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ABSTRACT
Computing the likelihood-ratio (LR) score of a test utterance is an
important step in speaker verification. It has recently been shown
that for discrete speaker models, the LR scores can be expressed
as dot products between supervectors formed by the test utterance,
target-speaker model, and background model. This paper leverages
this dot-product formulation and the representer theorem to derive
a general kernel, namely the regression optimized kernel, for com-
puting utterance-based verification scores using support vector ma-
chines. The kernel is general in that it can be a linear combination
of any kernels belonging to the reproduction kernel Hilbert space.
The combination weights are obtained by maximizing the ability
of a discriminant function in separating a target speaker from im-
postors. The regression optimized kernel was applied to high-level
speaker verification using articulatory-feature based pronunciation
models. Results show that the scores produced by the regression op-
timized kernel are not only superior but also complementary to the
LR scores, resulting in better performance when the two types of
scores are combined. The proposed regression optimized kernel can
be easily applied to other SVM-based classification problems.

Index Terms— Speaker verification; optimal kernels; articula-
tory features, pronunciation models; SVM.

1. INTRODUCTION

Most speaker verification systems (e.g., acoustic-based GMM-UBM
[1] and phonetic-based AFCPM [2]) compute the likelihood ratio
(LR) scores of claimant’s utterances by accumulating the frame-
based LR scores. This frame-based scoring scheme has three draw-
backs. First, treating speech frames independently may miss some
important speaker information contained in the claimant’s utterance.
Bear in mind that the goal of speaker verification is to minimize
classification errors on test utterances, not on speech frames. Sec-
ond, consider every frame as equally important means that highly
speaker-discriminative sounds will not receive more attention than
less speaker-discriminative sounds. Third, for discrete generative
models (commonly used in high-level systems), frame-based scoring
is computationally inefficient because the same probability values
will be repeatedly used many times during the score accumulation
process.

This paper attempts to overcome these drawbacks by proposing
a sequence-based scoring approach in which an utterance is consid-
ered as comprising a sequence of symbols and the utterance-based
score is obtained from a support vector machine (SVM) through a
specially designed kernel function called regression optimized ker-
nel. The method extracts the articulatory feature (AF) supervectors
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from each target speaker to train a speaker-dependent SVM to dis-
criminate the target speaker from background speakers in the AF-
supervector space.

The proposed kernel is different from many other kernels (such
as the generalized linear discriminant sequence (GLDS) kernel [3],
n-gram kernel [4], GMM-supervector kernel [5], and Fisher kernel
[6]) in that no specific form of the discriminant or scoring function
for the similarity measure is assumed. In fact, any functions in the
reproducing kernel Hilbert space are potential candidates. We show
that the optimal discriminant function can be obtained by solving a
functional optimization problem using the representer theorem [7],
leading to a kernel that is a general form of several existing kernels.

The remainder of the paper derives the regression optimized ker-
nel and provides the theoretical and experiment evidences to demon-
strate that kernel-based scoring is superior to frame-based scoring.
Experimental results on the NIST2000 SRE are presented.

2. DOT-PRODUCT FORMULATION OF
LIKELIHOOD-RATIO

In high-level speaker verification, it is common to use sequences
of labels (e.g., phone labels in [4] and AF labels in [2]) extracted
from the utterances of a target speaker to train a discrete model for
that target speaker. Without loss of generality, assume that the dis-
crete model has two random variables {Lx, Ly} and that the sample
space is defined by {Lx,Ly}. Then, the model can be expressed as
a probability mass function fLx,Ly (lx, ly) = Pr(Lx = lx, Ly = ly)
where lx ∈ Lx and ly ∈ Ly . For the AFCPMs in [2], Lx and Ly are
the manner and place classes, respectively. Given a model, a super-
vector

−→
A can be obtained by stacking all of the probability entries

in the model.
Assume that given a claimant’s utterance, a sequence of 2-tuple

labels `T
1 = {lx,t, ly,t}T

t=1 is obtained, where lx,t ∈ Lx and ly,t ∈
Ly . The likelihood ratio (LR) score of the utterance can be obtained
by accumulating the frame-based likelihood ratio:

SLR(`T
1 ) =

1

T

T∑
t=1

(
log

Pr(Lx = lx,t, Ly = ly,t|Speaker s)

Pr(Lx = lx,t, Ly = ly,t|Background)

)
.

