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Abstract—This paper analyzes the security of an anonymous
communication system 3-Mode Net (3MN) against collaborating
relay nodes. We evaluate the anonymity of a message sender
under the situation that some relay nodes collaborate each other
to find out the message sender. As in the case of Crowds, we
define the measure of the anonymity of the message sender as
the probability that the first immediate predecessor among the
immediate predecessors of all collaborating relay nodes is in fact
the message sender. This paper gives an explicit formula for this
probability. Some numerical examples are also presented.

I. I NTRODUCTION

Preserving anonymity of communication on the Internet is
one of the most important issues in communication engineer-
ing. Encryption protocols, such as SSL, enable users to protect
their important data in a communication. However, these pro-
tocols cannot protect the sender and the receiver of a message
because one can easily read the header of an IP packet, in
which IP addresses of a destination and a source are included.
If the sender and the receiver of a message are revealed, one
can infer sender’s human relationship, hobbies and diversions.
Therefore, a number of anonymous communication systems,
which do not only protect a message but also hide the IP
addresses of the sender and the receiver of a message, have
been proposed [1], [2], [11], [13], [14], [15], [18], and they
are applied to electronic vote and web access.

Recently, a new anonymous communication system called
3-Mode Net (3MN) has been proposed [10], [12]. 3MN can
be regarded as an extension of the Crowds-based anonymous
communication system [15], [16], where each relay node in
the communication path decides its action by probability, that
is, whether the node sends a message to the proper receiver,
or to another node. In addition to these two actions, 3MN
can choose the third action, that is, to encrypt whole data
set including the destination of the proper receiver and to
rewrite the temporal destination. This action enables 3MN to
provide anonymity to the proper receiver unlike Crowds. In
[12], the expectations of the number of relay nodes as well
as the number of encryption required for communication are
derived, and based on the results, it is shown that 3MN has an
advantage of smaller numbers of relay nodes and encryption
than those of Onion Routing [5], [8], [14]. Furthermore, in
[10], the probability distributions and variances of the above
two numbers are obtained, and by using these results, the
performance of 3MN is analyzed in more detail.

However, it is not shown how much degree of anonymity is
guaranteed for the sender and the receiver of a message when

the probabilities of mode selections are given. Attackers may
reveal the sender and the receiver with high probability if the
probabilities of mode selections are chosen inappropriately.
Intuitively, when both the number of relay nodes and that of
encryption are quite small, the degree of anonymity would
be low. To clarify the effects of the probabilities of mode
selections to the anonymity of a sender and a receiver is an
important issue for evaluating the performance of anonymous
communication systems.

As a first step for security analysis of 3MN, this paper
evaluates the degree of sender anonymity against collaborating
nodes who collaborate each other in order to identify the mes-
sage sender. We refer to a node who forwards a message to a
collaborating node as an immediate predecessor, and consider
the probability that the first immediate predecessor among
the immediate predecessors of all the collaborating nodes on
the communication path coincides with the message sender.
The conditional probability was first employed in [15] for the
analysis of the sender anonymity of Crowds. The evaluation
method is very simple because it only uses the probabilities
of mode selections, the number of collaborating nodes, and
the number of 3MN members, and it does not consider other
attacks such as eavesdropping and timing attacks [9]. The
conditional probability has been introduced in the literature
(e.g., [7], [11], [13], [17]) as a standard measure for the
anonymity of anonymous communication systems. We also
employ this measure for analyzing sender anonymity in 3MN.

As shown in [12], 3MN can be regarded as a generalization
of Onion Routing and Crowds, and we can analyze these
anonymous communication systems in a unified framework.
By choosing the probabilities of mode selections appropriately
so that 3MN behaves in the same way as Crowds, we show that
this probability is equal to the one obtained in [15]. In addition,
we derive a formula for sender anonymity in Onion Routing.
Furthermore, by using these results, we present numerical
examples with the several probabilities of mode selections, and
discuss sender anonymity in 3MN through these examples.

