

Power Estimation for Interactive 3D Game Using an
Efficient Hierarchical-Based Frame Workload

Prediction
Da-Jing Zhang-Jian, Chung-Nan Lee, Ing-Jer Huang and Shiann-Rong Kuang

Department of Computer Science and Engineering, National Sun Yat-Sen University, Taiwan, R.O.C.
E-mail:salmoner.tw@yahoo.com.tw, cnlee@mail.nsysu.edu.tw, ijhuang@cse.nsysu.edu.tw, and srkuang@cse.nsysu.edu.tw

ABSTRACT— In this paper we propose a novel
hierarchical-based workload prediction algorithm that
integrates the proportion control, integral control, derivative
control, frame structure, and analysis of a game or benchmark
to make game workload predictions and perform power
estimation. By hierarchical analysis of a game or benchmark,
one can know the complexity of a future frame of interactive
3D games in advance. Hence, the prediction error is small.
Experimental results show that the proposed algorithm
requires only 41.2 ms of extra workload, but provides an
improvement of more than 15.7% in cycle count estimation as
compared to competing algorithms.

I. INTRODUCTION

With the growing popularity of mobile devices in recent
years, interactive 3D games are increasingly being
transferred from desktops to mobile devices (e.g., PDAs,
cell phones, and portable game consoles). However,
because of limitations in computational capacity and power
limitations, 3D graphic (3DG) applications need to support
3D real-time rendering and minimize power consumption to
be run on embedded systems. These requirements have led
to growing interest in power management and to efforts
toward enhancing battery life.

Though different applications have different performance
and power workload, most 3DG applications are
computationally intensive and power-consuming. For
mobile devices, it is necessary to provide users with
high-quality 3DG experience under limited power and
processing. Unfortunately, 3DG application workloads vary
in significantly scene change. Dynamic Voltage and
Frequency Scaling (DVFS) [1][2] and Dynamic Frequency
Scaling (DFS) are usually used to reduce power
consumption and make power management by changing the
processor frequency based on the requirements of an
application, e.g. for fix-duration tasks, in particular during
periods of low utilization as waiting, the results in a
proportional reduction of energy use in mobile devices. In

addition to the process frequency the processor voltage can
also be changed to reduce power consumption.

Recently many workload prediction techniques have
been proposed such as history predictor, Proportion Integral
Derivative (PID) predictor [3], frame structure-based
predictor [4], signature table predictor [5], and hybrid
predictor [6]. The history-based predictor uses the average
of the workload of certain amount of frames to estimate the
workload of next frame, and it is the simplest one that can
be easily implemented into hardware. Based on the
feedback from recent prediction errors, PID consists of
three components (Proportional control, Integral control and
Derivative control), where the proportional control
measures the variation in predicted workload and actual
workload. The integral control measures the variation based
on the sum of the recent workload difference. Finally, the
derivative control measures the change of frame rate in the
process. According to the workload variation between the
actual workload and the predicted workload from the
proportional, integral and derivative control, one can predict
the next estimated frame workload via the PID predictor.

The 3DG applications have a minor difference in
adjacent frames but scene change, the signature table
predictor needs to recognize whether the current frame is
similar to the previous frame and then predict the workload
of current frame. The signature table predictor uses four
parameters such as average triangle area, triangle counts,
average triangle height and vertex counts obtained from the
triangles in the signature buffer to construct signatures. The
signature concatenates these four parameters into a string
and needs to find the best matching signature from the
signature table with the smallest distance metric [5].

Based on Intel® VTune™ [3][4], Gu and Chakraborty
used a theory-based DVS to scale the operating frequency
and voltage of the processor to match a varying
computational workload as closely as possible. Moreover,

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

09-0102080215©2009 APSIPA. All rights reserved.

they proposed a hybrid DVS scheme which combines frame
structure-based and PID predictor to estimate the frame
workload. The frame structure-based workload in rendering
a game frame is roughly linearly correlated with its
rasterization workload which is generated by processing the
different objects, e.g. brush models and alias models. The
existing techniques can be used to do frame workload
prediction, but they often have more error when the 3DG
application workloads vary in scene change.

