
Detection of Peer-to-Peer Nodes  
based on Query Routing  

Nobutaka Kawaguchi, Kazuya Okochi and Masato Terada 
Systems Development Laboratory, Hitachi, Ltd. 

890, Kashimada, Kawasaki, Kanagawa, 212-8567, Japan 
E-mail: {nobutaka.kawaguchi.ue, kazuya.okochi.ak, masato.terada.rd}@hitachi.com 

 
 
 

Abstract— In this paper, we propose a novel P2P node 
detection method by analyzing network traffic and extracting 
packets which contain query messages. Most previous methods 
detect P2P nodes by using signatures of known applications or 
taking advantages of traffic features in P2P nodes. However, 
they cannot detect hosts running unknown P2P applications 
while keeping low false positive rate. To address the problem, we 
focus on the resource discovery mechanism where query 
messages are routed and transmitted through several nodes to 
locate hosts providing certain files. Then, we attempt to detect 
hosts that appear to receive and transmit queries with other 
hosts. To do so, our approach monitors the traffic of targets and 
searches for pairs of inbound/outbound packets which are likely 
to contain same queries by computing their similarities. Through 
evaluation experiments with two popular P2P based file sharing 
software, LimeWire and Winny, we show this approach detects 
P2P nodes within a few hundreds of seconds with a few false 
alerts in a week. 

I. INTRODUCTION 

With the increases in computational power and storage 
capacity of personal computers, P2P networks have been 
popular applications. At present, some major file sharing 
networks such as LimeWire [1] and Winny [2] have hundreds 
of thousands to millions of users spreading over the world.  

While P2P networks are promising technologies, however, 
they also pose several problems. First, many illegal copies of 
digital media contents such as music, movies and software are 
exchanged via the networks. Second, various confidential 
files are exposed and distributed in the networks. For example, 
there are viruses that expose confidential files stored in their 
infected hosts to P2P networks and the Internet. In addition, 
since vast amount of packets are transmitted between P2P 
nodes, many ISPs are suffering from bandwidth saturation 
caused by the P2P traffic. Thus, many organizations restrict 
the use of P2P applications for the security and management 
costs.  

Then, such problems have motivated the development of 
techniques for identifying hosts running P2P applications. 
Especially, there have been many methods using traffic 
analysis. They can be classified into either of misuse detection 
or behavior based detection. Misuse based detections search 
for data that represent particular known P2P applications. 
While the approaches can detect known P2P applications with 
low false negatives, they cannot detect unknown ones. On the 
other hand, behavior based detections take advantage of 

traffic features inherent in P2P applications such as the low 
success rate of connection establishments to other nodes. 
Although these approaches could detect unknown P2P 
applications, however, they render to produce many false 
alarms.  

To achieve the detection of unknown P2P applications while 
keeping low false positive rate, we propose a new behavior 
based detection approach called Query Routing based 
Detection (QRD, for short). QRD focuses on a file discovery 
mechanism introduced by many pure P2P networks. When a 
P2P node searches for a certain file from the network, it sends 
out a query message to the neighbor nodes to gather the 
location information of the file. Then, the receiving nodes 
route and forward the query to other nodes repeatedly. We 
call the query process performed at each intermediate node as 
Query Routing, and attempt to detect hosts that appear to 
perform query routing by analyzing the traffic of detection 
target.  

QRD searches for pairs of inbound and outbound packets 
which are likely to contain the same queries. To do so, QRD 
computes their similarities, and a pair with high similarities is 
judged to contain the same query. Then, QRD judges hosts 
that appear to receive queries from a certain number of hosts 
and transmit to a certain number of others as P2P nodes. Since 
only P2P applications perform query routing, QRD can 
clearly distinguish P2P nodes from non-P2P nodes. 

Through the evaluation experiments using traffic logs of two 
popular applications, LimeWire and Winny, we have 
confirmed that QRD can detect P2P nodes within hundreds of 
seconds while keeping a few false positives in a week. 

To the best of our knowledge, QRD is the first work that 
focuses on query routing for P2P node detection. 

The rest of this paper is organized as follows. Section 2 
reviews related works in P2P node detections. In section 3, 
query routing mechanisms in major P2P networks are 
introduced. Then, we propose QRD and describe the 
procedures in section 4. Then, section 5 shows evaluation 
experiments of QRD. Section 6 discusses about limitation of 
QRD. Finally, section 7 discusses future works and concludes 
this paper. 