In [8], we have shown that the likelihood ratio can be expressed in
terms of dot products as follows:

SLR(`T
1 ) =

〈
log

−→
As−→
Ab

,
−→
Ac

〉
=

〈−→
Ac, log

−→
As

〉
−

〈−→
Ac, log

−→
Ab

〉
(1)

where
−→
As,

−→
Ab and

−→
Ac are the supervectors corresponding to the
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Fig. 1. The dot-product implementation of LR scoring in AFCPM speaker verification.

speaker, background, and claimant, respectively.1 Fig. 1 illustrates
the dot-product implementation of LR scoring.

3. REGRESSION OPTIMIZED KERNEL

Fig. 1 suggests a possible improvement of LR scoring: Replacing
the fixed multiplication factors ‘+1’ and ‘−1’ by weights that are
optimally determined by SVM training. The training procedure is
shown in Fig. 2. In order to make sure that the SVM training al-
gorithm converges to a stable solution, the function inside the circle
in Fig. 1 should satisfy the Mercer condition [9]. Unfortunately,
f(
−→
X,
−→
Y ) =

〈−→
X, log

−→
Y

〉
does not satisfy the Mercer condition be-

cause
〈−→

X, log
−→
Y

〉
cannot be written as

〈
Φ(
−→
X ), Φ(

−→
Y )

〉
. Here, we

propose a new general kernel to remedy this problem.

3.1. Optimal Discriminant Function

To derive a kernel, a similarity metric needs to be defined. If Maha-
lanobis distance is used, GMM-supervector kernel [5] will be ob-
tained. Using the likelihood ratio scores will lead to the n-gram
kernel [4] and the LR AF-kernel [8]. Kernels can also be de-
rived from optimizing a discriminant function that separates tar-
get speaker’s speech from impostors’ speech in a high-dimensional
kernel-induced feature space. The GLDS kernel is a typical exam-
ple. A common characteristic of these kernels is that they are derived
under the assumption that the discriminant functions or scoring func-
tions have a specific form to measure the similarity. For kernels de-
rived from discriminant functions, this constraint can be relaxed by
using a general discriminant function fs(

−→
A ). Therefore, given two

set of training data
{−→

As, ys = +1
}

and
{−−→

Abk , ybk = 0
}M

k=1
, our

goal is to find the best discriminant function fs(
−→
A ) that solve the

optimization problem:

f̂s = arg min
fs∈RK





∑

i∈{s,bk}M
k=1

γi

(
fs(
−→
Ai)− yi

)2

+ λ ‖ fs ‖2


 ,

(2)

1In Eq. 1, log

−→
Z
−→
Y
≡

[
log

z1

y1
, . . . , log

zN

yN

]T

, where zi and yi are ele-

ments of
−→
Z and

−→
Y , respectively.

where s and bk denote the target speaker s and background speaker
k, respectively, M is the number of background speakers, λ > 0 is a
regularizing parameter, γi is used to alleviate the unbalance between
the two classes of data, and RK represents the reproducing kernel
Hilbert space (RKHS) [9].

According to the representer theorem [7], if fs ∈ RK , the solu-
tion to the functional optimization problem in Eq. 2 has the form:

f̂s(
−→
A ) =

∑

i∈{s,bk}M
k=1

ws
i k(
−→
A,
−→
Ai), (3)

where ws
i are speaker-dependent weights to be optimized and

k(·, ·) : RD × RD 7→ R is a kernel in RK such that
〈
fs, k(

−→
A, ·)

〉
RK

= fs(
−→
A ). (4)

Eq. 3 and Eq. 4 suggest that

‖ f̂s ‖2= 〈f̂s, f̂s〉 =

〈
f̂s,

∑

i∈{s,bk}M
k=1

ws
i k(
−→
Ai, ·)

〉

=
∑

i∈{s,bk}M
k=1

ws
i

〈
f̂s, k(

−→
Ai, ·)

〉
=

∑

i∈{s,bk}M
k=1

ws
i f̂s(

−→
Ai)

=
∑

i∈{s,bk}M
k=1

ws
i


 ∑

j∈{s,bk}M
k=1

ws
jk(
−→
Ai,

−→
Aj)


 .