Some power modeling analysis [7][8][9] for systems
components provide trade-off between power estimation
accuracy and computation workload, e.g. Nam et al. use
extra hardware circuit to predict the workload [8]. In order
to get better understand the workload/complexity of an
application, one can use a suitable tool such as NVperfHUD
[10], gDEBugger [11] or Intel®VTune™ [3] to find the
bottleneck of graphics applications and game workload.
Unfortunately, many performance tools [12][13] and
benchmarks[14][15] are only developed for desktop
computers and OpenGL [16], e.g. SPMark04 [17] and
3DMarkMobile06 [18]. Furthermore, these tools just
support special hardware namely the platform dependent
(e.g. Intel®VTune is for Intel’s CPU) and they can not
analyze power consumption to come up with a power
management plan. In order to overcome these problems and
conduct on-line power management, the proposed tool [19],
Graphics Performance Tuning Tool (GPTT), is defined to
be the extension functions of OpenGL ES [20] and is
embedded in standard graphics library for measuring the
performance of GPU on embedded systems. GPTT solves
the problem that specific performance tool is only
supported by a specific platform. Moreover, for doing
power management GPTT can catch and visualize the
statistics information of each part of rendering pipeline,
then developers could easily get the performance
information they need without conforming to a specific
platform.

In this paper, we propose a hierarchical-based workload
prediction algorithm to yield a better prediction for scene
change in an interactive game. The rest of this paper is
organized as follows. Section II presents the proposed
system architecture for power management. The
hierarchical-based workload prediction and performance
evaluation are discussed in Section III and Section IV,
respectively. Finally, conclusion and future work are given
in Section V.

II. SYSTEM OVERVIEW

The overall of system architecture for power
management as shown in Fig. 1 includes application, frame
workload prediction, power management and
software/hardware layers.

Application

Frame workload prediction

Power management

Software/Hardware: Nsysu 3D Graphics SoC

GameGUI of GPTT (client)

Hierarchical-based
Game Analysis

Frame structure
and PID Analysis

Ev ent/ Script Complexity Power Modules

GPTT
(Serv er)

OpenGL ES 1.x Driv er

Windowing System and Operating System (Linux)

Geometry
Engine(GE)

Power
Management
Engine(PME)

Rendering
Engine(RE)

EGL

Fig. 1 System architecture for power management

Application layer consists of the game and graphics user

interface (GUI) of GPTT, the analysis of game including
scene change, variable camera etc., and the hierarchical tree
of a game that will be discussed in Section III. Additionally,
the GUI of GPTT displays the run time frame information
such as triangle counts, pro-triangle counts from the server
for the frame workload prediction.

In order to get better analysis for frame workload

prediction layer, one can analyze the game and store the
hierarchical tree information of the game into a database.
The variations of frame workload can be predicted by the
hybrid algorithm including PID and frame structure-based.
Moreover, according to the complexity of the different
events in the power management layer one can find the
corresponding module in advance and select appropriate
voltage (or frequency). The detailed information about the
frame workload prediction and power management layers
will be discussed in Section III.

In the software/hardware layer, the system collects

information via GPTT during the run time, such as triangle
counts from the Geometry Engine (GE), pixel counts from
the Rendering Engine (RE), and the current frame workload,
and uses PID and frame structure-based workload
prediction algorithm in the frame workload prediction layer,
then checks position of the user in the hierarchical tree to
estimate the next frame workload in advance and finally
selects the corresponding power module in the power
management layer.

Functions of GPTT is a unique feature in our Nsysu 3DG

core [21] during development stage which is integrated
within the SoC for high-end 3DG products. It is a
cross-platform to facilitate real-time profiling, debugging
and performance measurement/tuning and collects real-time

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

statistics of a 3DG application running in software or
hardware. Via such on-time information the developer can
investigate the interaction between applications, workload
prediction algorithms, GE and RM components, and come
up with a power management plan for low-power systems.

The system architecture of GPTT can be divided into two

components: One is the debugging capability in the
embedded system (server) and the other is GUI for
performance (client) observing of each part of rendering
pipeline, e.g. transformation, lighting or fragment
operations. The debugging capability is defined to be the
extension functions of standard graphics library, gl.h, to
realize OpenGL ES. Developers could insert these functions
as using extension functions in OpenGL ES to their source
codes, then display performance information via GPTT.
Currently, not only one can print the performance
information in the text file but also one can use the
client-server framework for decreasing unnecessary burden
to send the performance statistics to client, and display the
different information. The GUI is responsible to collect and
arrange information coming from rendering pipeline and to
display some information, e.g. triangle counts, pro-triangle
counts or pixel counts.

The items to be measured as listed in Table 1. Main
information such as processed triangles from GE and
processed pixels from RE. Fig. 2 shows the screenshot of a
downtown benchmark and the performance results
respectively, one can observe some performance
information which displays triangle counts, pixel counts,
computing time ratio, and understand the complexity
benchmark from frame to frame by the variation of the
curve as illustrated in the right part of Fig. 2. In addition,
the information are helpful in workload prediction and
power management. The detailed frame workload
prediction will be discussed in Section III.