II. RELATED WORKS 

There have been many methods proposed to detect the 
existence of P2P nodes by analyzing network traffic. The 

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

09-0100840090©2009 APSIPA. All rights reserved.



methods are classified into two approaches; misuse based 
detection and behavior based detection.  

In the first category, misuse based detection takes advantage 
of detailed knowledge about particular known P2P 
applications. Signature based approaches [3] compare the 
payloads of monitored packets against signatures of known 
P2P applications such as the fixed strings. However, these 
approaches cannot detect unknown P2P applications or 
applications encrypting their traffic. Port based approaches [4] 
recognize hosts that use certain listening ports as P2P nodes. 
However, recent P2P applications are designed to easily 
change their listening ports to evade detection. Generally, 
misuse based approaches cannot detect unknown applications, 
although they produce few false alarms. 

In the second category, behavior based detections focus on 
the inherent features in P2P applications so that they possibly 
detect nodes using unknown P2P applications. Connection 
establishment success rate approach [5] is based on the 
observation that connection establishment attempts from one 
node to another are failed with high probability since P2P 
nodes are occasionally offline and change their IP addresses 
and listening ports frequently, and therefore address lists of 
known P2P nodes decay quickly. With this approach, 
however, hosts that run address scanners can be falsely 
identified. In addition, this approach does not detect 
applications that use UDP flows instead of TCP connections. 
Connection direction based detection [5] computes the ratio 
of number of incoming connection attempts to the total of 
number of incoming and outgoing connection attempts, and a 
host with the ratio within 0.1-0.8 is recognized as P2P node. 
With this method, servers that frequently open connections to 
other hosts (e.g. mail servers) and hosts that run both the 
client applications (e.g. web browsers) and server applications 
(e.g. web servers) are falsely recognized. Chain based 
detection [6] recognizes a group of hosts which are chained 
with TCP connections as P2P nodes when the chains become 
longer than a threshold. However, it requires monitoring large 
IP address space and may recognize ssh/telnet-chains as P2P 
nodes. Distribution of packet length can be used for detection 
[7] since P2P applications tend to send small fixed-length 
packets for transmitting several commands. This approach is 
similar to ours in that both are based on the length of 
command packets. The difference is that we especially focus 
on the query command and its transmission feature. 

As mentioned above, behavior based approaches usually 
suffer from many false positives since it is not easy to extract 
traffic features which can clearly distinguish P2P applications 
from the other applications. Although combination of some 
features could reduce false alarms, it may have adverse effects 
on the detection speed. 

III. QUERY ROUTING 

A. Overview 
P2P networks have mechanisms for their nodes to search 

for vast amount of files provided by other nodes. Early P2P 
applications such as Napster have directory servers that 
manage location information of files. When applications 

are launched, they access to the servers to register their 
providing files. Then, requester nodes address the location 
of files by sending queries to the servers. However, the 
directory server based approach is not scalable against the 
network size and can be a single point of failure. For the 
reason, many recent pure P2P networks introduce server-
less distributed file search mechanisms in which all or a 
portion of nodes in the network are involved.  

In the distributed mechanism, each node has some 
neighbor nodes with which TCP connections or UDP flows 
are established. Then, when a node searches for a certain 
file, it sends out a command called query message to its 
neighbor nodes. A query message contains keywords of the 
searched file. Nodes that receive the query message route 
and forward it to others according to the contents of the 
query. Then, the query is repeatedly routed and forwarded 
through several nodes. If a receiving node knows the 
addresses of nodes that provide the file, it sends back the 
file location information to the requester node. The query 
transmission is terminated when conditions specified in the 
query message are satisfied. The process of routing and 
forwarding query message at each intermediate node is 
referred to as query routing.  

Figure.1 shows a typical example where node X and C 
perform query routing. First, node A, which searches for 
the “File F”, sends out a query message. The message has 
two fields; file name field and TTL field, which specifies 
the number of times the query can be forwarded. In this 
case, the field is set to 3. On receiving the query from node 
A, node X decrements the TTL by 1, and forwards it to 
node B and C, which are X’s neighbor nodes. Then, since 
node B has File F, the response message including node B’s 
IP address is returned to node A though node X. On the 
other hand, node C further forwards the query to node D. In 
the end, the TTL becomes 0 at node D, and then node D 
does not forward it further and just discards it. 