(5)

Therefore, the optimization problem in Eq. 2 can be formulated as:

min
ws∈RM+1

{
(y −Ksws)

TΓ(y −Ksws) + λws
TKsws

}
(6)

where

ws = [ws
s, w

s
b1 , . . . , ws

bM
]T,y = [1, 0, . . . , 0]T(M+1)×1,

Γ = diag{γs, γb1 , . . . , γbM } = diag{γ+, γ−, . . . , γ−},
(7)

and

Ks =




ks,s kb1,s · · · kbM ,s

ks,b1 kb1,b1 · · · kbM ,b1

...
...

. . .
...

ks,bM kb1,bM · · · kbM ,bM


 , (8)

where ki,j = kj,i = k(
−→
Ai,

−→
Aj). Taking the derivative with respect

to ws in Eq. 6, the optimization solution of Eq. 6 is

ws = (KsΓKT
s + λKT

s)
−1(KT

sΓy). (9)
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Fig. 2. The training procedure of an SVM-based speaker verification system. The procedure results in an SVM for each target speaker. See
Section 3.1 for the derivation of the kernels. See Section 4.3 for the feature selection procedure.

3.2. Regression Optimized AF-Kernel

Using Eqs. 7–9, we can express the optimal discriminant function
(Eq. 3) as:

f̂s(
−→
A ) =

∑

i∈{s,bk}M
k=1

ws
i k(

−→
A,
−→
Ai)

=
[
(KsΓKT

s + λKT
s)
−1(KT

sΓy)
]T
(M+1)×1




k(
−→
A,
−→
As)

k(
−→
A,
−−→
Ab1 )

...
k(
−→
A,
−−→
AbM

)




= γ+




k(
−→
As,

−→
As)

k(
−→
As,

−−→
Ab1 )

...
k(
−→
As,

−−→
AbM

)




T

(
KsΓKT

s + λKT
s

)−1




k(
−→
A,
−→
As)

k(
−→
A,
−−→
Ab1 )

...
k(
−→
A,
−−→
AbM

)




.

(10)
Note that because γ+ is a constant, it can be discarded without affect-
ing the discriminative ability of f̂s(

−→
A ). Therefore, the the similarity

between two supervectors
−→
Ac and

−→
As can be defined as:

f̂s(
−→
Ac) =




k(
−→
Ac,

−→
As)

k(
−→
Ac,

−−→
Ab1 )

...
k(
−→
Ac,

−−→
AbM

)




T

(
KsΓKT

s + λKT
s

)−1




k(
−→
As,

−→
As)

k(
−→
As,

−−→
Ab1 )

...
k(
−→
As,

−−→
AbM

)




.

(11)
Note that the matrix Ks and the vector k(

−→
A , ·)|(s,b1,...,bM ) are

target speaker-dependent.2 Because these matrices and vectors are
dominated by nontarget speaker data, it is possible to make them
speaker-independent by using the following approximations:

Ks ≈ K =




kb,b kb1,b · · · kbM ,b

kb,b1 kb1,b1 · · · kbM ,b1

...
...

. . .
...

kb,bM kb1,bM · · · kbM ,bM


 , (12)

and
k(
−→
A, ·)|(s,b1,...,bM ) ≈ k(

−→
A, ·)|(b,b1,...,bM ),

2k(
−→
A , ·)|(s,b1,...,bM ) ≡

[
k(
−→
A ,
−→
As), k(

−→
A ,
−−→
Ab1), · · · , k(

−→
A ,
−−→
AbM

)
]T

.

where the universal background AF supervector
−→
Ab is used to ap-

proximate
−→
As. Making these matrices speaker-independent have

three advantages. First, substantial storage space can be saved
because a speaker-independent matrix can be shared by all target
speakers. Second, the matrix K can be pre-computed, saving com-
putation significantly during recognition time. Third, this makes
Eq. 11 symmetric between s and c.

Finally, the regression optimized kernel is written as:3

KReg(
−→
Ac,

−→
As) = 〈(KΓKT + λKT)− 1

2 k(
−→
Ac, ·)|(b,b1,...,bM ),

(
KΓKT + λKT)− 1

2 k(
−→
As, ·)|(b,b1,...,bM )〉

=
〈
ϕ(
−→
Ac), ϕ(

−→
As)

〉

(13)
where the mapping ϕ(·) is defined as:

ϕ(
−→
A ) =

(
KΓKT + λKT)− 1

2 k(
−→
A, ·)|(b,b1,...,bM ). (14)

Note that (KΓKT + λKT)
− 1

2 can be considered as a normalization
matrix pre-computed from the background population.