Table 1
Measurement items for software

1. Primitives 12.Lighting-module processed time
2. Processed primitives 13.Pixel processed time
3. Pixels 14.Utility rate of each per-fragment
4. Processed pixels 15.Buffer bandwidth

5. Triangles per second 16.History of functions call
6. Pixels per second 17.Video memory utility rate
7. Frames per second 18.GPU idle time (hardware only)
8. Screen resolution 19.Driver idle time (hardware only)
9. Texture size 20.Batch
10.Frame processed time 21.# of draw functions call
11.Transformation processed time

Fig. 2 Screenshot of benchmark and performance result for

the Downtown benchmark

III. THE HIERARCHICAL-BASED WORKLOAD
PREDICTION FOR POWER MANAGEMENT

In this section, we introduce a hierarchical-based
workload prediction algorithm to predict the next frame
workload by collecting frame workload information,
including the frame workload, triangle counts and pixel
counts and further reduce prediction error. Based on the
complexity of the applications in the on-line game or
mobile game can be obtained from analysis in advance, and
by detecting the avatar position in the run time. The
complexity of the current event one can predict the frame
workload trend and select a corresponding module in next
fame/second. The detailed description about the
hierarchical-based game analysis and the prediction of
frame workload will be discussed in Subsection III.A. and
Subsection III.B, respectively.

A HIERARCHICAL-BASED GAME ANALYSIS
A game engine is a software system designed for the

creation and development of computer games. Its core
functionalities typically include a rendering engine for
2D/3D graphics, physics engine, animation, characters,
2D/3D sprite and 3D scene graph and so on. The task to
process a frame is to process geometry throughput, lighting,
texture and rendering etc. As illustrated in Fig. 3, a game
system can be divided into the game player layer and game
engine layer. According to the analysis of different game
player layers (e.g. combat, story or script, AI and trading
system), one can obtain the workload of each script. In
addition, the different element of game engine layer often
has different workload in a scene, e.g. shot change, moving
object, avatar position and variable camera, by using these
information will lead to a better frame workload prediction.

For experiment convenience we create a game alike
benchmark, which consists of four stories and seven events
as illustrated in Fig. 4. The different nodes of an n-branch
hierarchical structure contain n different events which can
be observed according to the avatar position or player
information in 3D environment.

Game Engine Lay er

Game P layer Layer

Game/Benchmark

Combat System

NPC System/ AI Trad ing System

Story/Script System

3D Scene Graph

Collis ion

Virtua l Agent/Ava tar

3D/2D Sprite

Rendering Physics

Sound Animation Character

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

Fig. 3 The block diagram of a game system

Story 1

Story 2

Story 3

Story 4

Fig. 4 Different stories and events: the windmill (story1),

factory (story2), shop (story3) and downtown (story4)

The hierarchical structure can represent story relations
and topological properties in 3D space. In other words, the
current scene is detected to be corresponded to a known
story node.

By using the knowledge of the hierarchical structure one
can predict the next event or the next path in the database.
Furthermore, one can record complexity and coordinates of
current event of 3D environment, when the event is enabled
by a player. Based on the hierarchical structure it offers an
insight into many stories as illustrated in Fig. 5(a).
According to an avatar’s position in 3D space, one can
further predict which story in the future the avatar will be
close to.

Fig. 5 shows windmill, factory, shop and downtown
stories in the second level and room, foot, car, helicopter,
store and building scene in the third level of a hierarchical
structure. When the avatar walks in a certain space, one can
check the current complexity (story) in the database as
listed in Table 2 and predict next story. For example, If the
distance in 3D space between the avatar position (AP) and
coordinates of factory story (CS) is less than a threshold (ε)
which is set to 1/400 of the scene, ε<−)zy,(x,Cz)y,(x,A SP ,
one can predict that the avatar may enable the factory event
in the next several frame/seconds from this hierarchical
structure as illustrated in Fig. 5(b)-(c). The user may select
a certain type of transportation in the factory story, e.g. foot,
car and helicopter. Moreover, one can check whether the
prediction is correct by checking the complexity in the next
frame.