In practice, there are various implementations of query 
routing. In early versions of Gnutella, all nodes are 
recognized as homogenous and randomly connect to others. 
Every node performs query routing. At each node, a query 
is forwarded to all its neighbor nodes. Thus, a file search 
request can generate many copies of a query message.  

In later versions of Gnutella and Winny, nodes are 
recognized as heterogamous, and develop hierarchical 
structures. Each node has some parent nodes and child 
nodes.  Then, queries are sent up from child nodes to parent 
nodes. In this approach, hosts equipped with broad 
bandwidth and high computation powers are positioned at 
higher layers. This approach achieves more effective search 
performance than previous one since queries are sent only 
to the higher part. Query routing is performed at nodes that 
have both parent and child nodes. 

In the following sections, we analyze the features of 
query routing on LimeWire and Winny. 

B. Query routing on LimeWire 
LimeWire is a pure P2P application based on Gnutella 

protocol, which is a popular P2P protocol implemented by 

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



various applications. 
Figure.2 shows the topology of LimeWire network, which 

is a two-tier architecture. Nodes operate on the network in one 
of two roles; Ultrapeer and Leafpeer. An ultrapeer is 
connected to several other ultrapeers and leafpeers, and is 
responsible for forwarding messages received by its leafpeers 
to other nodes. Leafpeers are connected to a few ultrapeers. 
Thus, only the ultrapeers perform query routing. 

 

Query

Query

Q
uery

Q
uery

File F

Search

Result

Search

Result

•Request File：File F
•Max Hop Number：3

Discard 
query

File F is 
found

X

A

B
C

D

 
Figure.1 Example of Query Routing 

 
  

Ultrapeer

Leafpeer

Q
ue

ry

Query
Query

Query

 
 

Figure.2 Topology of LimeWire Network 
 
In this network, leafpeers periodically send information 

about their providing files to the ultrapeers. Ultrapeers also 
exchange the file location information among other ultrapeers. 
Then, when a leafpeer issues a query message, the message is 
firstly forwarded to its ultrapeers. On receiving the message, 
ultrapeer searches file location information obtained from its 
leafpeers. Then, if no leafpeers have files matching to the 
query, it forwards the message to its neighbor peers with 
TTL=1-3. Then, ultrapeers receiving the message route and 
forward to another ultrapeers.  

Table.1 shows the message formant of Gnutella Protocol. 
Payload Descriptor of query message is set to 0x80. File 
names and keywords are put in search criteria. During 
transition, query contents are not modified except the TTL 
field decreases. Thus, query message length does not change 
during transmission.  

When forwarding a query, node records the query’s 
Descriptor ID and destination node IP. If a node that receives 
the query knows the location of the file described in the query, 

it returns a response message with Payload Descriptor=0x81. 
The response is transmitted in reverse direction to the 
requester node. The intermediate nodes use the records to find 
the destination of the response message. 

Next, we measure one hour traffic of an Ultrapeer node 
while its TLS based encryption and data compression options 
are turned off. Figure.2 shows the distribution of query 
message length. The average is 57 byte. Since LimeWire 
supports advanced search criteria using XML, some messages 
are relatively long, exceeding 100 byte.  

Figure.4 shows the distribution of time spent for routing 
and forwarding a query. This time is a interval between when 
a query is received and when the corresponding query is 
forwarded. 50% of queries are forwarded within 100 msec. 
Moreover, more than 10% of queries are processed within 
only 1 msec. 

 
Table.1 Message Format of Gnutella Protocol 

Length (byte) Field 
16 Descriptor ID 
1 Payload Descriptor (0x80:Query) 
1 TTL 
1 Hops 
4 Payload Length 
1 Minimum Speed 
Variable Search criteria 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

20 40 60 80 100 120

Size(byte)

Fr
eq

ue
nc

y

 
Figure3 Distribution of query message length 

C. Query routing on Winny 
Winny is another popular pure P2P application, especially 

in Japan. Different from LimeWire nodes, Winny nodes 
develop a typical tree-like structure. Every node except root 
node has a few parent nodes. Queries are sent up from child to 
parent nodes. Thus, all nodes except leaf and root nodes 
perform query routing. 