According to the representer theorem, k(
−→
Ai,

−→
Aj) should belong

to RK . One possibility is to use the linearized LR AF-kernel [8],
i.e.,

k(
−→
Ai,

−→
Aj) = KLR(

−→
Ai,

−→
Aj) =

〈√−→wb. ∗
−→
Ai√−→

Ab

,

√−→wb. ∗
−→
Aj√−→

Ab

〉
. (15)

where −→wb ∈ RD contains the phonetic-class weights obtained from

the background speakers [8] and
√−→

X.∗−→Y√−→
Z

means element-wise mul-

tiplication and division.

3.3. Regression Optimized Kernel Vs. Other Kernels

The regression AF-kernel can be considered as a general form of the
Euclidean, Mahalanobis (GMM-Supervector), GLDS, and LR AF-
kernels [8]. This can be explained from the form of kernel functions.
Starting from Eq. 13, if Γ = 0 and λ = 1, then the (i, j)-th element

3Note that the regression optimized kernel (Eq. 13) is not limited to the
articulatory features. It is also applicable to any SVM systems.
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Fig. 3. The verification phase of an AF-kernel based speaker verification system. See Fig. 1 for a comparison.

of the regression optimized kernel matrix KReg becomes:

KReg(
−→
Ai,

−→
Aj)

=

〈
K− 1

2




k(
−→
Ai,

−→
Ab)

k(
−→
Ai,

−−→
Ab1)

...
k(
−→
Ai,

−−→
AbM )




,K− 1
2




k(
−→
Aj ,

−→
Ab)

k(
−→
Aj ,

−−→
Ab1)

...
k(
−→
Aj ,

−−→
AbM )




〉

=
〈
ϕ̂(
−→
Ai), ϕ̂(

−→
Aj)

〉

(16)

Define Ω =
[
ϕ̂(
−→
As), ϕ̂(

−−→
Ab1), . . . , ϕ̂(

−−→
AbM )

]
. Then we have

Ω = K− 1
2




ks,b kb1,b · · · kbM ,b

ks,b1 kb1,b1 · · · kbM ,b1

...
...

. . .
...

ks,bM kb1,bM · · · kbM ,bM




.
= K− 1

2 Ks,

where Ks is defined in Eq. 8. Therefore, the regression optimized
kernel matrix for target speaker s is:

Ks
Reg = ΩTΩ = (K− 1

2 Ks)
T(K− 1

2 Ks)

= KT
sK

− 1
2 K− 1

2 Ks

≈ Ks (because Eq. 12: K ≈ Ks).

(17)

Consider the elements of Ks. If ki,j = k(
−→
Ai,

−→
Aj) = KLR(

−→
Ai,

−→
Aj),

then the regression AF-kernel matrix Ks
Reg becomes the LR AF-

kernel matrix Ks
LR. For this special value of Γ, λ, and k(

−→
Ai,

−→
Aj),

the regression optimized kernel is equivalent to the LR kernel.
The above derivation can be generalized to other kernels. This

generalization property can also be observed from the scoring pro-
cedure shown in Figures 1 and 3. For example, if the number of
inner nodes in Fig. 3 reduces to one per outer node, then regression
AF-kernel scoring reduces to Euclidean, Mahalanobis, GLDS, or LR
AF-kernel scoring. Further, if the number of nodes in Fig. 3 reduces
to two with α0 = α1 = 1, then AF-kernel scoring reduces to LR
scoring.

3.4. Kernel-Scoring Vs. LR-Scoring

Fig. 3 shows the AF-kernel scoring procedure. The SVM output in
the figure can be considered as a scoring function:

Skernel(X
T
1 ) = α0KReg

(−→
Ac,

−→
As

)
−

M∑
i=1

αiKReg

(−→
Ac,

−→
A bi

)
+ b,

(18)
where α0 is the Lagrange multiplier corresponding to the target
speaker, and αi (i = 1, . . . , M ) are Lagrange multipliers (some of
them may be zero) corresponding to the background speakers. Com-
paring Eqs. 1 and 18; Figs. 1 and 3 suggest that AF-kernel scoring is
more general and is potentially better than LR scoring (Eq. 1). Note
that Eq. 18 and Fig. 3 are not limited to AF-kernel. They are also
applicable to acoustic-based GMM-SVM.