This paper is organized as follows. Section II gives an
overview of 3MN. In Section III, we derive the probability
that the first immediate predecessor among the immediate
predecessors of all the collaborating nodes is a message sender.
Also, we derive these probabilities in Crowds and Onion
Routing. In Section IV, we consider the influence of the
probabilities of mode selections on sender anonymity through
numerical examples. We conclude this paper in Section V.
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Fig. 1. Actions of a node in 3MN

II. OVERVIEW OF 3-MODE NET

3MN [12] is one of the anonymous communication systems
where a message sender forwards a multi-encrypted data set
to a message receiver through several relay nodes, where we
refer to the data set as the set of data composed of the address
of the next destination and the multi-encrypted data set.

A. Three modes in 3MN

3MN has three modes as shown in Figure 1,i.e., Decryption
Mode (D-Mode), Transmission Mode (T-Mode), and Encryp-
tion Mode (E-Mode). Each relay node selects one of the three
modes based on probability.

In Figure 1, the first mode is the mode where a node
transmits a received data set to its destination directly. In this
case, after the destination node receives the data set, the node
decrypts the data set with his decryption key, and produces a
new data set, which is similar to the case of Onion Routing
[14]. This mode is called Decryption Mode (D-Mode).

The second mode is the mode where a node forwards a
received data set to other node than the destination. This mode
is called Transmission Mode (T-Mode).

The third mode consists of the following two processes:
first, create a new data set whose destination is a newly-
selected node except for the destination of a received data
set and whose data is created by encrypting the received
data set with the encryption key of the newly-selected node;
second, forward the new data set to other node except for the
destination specified in the new data set. This mode is called
Encryption Mode (E-Mode).

By introducing E-Mode, the destination of a data set does
not always indicate the proper receiver of a message, and
thus, 3MN has the anonymity of the proper receiver. This is
sharp contrast with the case of Crowds [15], [16]. In addition,
since each node cannot understand whether the immediate
predecessor of the node is a message sender or one of relay
nodes, sender anonymity is also preserved. This situation is
similar to the case of Onion Routing.

Each relay node selects one of the three modes based on
probability. Here, let the probabilities to choose D-Mode, T-
Mode, and E-Mode bepD, pT, and pE, respectively, and
suppose thatpD + pT + pE = 1 andpD > pE.

B. Behavior of 3MN

We explain the behavior of 3MN by showing the action of
each relay node in Figure 2. In Figure 2, square frames indicate
multi-encrypted data composed of multi-encrypted message
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Fig. 2. An example of the behavior of 3MN

and the address of the next destinations. Characters on square
frames indicate the next destination. We refer to the set of
these two data as a data set.

A sender S first creates a data setR||KR(msg) which
consists of the address of a proper receiverR and an en-
crypted messageKR(msg) with R’s encryption keyKR

(|| represents the combination of data). Next,S creates a
data set A||KA(R||KR(msg)) (A and KA represent the
destination of a node selected randomly andA’s encryp-
tion key, respectively). After that,S forwards the data set
A||KA(R||KR(msg)) to other nodeB. In this case, the number
of multiplicity of encryption is 2. We refer to the number as the
initial multiplicity of encryptionand denote it byk in general.

When a relay node has received a data set, the node first
checks its destination. If the destination is the address of the
node, the node decrypts the multi-encrypted data and produces
a new data set, and selects one mode based on probability. If
the destination is not the address of the node, the node only
selects one mode based on probability. In this example,B
selects one action according to probability, and suppose that
B selects D-Mode. In this case,B forwards this data set to a
nodeA.

When the nodeA has received the data set,A acquires
a new data setR||KR(msg) sinceA has the decryption key
of KA(R||KR(msg)). After that, suppose thatA chooses T-
mode,A forwardsR||KR(msg) to other nodeC.

In the similar manner, the nodeC and the following
nodes forward a data set with encryption and decryption by
selecting one mode. Finally, the receiverR receives a data set
R||KR(msg). Then,R obtains the messagemsg by decrypting
the data set, and the transmission of a message finishes.

Notice that 3MN provides a unified framework which can
deal with Onion Routing and Crowds as a special case by
selecting the probabilities of the three modes and the ini-
tial multiplicity of encryption appropriately. The relationships
among Onion Routing, Crowds, and 3MN are shown in Table
I. In Table I, pf represents the probability of forwarding a
received message to another randomly chosen node in Crowds.