Table.2 shows the query message format of Winny protocol. 
Each time a query is forwarded, the forwarder node adds its 
IP address and listening port number to the query, and 
therefore the query length is increased by 6 byte. When the 
query is forwarded 6 times or more than 30 file location 
information is found, the corresponding response is returned 
to the requester via routes recorded in the query. Like 
LimeWire, Winny encrypts all messages. Since they use 

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



stream encryption algorithms such as RC4, the packet length 
is not changed by the encryption.  

Winny supports a search option called hash based search. 
This option enables a requester to search a file using the file’s 
32 bytes hash. This option is frequently used since it is 
effective in finding the exact file that the requester demands. 
With this option, the query keyword field length is 33 byte (1 
byte flag to indicate the hash based search is added). Thus, a 
query length at hth hop nodes is 61 +6*h byte. Since the 
maximum hop number is 6, most queries are no longer than 
97 byte unless the queries contain key information. 

Figure.5 shows the distribution of interval between when a 
query is arrived and when it is forwarded to other nodes. 
From the result, more than 35% of queries appear to be 
transmitted within 1 msec. Thus, Winny nodes tend to 
forwards query faster than LimeWire nodes. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

< 1msec < 10msec < 100msec < 1sec >1sec

Interval between inbound and outboud queries

Fr
eq

ue
nc

y

 
Figure.4 Distribution of time spent for routing and 

forwarding a query message by Limewire. 
 

Table.2 Query Message Format of Winny Protocol 
Length (byte) Fields 
9 Header 
4 Query ID 
1 Keyword Length 
Variable Query Keyword 
11 Query Trip 
1 Number of routing nodes (Nr) 
6 x Nr Routing nodes (IP address, service port) 
2 Number of file location information 
Variable File location information (added to query 

when a node knows the file location) 

D. Features of Query Messages 
The analysis of LimeWire and Winny queries reveals the 

following features of query messages. 
 
1. Once a query message is arrived, the receiving node 

immediately routes and forwards it to another node. 
2. During the transmission, a few byte length data may 

be added to the original query. 
3. The query message length is relatively short, usually 

less than a few hundreds byte. 
 

In the next section, we will show a P2P detection method 
that takes advantage of the features. 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

< 1msec < 10msec < 100msec < 1sec >1sec

Interval  between Inbound and Outbound queries

Fr
eq

ue
nc

y

 
Figure.5 Distribution of time spent for routing and 

forwarding a query message by Winny 

IV. QRD: QUERY ROUTING BASED DETECTION  
OF P2P NODES 

A. Concept 
Our P2P nodes detection approach, called QRD, detects 

P2P nodes by finding hosts that appear to perform query 
routing.  

QRD is supposed to be deployed near the targets so that it 
can capture all the incoming/outgoing packets and measure 
when the packets are sent or received precisely. For example, 
QRD can be installed in target host, L2/L3 switches or 
gateway routers as security modules. 

QRD detection process takes the following three phases. 
 
1. QRD captures packets to/from the target host. Then, 

Packets in a flow are divided into subgroups called 
Chunks according to the captured times. 

2. Inbound chunks in inbound flows and outbound 
chunks in outbound flows are compared to find pairs 
of inbound/outbound chunks that contain the same 
query message. This process is called pairing check. 

3. Finally, if a flow that appears to forward queries 
received from more than TH nodes is found, the flow 
is judged as a routing-flow. Then, when the number of 
routing-flows exceeds Nf in a period of Tf, the target is 
judged as a routing node.  

 
In the following subsections, we will describe each phase. 

B. Phase 1: Packet grouping into packets 
As a preprocessing step for detection, QRD discards a 

captured packet if the packet satisfies any of the following 
conditions. 

 
1. The packet does not contain any payload. 
2. The packet is an outgoing packet and the target host 

has received any packets from the destination host 
within a period of Trecv. 

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



3. The packet is an incoming packet and the target host 
has sent any packets to the source host within a period 
of Tsend.  

Condition 1 filters packets that do not contain query 
messages. Condition 2 and 3 are introduced to filter packets 
which are considered to be response from/to foreign hosts.  

Next, the remaining packets are grouped into chunks. 
Figure.6 shows how packets in a flow are grouped into 
chunks. If the difference of captured times of two successive 
packets in a flow is within an interval PI (e.g. 100msec), they 
are grouped into same chunk, otherwise, different chunks. 
Each chunk includes more than one packet. This process is 
performed for dividing packet into messages. An entire query 
message will be in a single chunk if the grouping is properly 
done. In addition, since most query messages are no more 
than a few hundreds byte as described in Section 3, a chunk of 
more than 1k byte is judged as not containing a query 
message, and then discarded.  