4. EXPERIMENTS AND RESULTS

4.1. Datasets

NIST99, NIST00, SPIDRE, and HTIMIT were used in the experi-
ments. NIST99 was used for creating the background models and
mapping functions, and the female part of NIST00 was used for cre-
ating speaker models and for performance evaluation. HTIMIT and
SPIDRE were used for training the AF-MLPs and the null-grammar
phone recognizer, respectively. The phone recognizer uses standard
39-D vectors comprising MFCCs, energy, and their derivatives. The
AF-MLPs use 38-D vectors comprising 19-D MFCCs and their first
derivative computed every 10ms.

4.2. Parameters for Training Kernels

In Eqs. 13 and 7, λ = 0.8, γ+ = M
M+1

and γ− = 1
M+1

, where M
is the number of background speakers. Moreover, we used linearized
LR kernel [8] (Eq. 15) as the reproducing kernel in Eq. 13.

4.3. Feature Selection

We applied SVM-RFE [10] to select 600 features from 720 features
in the AF supervectors and found that the EER can be reduced from
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24.14% to 23.87%. Because of this encouraging result, feature se-
lection was applied to all experiments.

4.4. EER and DET Performance

Fig. 4 shows that in the low false-alarm region, the performance
of LR AF-kernel scoring (KLR, solid black) is significantly better
than that of LR scoring (solid red), although their performance is al-
most the same in the low miss-probability region. This suggests that
LR AF-kernel scoring is generally better than LR scoring, which is
mainly attributed to the explicitly use of discriminative information
in the kernel function of the SVM and to the optimal selection of
background speakers by SVM training. Although LR scoring also
considers the impostor information, it can only implicity use this in-
formation through the UBM. In LR AF-kernel scoring, on the other
hand, the SVM of each target speaker is discriminatively trained to
differentiate the target speaker from all of the background speakers.
The SVM effectively provides an optimal set of weights for this dif-
ferentiation. On the other hand, in LR scoring, all target speakers
share the same background model and the weight is always identical
(= −1) across all target speakers. This explains the superiority of
the AF-kernel scoring approach.

  10    20    40  
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  20  

  40  
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M
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s 
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ili
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 %
)

Speaker Detection Performance
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E

DCF=0.2594,EER=26.75%
K

GLDS

DCF=0.2597,EER=26.12%
K

M

DCF=0.2568,EER=25.89%
K

LR

DCF=0.2348,EER=23.87%
LR (AF)
DCF=0.2363,EER=23.64%
K

Reg

DCF=0.2310,EER=23.16%
GMM−UBM (MFCC)
DCF=0.1614,EER=16.47%
GMM+K

Reg
+LR

DCF=0.1449,EER=15.05%

Fig. 4. DET produced by LR scoring, AF-kernel scoring, acous-
tic GMM-UBM, and their fusion. KE, KM, KGLDS, KLR and KReg

denote the Euclidean, Mahalanobis, GLDS, LR and Regression Op-
timized AF-kernel, respectively. The Mahalanobis kernel KM is the
GMM supervector kernel in articulatory feature case.

Fig. 4 also shows that the regression AF-kernel KReg achieves
the best performance among all the kernels. This suggests that op-
timizing a general discriminant function (Eq. 3) to derive a kernel
is better than (a) using a specific distance metric (e.g., Euclidean
AF-kernel KE and Mahalanobis AF-kernel KM) and (b) assigning a
specific form for the discriminant function as in the LR AF-kernel
KLR and GLDS AF-kernel KGLDS.4

4See the deviations and formulas of these kernels in [8].

4.5. Fusion of Low- and High-level Features

Because LR scoring and kernel scoring are based on different prin-
ciples, their scores may compliment each other. To confirm this,
we linearly fused the scores of the best performing AF-kernel with
those obtained from LR scoring. Our result suggests that fusing the
scores can improve performance. In particular, fusion can reduce the
EER from 23.16% to 22.52% with a p-value smaller than 0.00001,
suggesting that the differences in EERs are statistically significant.

The above fusion scores were further fused with the scores de-
rived from a GMM-UBM acoustic system.5 As evident in Fig. 4, fu-
sion of low- and high-level system can further improve performance.
Although the proposed kernel is evaluated on a speaker verification
task, it is general enough for other classification problems.
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