TABLE I
RELATIONSHIPS AMONG ONION ROUTING, CROWDS, AND 3MN

Initial
multiplicity

Probabilityof modeselections
D-Mode E-Mode T-Mode

3MN k pD pE pT

Onion Routing k 1 0 0
Crowds 1 1− pf 0 pf
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II I . ANONYMITY OF A MESSAGE SENDER AGAINST

COLLABORATING NODES

In this section, we evaluate the degree of sender anonymity
against collaborating nodes who attempt to identify a message
sender by collaborating each other. To simplify the discussion,
we assume that the number of 3MN members is constant.
In addition, suppose that collaborating nodes do not perform
other attacks,e.g., eavesdropping, timing attacks [9], and so
on.

It should be noted that, in order to argue the sender
anonymity of 3MN in a similar way to the case of Crowds,
we assume that both a message sender and a message receiver
are not collaborating nodes.

A. Derivation of the formula on sender anonymity against
collaborating nodes

In order to measure the degree of sender anonymity, we
derive the probability that the first immediate predecessor
among the immediate predecessors of all the collaborating
nodes on the communication path is indeed a message sender.
Our approach is the same as the approach of Crowds [15].
Therefore, we derive the probability in a similar way to
Crowds case.

Let Hi, i ≥ 1, denote the event that the first collaborating
node on the communication path appears ati-th node on the
path, and defineHi+ = Hi ∨Hi+1 ∨Hi+2 ∨ · · · . Also, let I
denote the event that the first immediate predecessor among
the immediate predecessors on the communication path is the
message sender.

Now, we consider the conditional probabilityP (I|H1+)
that the first immediate predecessor among the immediate
predecessors of the collaborating nodes is the message sender,
under the condition that one of the collaborating nodes receives
a data set. However, unlike the simple situation such as
Crowds, it is rather hard to derive the probability because we
must compute infinite series concerningH1+ which is very
complicated for 3MN case. In order to avoid the computation
of the infinite series, we introduce “probability generating
function” and its properties [6]. By using the function, we can
obtain the following theorem that concerns this probability.

Theorem 1:Let n andc denote the number of all members
and that of collaborating nodes in 3MN, respectively. Then,
the probabilityP (I|H1+) is given by the following equation:

P (I|H1+) =
(n− c)(c+ 1)− n× gτk(n− cn )

n(n− c){1− gτk(n− cn )
} , (1)

wheregτk(λ) is a probabilitygenerating function for a random
variableτk representing the number of the relay nodes, until
the message reaches the proper receiver under the condition
that the initial multiplicity of encryption isk, and is given by
the following equation:

gτk(λ) =





(
1−pTλ−

√
(1−pTλ)2−4pDpEλ2

2pEλ

)k
(pE 6= 0)

(
pDλ

1−pTλ

)k
(pE = 0)

. (2)

Proof: The conditional probabilityP (I|H1+) is obtained by
the following equation:

P (I|H1+) =
P (I ∧H1+)
P (H1+)

=
P (I)

P (H1+)

=
P (I|H1)P (H1) + P (I|H2+)P (H2+)

P (H1+)
. (3)

Here,we useP (I∧H1+) =P (I) sinceI⇒H1+. Here, note
that P (H1) = c/n, P (I|H1) = 1, P (I|H2+) = 1/(n − c).
The third equation indicates that if the first collaborating
node receives a data set through several relay nodes, then the
immediate predecessor of the collaborating node is one of the
any non-collaborating nodes with equal likelihood [15].

In order to calculate Equation (3), we need to compute
P (H1+) becauseP (H2+) = P (H1+) − P (H1). This value
is calculated as follows:

P (H1+) = 1− gτk
(n− c

n

)
. (4)

The proof of this equation is given in Appendix A. Equation
(2) is proved in Appendix B.

From Equations (3) and (4),P (I) and P (I|H1+) are
calculated as follows, respectively:

P (I) =
c

n
+

1
n− c

{
1− c

n
− gτk

(n− c
n

)}
, (5)

P (I|H1+) =
(n− c)(c+ 1)− n× gτk(n− cn )

n(n− c){1− gτk(n− cn )
} . (6)

This completesthe proof. �
B. Sender anonymity in Crowds and Onion Routing

We show that the above conditional probability is equal to
that of Crowds as a special case. In addition, we give a formula
for sender anonymity in Onion Routing.