Although most parts of queries in known P2P applications 
are contained in single packets, we introduce a notion of 
chunk to prevent an evasion technique that divides a message 
into several packets no to be detected by per-packet based 
sensors. In addition, this approach can distinguish a packet 
that is a part of successive packets containing non-query data 
from a same length packet containing an entire query, and 
therefore reduce false positives. 

packt1 packt2 packt3 packt4

Chunk1

<PI <PI>PI

Chunk2  
 

Figure.6 Packets grouping into Chunks 

C.   Phase 2: Chunk pairing check 
In the pairing check, a pair of inbound chunk Cin and 

outbound chunk Cout is judged as containing the same query 
if they satisfy the both of following conditions, which are the 
features of query message as described in Section 3. 

 
1. The last packet of Cin is captured before the first 

packet of Cout is captured, and the time difference is 
less than a time QI (e.g. 1msec). 

2. The size of Cout is equal or larger than that of Cin, 
and the difference is less than QS (e.g. 20 bytes). 

 
Chunks that satisfy the condition above are called query-

paired chunks, and chunks are query-paired with each other. 
On the operation of QRD, when an outbound chunk is 

generated or updated by adding a new outbound packet, it is 
compared with inbound chunks which have not been query-
paired with any outbound chunks. An outbound chunk can be 
query-paired with just one inbound chunk. If there are some 
inbound chunks satisfying the conditions, one with the 
minimum difference of captured time is chosen to be query-
paired. 

D. Phase 3: Checking paired outbound chunks in each flow 
If the target host an outbound flow whose outbound chunks 

are query-paired with inbound chunks received from more 
than TH unique hosts in total, QRD judges the flow as a 
routing-flow. Finally, when the number of detected routing-
flows within a period of Tf exceeds Nf, the target is 
recognized as a query routing node. This approach is based on 
the observation that a query routing node is usually connected 
to several nodes, and therefore there will be several outbound 
flows forwarding queries received from several other nodes.  

This feature is essential for distinguishing P2P query routing 
nodes from intermediate hosts exploited by stepping stone 
[10]. Stepping stone is an attack where attackers perform 
malicious activities thorough a chain of compromised 
intermediate hosts to conceal their identities. Intermediate 
hosts are usually chained via ssh and telnet connections. 
When an intermediate host receives a command packet from 
the precessor host in the chain, it immediately forwards the 
packet to the successor. The difference between query routing 
node and intermediate host in stepping stone is that the former 
receives query packets from more than one node and forwards 
them to more than one node, while the latter usually receives 
packets from a single precessor and forwards them to a single 
successor. 

E. Case study 
Finally, we give a simple case study with Figure.8 to show 

how QRD works.  

Host X

Inbound Query
（Inbound Chunk）

Outbound Query
(Outbound Chunk)

QRDRequester

Flow 1

Ca

Cc

Cb
Cd

Traffic 
Analysis

Host S-1

Host S-2

Host D-1

query-paired

query-paired

Flow 2

Fl
ow

 3

Qa

Qc

Qd

Qb

Inbound Packet 
Chunk

Outbound Packet 
Chunk

Pair ?

Ca (Flow 2) Cc (Flow 1) ○

Ca (Flow 2) Cd (Flow 1) ×

Cb (Flow 3) Cc (Flow 1) ×

Cb (Flow 3) Cd (Flow 1) ○

Inbound Packet 
Chunk

Outbound Packet 
Chunk

Pair ?

Ca (Flow 2) Cc (Flow 1) ○

Ca (Flow 2) Cd (Flow 1) ×

Cb (Flow 3) Cc (Flow 1) ×

Cb (Flow 3) Cd (Flow 1) ○

Outbound  Chunks 
contained in Flow 1

Pc

Pd

Outbound  Chunks 
contained in Flow 1

Pc

Pd

Outbound chunks in Flow 1 are query-paired with 
inbound chunks received from 2 hosts, S-1 and S-2

Query-Pairing Table

 
Figure.7 How QRD works 

 
Assume, host X runs P2P application, and is connected to 

host S-1, S-2 and D-1. S-1 sends a query Qa over a chunk Ca 
to X, and X forwards it as Qc over a chunk Cc to D-1 via an 
outbound flow Flow-1. Similarly, a query Qb over a chunk Cb 
is forwarded as Qd over a chunk Cd.  

