIGGRAPH 1997 Conference Proceedings, pp. 209–
216, 1997.

[31] C. DeCoro and S. Rusinkiewicz, “Pose-independent simplification of ar-
ticulated meshes,” in Proceedings of the 2005 Symposium on Interactive

3D graphics and Games, pp. 17–24, 2005.
[32] D. Levin, “Mesh-independent surface interpolation,” in Geometric Mod-

eling for Scientific Visualization, pp. 37–49, Springer-Verlag, 2004.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009


	pg1: 1
	pg2: 2
	pg3: 3
	pg4: 4
	pg5: 5
	pg6: 6
	pg7: 7