First, we drive the equation in [15] from Equation (1).
Since Crowds can be regarded as the special case of 3MN by
selecting the probabilities of the three modes and the initial
multiplicity of encryption appropriately, Equation (1) must be
equal to the equation in Crowds. From Table I, the initial
multiplicity of encryption and the probabilities of D-Mode,
E-Mode, and T-Mode are1, 1 − pf , 0, andpf , respectively.
Also, Equation (2) is calculated as follows:

gτk(λ) =
(1− pf )λ
1− pfλ . (7)

Therefore,from Equation(1), we obtain:

P (I|H1+) =
{n− pf (n− c− 1)}

n
. (8)

This result coincideswith the equation obtained in [15].
Next, we compute a conditional probability that the first

immediate predecessor among the immediate predecessors
of all collaborating nodes is a message sender in Onion
Routing. From Table I, the initial multiplicity of encryption,
the probabilities of D-Mode, E-Mode, and T-Mode arek, 1, 0,
and0, respectively. Also, Equation (2) is calculated as follows:

gτk(λ) = λk. (9)
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Fig. 3. Senderanonymity under the various probabilities of mode selections

Therefore, from Equation (1), we obtain:

P (I|H1+) =
(c+ 1)nk−1 − (n− c)k−1

nk − (n− c)k . (10)

IV. NUMERICAL EXAMPLES

A. Effects of the probabilities of mode selections

In this section, we consider the influence of the probabilities
of mode selections on sender anonymity against collaborating
nodes through numerical examples.

First, we illustrate the degree of sender anonymity under the
condition thatk = 2, n = 10, andc = 1. Figure 3 shows the
degree of sender anonymity under the various probabilities of
mode selections in the region satisfying0<pD<1, 0<pE<1,
0 < pD + pE < 1 (this corresponds to0 < pT < 1), and
pD>pE. From Figure 3, we show that whenpD becomes large,
P (I|H1+) becomes large under the condition thatpE is con-
stant. Also, we show that whenpE becomes small,P (I|H1+)
becomes large under the condition thatpD is constant. These
results show that the degree of sender anonymity degrades
when we setpD to be large andpE to be small. In order to
provide high anonymity, we must setpD to be small andpE

to be large. However, in such a situation, it is shown in [10]
that the number of relay nodes becomes large. Therefore, there
is a performance trade-off between sender anonymity and the
number of relay nodes required for communication.

Second, in order to consider from the viewpoints of sender
anonymity as well as the number of relay nodes and that
of encryption, we consider the following three cases under
the condition k = 1: Case A: (pD, pE, pT)=(0.50, 0.43,
0.07), Case B: (pD, pE, pT)=(0.10, 0.03, 0.87), Case C: (pD,
pE, pT)=(0.75, 0.05, 0.20). The reason whyk = 1 is to
see the influence of mode probabilities for sender anonymity
more clearly. The numerical results of the expectations and
variances of the numbers of relay nodes and encryption, and
the conditional probabilitiesP (I|H1+) are shown in Table II.
In Table II, MN, VN, ME, and VE are the expectation and
variance of the number of relay nodes, and the expectation
and variance of the number of encryption, respectively. From

Table II, we observe thatP (I|H1+) = 0.3728 in Case A and
P (I|H1+) = 0.2695 in Case B, respectively. If collaborating
nodes tried to identify a message sender without any infor-
mation other than the number of 3MN members and that of
the collaborating nodes, all the non-collaborating nodes would
seem to be the message sender with equal likelihood,i.e.,
1/(n − c) = 1/9 = 0.1111. Compared with this value, these
results ofP (I|H1+) in Table II are high, but are less than0.5.
Therefore, according to the criterion in [15], sender anonymity
is maintained in these two examples.

Also, from Table II, 3MN in Case C hardly maintains sender
anonymity becauseP (I|H1+)=0.7564. In Case C, in almost
cases, after a message sender forwards a message to a relay
node, the relay node sends the message to a message receiver,
because the number of relay nodes and that of encryption are
quite small. By this, we observe that when the number of relay
nodes and that of encryption become small, sender anonymity
becomes little. Therefore, we conclude that sender anonymity
is lost under the case where the inappropriate probabilities of
mode selections are chosen so that the number of relay nodes
and that of encryption are quite small.