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



First, QRD captures packets from targets, and groups them 
into the chunks. From the view point of QRD, however, it is 
still unknown which chunks contain queries.  

Then, as depicted in pairing table in Figure.7, QRD 
performs paring check over inbound and outbound chunks. If 
the paring check is properly performed, a pair of Ca with Cc 
and pair of Cb with Cd are judged as query-paired chunks.  

Finally, it is found that Flow-1 contains queries from 2 
hosts. Then, if TH=2 and Nf=1, X is judged as a query routing 
node. 

V. EVALUATION EXPERIMENT 

In this section, we conduct evaluation experiments to 
measure the detection performance of QRD.  

A. Evaluation Condition 
In the experiments, we measure the detection delay of QRD 

using traffic logs of a LimeWire ultrapeer and Winny node. 
Detection delay is an interval between when QRD starts 
monitoring the target and when an alert is produced. 

In addition, the false positive rate is measured using traffic 
logs captured at a gateway of a typical LAN for a week. The 
logs were provided by DARPA in 1999 [11] and have been 
frequently used for the performance evaluation of IDS. The 
LAN contains several clients and servers such as www, ssh 
and smtp servers. 

We assume QRD is deployed near the target host so that all 
the incoming and outgoing traffic can be captured with a 
small delay. Table.3 shows the QRD default parameters used 
in the experiments. 

 
Table.3 Default Parameters 

Parameter Value 

TH 3 
PI 0.1 sec 
QI 0.001 sec 
QS 20 byte 
Nf 1 
Tf 2000 sec 
Trecv 0.1 sec 
Tsend 0.1 sec 

 

B. Evaluation Results 
Figure.8 shows the detection delay as a function of TH. 

QRD detects LimeWire and Winny nodes within 200 sec. 
Once connected to a P2P network, a P2P node usually stays 
the network for more than tens of minutes. Thus this delay is 
tolerable to detect most nodes before they leave the networks.  

Figure.9 shows the detection delay as a function of PI. The 
delay increases in proportion of PI since query packets are 
more likely to be grouped with packets irrelevant to queries as 
PI increases, and as a result the detection is further delayed. 

Figure.10 shows the detection delay as a function of QI. 
More chunks are properly query-paired as QI increases, and 
which results in the faster detection. 

 Figure.11 shows the detection delay as a function of Nf. 
As Nf increases, detection delay with Winny node is steeply 
increased compared to that with LimeWire node. This is 
because a Winny node is restricted to connect to only a few 
parent nodes at once while a LimeWire ultrapeer node can 
connect to more than ten nodes 

 

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6

TH

D
e
te
c
tio
n
 D
e
la
y 
(s
e
c
)

Limewire

Winny

 
Figure.8 Detection Delay against TH 

0

50

100

150

200

250

300

350

0.01 0.1 1

PI (sec)

D
e
te
c
ti
o
n
 D
e
la
y(
se
c
)

Limewire

Winny

 
Figure.9 Detection Delay against PI 

0

10

20

30

40

50

60

70

80

90

0.001 0.01 0.1

QI  (sec)

D
e
te
c
ti
o
n
 D
e
la
y 
(s
e
c
)

L imewire

Winny

 
Figure.10 Detection Delay against QI 

 

0

100

200

300

400

500

600

700

1 1.5 2 2.5 3

Nf

D
e
te
c
ti
o
n
 D
e
la
y 
(s
e
c
)

Limewire

Winny

 
Figure.11 Detection Delay against Nf 

 
As for false positives, no false alert is produced with 

default parameters. Even with TH=2, QI=0.1 and PI=0.01, 

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



there is only 1 false alert produced in a week. The alert is 
caused by IRC sessions.  

The results show that QRD can detect query routing nodes 
within a few hundreds of seconds with quite low false 
positives, while additional experiments with various 
applications and networks would be required for evaluating 
the performance more precisely. 

VI. LIMITATION 

Here, we discuss about limitations of QRD.  
First of all, QRD cannot directly detect P2P nodes that do 

not perform query routing. Thus, QRD is not effective against 
leafpeers in LimeWire. However, since such nodes are 
connected to query routing nodes, QRD could indirectly 
detect the nodes by judging connection peers of detected 
query routing nodes as P2P nodes. 