Windmill Fac tory

Store
Scene

Downtown

Helicopter
Scene

Car
Scene

Foot
Scene

Main

Room
Scene

Shop

Room1 Room2

Building
Scene

(a)

Factory

Helicopter
Scene

Car
Scene

Foot
Scene

Main

Fac tory

Helic opter
Scene

Car
Scene

Foot
Scene

Main

(b) (c)

Fig. 5 Hierarchical structure of the benchmark: (a)
hierarchical structure, (b) current event (black block) and

predicted event (blue block) and (c) predicted scene

Table 2
Analysis of scene complexity from game

7.4250000 0.000000 0.00000004886

0.000000 0.000000 0.00000091228418

0.000000 0.000000 0.00000084186830

-6.460000 4.900000 0.000000302013487

-2.250000 -0.350000 0.00000073583020

-2.184000 1.250000 0.00000058647358

4.550000 -0.050000 0.000000640011267

0.000000 0.000000 0.00000039060

0.000000 0.000000 0.00000068303906

2.800000 0.000000 -0.938000112674886

7.350000 0.000000 0.000000488610202

4.000000 0.000000 6.000000134876400

-3.258000 4.250000 0.000000134875864

10202

Next
Complexity

9122

Current
Complexity

0.000000 0.000000 0.000000

Coordinate (X,Y and Z)

In order to do power management one can define
different power modules for different complexities, e.g. one
can define 1~1500 triangles per second as module 1 and
1501~3000 as module 2. According to the difference of
triangle counts between foot scene (triangle counts: 2400)
and car scene (triangle counts: 3644), when the player
chooses the type of transportation from foot to car one can
know that the CPU cycle counts or power needed have
better to increase from power module 2 to 3. According to
the transportation selection a corresponding complexity can
be known, and then one can select power needed for
running the game via analyzing the complexity of the
virtual scene as listed in Table 3.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

Table 3
Analysis of scene complexity for power management

Module 2
Module 1

Module 1

Module 4
Module 3

Module 2

Module 3
Power Module

1362Room1 Scene

3240Windmill Scene

2400Foot Scene

913Store Scene

2364Room2 Scene

Helicopter Scene
Car Scene

5138
3644

Triangle Count

The different events and corresponding module are
shown in Fig. 6, according to the event, one can find a
corresponding module by searching the original complexity
of stories in the database, and then select an appropriate
voltage (or frequency) based on the hierarchical-based
workload prediction algorithm for power management.

Ev ents /ScriptEv ents /Script Workload/Workload/
Complexity Lev elComplexity Lev el Power ModulesPower Modules

WindmillWindmill

Register/Register/
Game ov erGame ov er

…
.

Lev el 2Lev el 2

Lev el 3Lev el 3

Lev el 1Lev el 1

…
.

Module 2Module 2

ModuleModule 33

Module 1Module 1

…
.

DowntownDowntown
(indoor)(indoor)

Lev el nLev el n ModuleModule nn

Hierarchical-based
Game

Analys is

GPTT analysis , frame workload predic tion of PID and frame s truc ture

FactoryFactory

Shop/Shop/
TradingTrading Lev el nLev el n--11 ModuleModule nn-- 11

Fig. 6 Different event and corresponding module

B THE PREDICTION OF FRAME WORKLOAD
To do power management we need to predict the frame

workload, if the error between predicted workload and
actual workload is closer to zero, one will get a better
power module and further adjust the voltage and frequency
of FPGA/hardware or software. The different story often
has the different complexity (triangle counts) when the
avatar selects from the current story into another, one can
predict the frame workload of the next story according to
the hierarchical-based analysis in Subsection III.A. In fact,
the frame workload in two adjacent frames iF and 1iF +
are usually utmost similar to each other because their
original (pre-process) triangle counts)Tricount(F# i and

)Tricount(F# 1i+ are equal in the same scene. If the
difference, FΔ , of triangle counts of two adjacent frames is
equal to zero, the two frames are belong to the same scene,
otherwise they have different scene. Hence, in order to do
power management the scene change of the benchmark is

needed to be detected. The definition of scene change is
given as follows:

)Tricount(F# -)Tricount(F# F i1i+=Δ (1)

decreases complexity and change sceneelse
increases complexity and change scenethen

 0 F if else
 scene samethe then 0 F If

>
=
Δ

Δ

(2)

Moreover getting the information of scene change, one

can predict the variation of the next frame based on a
simple analysis of scene animation, e.g. zoom-in and
zoom-out. For example, in order to detect zoom-in, one can
extract the variations of eye coordinates in frames iF
and 1iF + from the gluLookAt function i.e. gluLookAt
function creates a viewing matrix derived from an eye point,
a reference point indicating the center of the scene. If the
camera behavior is zoom-in, z value coordinates of eye
point, ZLΔ , will decrease, the whole workload will increase.
The variation of gluLookAt function are given as follows:

)(Flookat -)(Flookat L iz1izz +=Δ (3)

out-zoom else in-zoom then 0 L if else
function zoom activate tdoes' camera the then 0 L If

z

z

<
=
Δ

Δ
(4)