Also, we observe that the degrees of sender anonymity for
Case A and Case B are different although the expectations
of the number of relay nodes are the same. By this observa-
tion, it is expected that there exist the probabilities of mode
selections with high performance and high anonymity for a
message sender in 3MN because all the values of Case B
are superior to those of Case A in Table II. However, we
have to consider how much degree of anonymity is guaranteed
for a message receiver because the behavior of 3MN in Case
B is almost similar to that of Crowds and Crowds does not
provide anonymity to a message receiver. Therefore, in order
to consider the security and performance of 3MN, we need to
analyze 3MN in more detail.

B. Effects of the initial multiplicity of encryption

In this section, using the three cases in the above examples,
we observe influence of the initial multiplicity of encryption
on sender anonymity through numerical examples.

The numerical results about the influence of the initial
multiplicity of encryption on sender anonymity in 3MN are
shown in Table III. Table III indicates that, in the examples, the
probabilitiesP (I|H1+) betweenk=1 andk=2 vary widely.
This implies that, considering the performance of 3MN, it
is appropriate to selectk = 2 as the initial multiplicity of
encryption. We also observe thatP (I|H1+) converges to one

TABLE II
EXPECTATIONS AND VARIANCES OF THE NUMBERS OF RELAY NODES AND

ENCRYPTION, AND DEGREES OF SENDER ANONYMITY IN3MN

(pD, pE, pT) (k = 1, n = 10, c = 1)
(0.50,0.43,0.07) (0.10,0.03,0.87) (0.75,0.05,0.20)

MN 14.29 14.29 1.429
VN 2697 364.7 0.9038
ME 7.143 1.426 1.071
VE 582.9 1.137 0.08746

P (I|H1+) 0.3728 0.2695 0.7564
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value whatever pD, pE, and pT may be, whenk becomes
large. This value is larger than the probability1/(n−c)=1/9.
Concerning these points, we have the following theorem.

Theorem 2:Let n and c be the number of all members
and that of collaborating nodes in 3MN, respectively. Then,
the probabilityP (I|H1+) that the first immediate predecessor
among the immediate predecessors of all the collaborating
nodes is the message sender tends to(c+1)/n whateverpD,pE,
andpT may be, whenk goes to infinite. In addition, this value
is larger than1/(n− c).
Proof: In order to prove this theorem, we use a probability
generating function for a random variable and its general
property [6]. A probability generating functiongX(λ) for a
random variableX is defined as follows:

gX(λ) =
∞∑
r=0

P (X = r)λr, (11)

wherek andP (X=r) are the initial multiplicity of encryption
and a probability distribution forX, respectively. When0<
λ<1, we obtain the following equation.

gX(λ) =
∞∑
r=0

P (X = r)λr <
∞∑
r=0

P (X = r) = 1. (12)

Therefore, the following property is obtained.

if 0 < λ < 1 then 0 < gX(λ) < 1. (13)

By using this property and Equations (1) and (2), we obtain:

P (I|H1+) = lim
k→∞

(n− c)(c+ 1)− n× gτk(n− cn )

n(n− c){1− gτk(n− cn )}

= lim
k→∞

(n− c)(c+ 1)− n× (gτ1(n− cn ))k

n(n− c)[1− {gτ1(n− cn )}k]

=
(n− c)(c+ 1)
n(n− c) =

c+ 1
n

. (14)

In addition,we obtain:

c+ 1
n
− 1
n− c =

c(n− c− 1)
n(n− c) ≥0 (∵ n ≥ c+ 1).

This completes the proof. �

V. CONCLUSION

In this paper, we have analyzed the degree of sender
anonymity for an anonymous communication system 3-Mode
Net (3MN) against collaborating nodes. In order to evaluate