Second, P2P applications that do not adopt query routing 
mechanisms for locating files cannot be detected. For 
example, Bittorrent [8] nodes accesses to the tracker sites to 
addresses the nodes that have a certain file and thus no nodes 
perform query routing. For such applications, there are other 
detection methods taking advantage of the unique features 
such as [9]. 

Third, P2P nodes may evade QRD by inserting a few 
seconds delay before transmitting a query or appending a 
random size dummy data to the query. We will investigate the 
effects of such measures on evasion success probability and 
query routing performance, and then provide solutions in the 
future works.  

VII. CONCLUSION 

This paper proposed QRD, a new P2P node detection 
method based on query routing. Different from misuse based 
methods which are ineffective against unknown applications 
and existing behavior based methods suffering from many 
false positives, QRD focuses on the essential behavior 
inherent in query routing nodes to achieve the precise 
detection of unknown application with low false positive rates.  

For detecting queries, packets are grouped into chunks. Then, 
the pairs of inbound and outbound chunks are judged to 
contain the same queries if the differences of their captured 
times and lengths are within thresholds. Finally, a host with 
several outbound flows containing more than a certain 
number of such query-paired chunks is judged as a query 
routing node. 

Then, evaluation experiments showed that QRD can detect 
query routing P2P nodes within a few hundreds of seconds 
with a few false positives in a week. 

In the future works, we will evaluate the QRD performance 
with various network environments and compare to existing 
detection methods. In addition, the effects of measures for 
evading QRD will be also investigated. 

ACKNOWLEDGEMENT 

This research was supported by a consignment research from 
the Ministry of Internal Affairs and Communications, Japan. 

REFERENCES 

[1] LimeWire Official Web site & Free Download, 
http://www.limewire.com/, (accessed at 03/15/08). 

[2] T.Ohzahara, Y.Hagiwara, M.Terada and 
K.Kawashima, “A traffic identification method and 
evaluation for a pure P2P application Passive and 
Active Network Measurement”, Lecture Notes in 
Computer Science, vol.3431, pp.55-68, 2005. 

[3] S.Subhabrata, O.Spatscheck and D.Wang, “Accurate, 
Scalable In-Network Identification of P2P Traffic 
Using Application Signature, In Proc. of the 13th 
International Conference on World Wide Web, 
pp.512-521, 2005. 

[4] S.Sen and J.Wang, “Analyzing peer-to-peer traffic 
across large networks”, IEEE/ACM Transactions on 
Networking, vol.12, no.2, pp.219-232, 2004. 

[5] G.Bartlett, J.Heidemann and C.Papadopoulos, 
“Inherent Behaviors for On-line Detection of Peer-to-
Peer File Sharing”, In Proc. of the 10th IEEE Global 
Internet Symposium, pp.55-60, 2007. 

[6] F.Constantinou, P.Mavrommatis, “Identifying known 
and unknown peer-to-peer traffic”, In Proc. of IEEE 
International Symposium on Network Computing and 
Applications (NCA), pp.93-102, 2006. 

[7] M.Collins and M.Reiter, “Finding Peer-to-peer file-
sharing using coarse network behaviors, In Proc. of 
the European Symposium on Research in Computer 
Security, 2006. 

[8] BitTorrent Protocol, http://bitconjurer.org/BittTorrent, 
(accessed at 03/15/09). 

[9] W.Ngiwlay, C.Intanagonwiwat and Y.Teng-amnuay, 
“Bittorrent Peer Identification based on Behaviors of a 
Choke Algorithm”, In Proc. of ACM Asian Internet 
Engineering Conference’08, 2008. 

[10] Y.Zhang, V.Paxson, “Detecting Stepping Stones”, In. 
Proc. of 9th USENIX Security Symposium, pp.171-184, 
2000. 

[11] MIT Lincoln Laboratory: DARPA Intrusion Detection 
Evaluation Data Sets, MIT, (online), available from            
http://www.ll.mit.edu./IST/ideval/data/dta_index.html, 
(accessed at 03/15/09). 

 

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009


	pg84: 84
	pg85: 85
	pg86: 86
	pg87: 87
	pg88: 88
	pg89: 89
	pg90: 90