TABLE III
SENDER ANONYMITY IN THE SEVERAL INITIAL MULTIPLICITY OF

ENCRYPTION OF3MN

(pD, pE, pT) (k = 1, n = 10, c = 1)
(0.50,0.43,0.07) (0.10,0.03,0.87) (0.75,0.05,0.20)

k = 1 0.3728 0.2695 0.7654
k = 2 0.2687 0.2212 0.4621
k = 3 0.2360 0.2082 0.3617
k = 5 0.2128 0.2015 0.2827
k = 100 0.2000 0.2000 0.2000

the degree of sender anonymity in 3MN, we consider col-
laborating nodes who attempt to identify a message sender,
and derive the conditional probability that the first immediate
predecessor among the immediate predecessors of all the
collaborating nodes is the message sender when one of the
collaborating nodes receives the message. We show that this
conditional probability is represented by a probability gener-
ating function, which is different from the derivation method
in Crowds [15]. Furthermore, we calculate the conditional
probabilities in Crowds and Onion Routing from obtained
results. By using these results, we consider the influence of
the probabilities of mode selections and the initial multiplicity
of encryption.

The remaining works in 3MN are mainly as follows;
1) derive receiver anonymity against collaborating nodes,
2) analyze 3MN in detail from the viewpoints of security

and performance,
3) implement 3MN, like Freenet [3], Mixminion [4], and

Tor [5].
Especially, the first issue would be one of the most interesting
topics because we can evaluate sender-receiver anonymity by
using receiver anonymity together with the results of sender
anonymity obtained in this paper.
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APPENDIX

A. Derivation of Equation(4)

Let τk be the random variable representing the number of
relay nodes required for communication under the condition
that the initial multiplicity of encryption isk, andPk(i) be
the probability that the number of relay nodes required for
communication isi, that is,Pk(i) = P (τk = i). If the first
collaborating node on a communication path appears ati-
th node on the path, the number of relay nodes required
for communication is larger than or equal toi. Therefore,
the probability P (Hi) that the first collaborating node on
the communication path appears ati-th node on the path is
described as follows:
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where λ = (n − c)/n. Therefore, we can calculate the
probabilityP (H1+) as follows:
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In the above derivation, we used the definition of a probability
generating function:

gτk(λ) =
∞∑

j=0

P (τk = j)λj . (15)

This completes the proof. �
B. Derivation of Equation(2)

From Equation (15),gτk(λ) can be written by

gτk(λ) = E(λτk),

whereE(·) is the expectation operator. Sinceτk is the sum of
k copies of an independent random variableτ1, the probability
generating functiongτk(λ) is calculated as follows:

gτk(λ) = E(λτk) = E(λkτ1) = E(λτ1)k = gτ1(λ)k.

This is derived from the relationE(λX+Y ) = E(λX)E(λY )
when random variablesX andY are independent. In order to
drive gτk(λ), we considergτ1(λ).

Considering the property of 3MN, we derive several condi-
tions aboutgτ1(λ). First, since the events selecting D-Mode,
E-Mode, and T-Mode are mutually exclusive, we obtain:

gτ1(λ) = E(λτ1) = E(λτ1 |D) + E(λτ1 |E) + E(λτ1 |T),

whereE(λτ1 |X) represents the conditional expectation ofλτ1

under the condition that X-mode is selected.
Next, we consider the above conditional expectations

E(λτ1 |D), E(λτ1 |E), andE(λτ1 |T). When D-Mode, E-Mode,
and T-Mode are selected, the multiplicities of encryption
become0, 2, and 1 by one step, respectively. Therefore, the
random variables of the conditional expectations in D-Mode,
E-Mode, and T-Mode become1, 1 + τ2, 1 + τ1, respectively.
Since the probabilities of mode selections arepD, pE, andpT,
the conditional expectations are as follows:

E(λτ1 |D) =pDE(λ1) = pDλ,

E(λτ1 |E) =pEE(λ1+τ2) = pEλE(λτ2) = pEλ(gτ1(λ))2,

E(λτ1 |T) =pTE(λ1+τ1) = pTλE(λτ1) = pTλ(gτ1(λ)).

From these results, we obtain:

gτ1(λ) = pDλ+ pEλ(gτ1(λ))2 + pTλgτ1(λ).

By solving the above quadratic equation,gτ1(λ) is given as
follows:
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,

whereweusetwo conditions thatgτ1(λ) have to be finite when
λ→0 and thatpE 6=0. Therefore, whenpE 6=0, we obtain:
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Also, in the casepE = 0, by solving the linear equation(1−
pTλ)gτ1(λ)− pDλ = 0, we obtain:

gτk(λ) =
( pDλ

1− pTλ

)k
.

This completesthe proof. �
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