Moreover, we also use the CPU workload iC in frame i

and average CPU workload of previous several frames, pC ,
from frame (i-1-T) to frame i-1. T is set to be five frames. If
the difference, CΔ , of CPU workload is smaller than zero,
we know that CPU workload may decrease in frame i+1.
The CPU workload trend of previous prediction is given as
follows:

 pi C-CC =Δ (5)

 /TCC where
1-i

T-1)-(ix
xp ∑=

=
 (6)

decreases workloadthe else

 increases workloadthe 0C if else
 workloadthe in changes no then 0C If

>
=
Δ

Δ
 (7)

By using the variations of FΔ , LzΔ and CΔ , one can

predict the CPU workload trend. For example, when the
adjacent frames are belong to the same scene and if
the 0C >Δ and 0Lz <Δ , one can know the whole workload
will increase. The prediction of CPU workload trend is
given as follows:

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

decreases workloadthe else
 increases workloadthe then 0 F if else

 workloadthe in change no else
decreases workloadthen 0)) L(| 0) C((if else
increases workloadthe then 0)) L(| 0) C((if else

 workloadthe in change no then 0) L & 0 Cif(
 then 0 F If

Z

Z

Z

>

≥≤
≤≥

==
=

Δ

ΔΔ
ΔΔ

ΔΔ
Δ

 (8)

After the trend of CPU workload is known, one needs to

calculate the frame workload variations ifwΔ that is
measured by the hybrid algorithm including PID and frame
structure-based. PID predictor is a generic control loop
feedback mechanism based on the feedback from recent
prediction difference, PID includes three components
(Proportional control, Integral control and Derivative
control). The proportional control measures the variation

(t)ε of the system in predicted workload iw and actual

workload iw , where by using GPTT one can receive the

actual workload iw . The integral control based on recent
variation is used to measure the sum of the recent errors
∑

iT
(t)ε from frame (i-TI) to frame I and TI is set to the

frame interval. Finally, the derivative control measures the
change of frame rate in the process DD))/TT-(t-(t)(εε ,
where TD is set to be equal to the frame execution time. The
frame workload variation of the PID predictor is given as
follows:

D

D

T
pi T

)T-(t-(t)
D(t)

I
1(t)KPIDw

I

εε
εεΔ ⋅+∑⋅+⋅= (9)

where pK and I are the proportional and integral coefficients,
and D is derivative coefficient. For experiment convenience
one can obtain the best result by manually tuning these
parameter values when pK =0.9. I=28 and D=0.0033. In
addition, we also need to calculate the predicted workload

iFSw using the frame structure-based predictor. Let

iFSwΔ denote the frame workload variation of the frame
structure-based predictor, and its workload variation is
given by iii FSw-wFSw =Δ , where we suggest that the
predicted frame workload iFSw which is almost linearly
correlated with its rasterization workload, therefore one can
predict the total frame workload via estimating the
rasterization workload of a frame.

Based on the frame workload variations iPIDwΔ and

iFSwΔ , the frame workload variation we select the
minimum of them as the output

)FSw ,PIDwmin(fw iii ΔΔΔ = and use the CPU workload
trend from Eq.(8), one can do the frame workload

prediction. If the whole workload will increase in frame i+1,
the next estimated frame workload is given by

ii1i fwwffw Δ+=+ , otherwise the frame workload is given
by ii1i fw-wffw Δ=+ . The prediction of frame workload is
given as follows:

⎪
⎩

⎪
⎨

⎧ +
=+

 otherwise ,fw
decreases workloadthe if ,fw-fw
increases workloadthe if ,fwfw

fw

i

ii

ii

1i Δ
Δ

 (10)

IV. PERFORMANCE EVALUATION

The evaluation environment is built around a game alike
benchmark as illustrated in Fig. 5(a). The experiments were
run in the PC environment, PC with an AMD Athlon 1400+
and 512megabytes main memory. By using GPTT one can
receive the real CPU cycle counts from the software
implementation. Performance evaluation is conducted on
the proposed algorithm, the traditional history-based
method and the Gu et al’s hybrid algorithm [6] .

As illustrated in Fig. 7(a), the proposed algorithm
performs much better from frame 87 to 88. This is due to
the proposed algorithm can predict the scene change in
frame 88 according to the game analysis in advance as
illustrated in Fig. 7(b), but the competing algorithms don’t
consider scene variation and may get more error. To give a
better comparison, the CPU cycle counts for each algorithm
are given in Fig. 8, and the proposed algorithm yields more
than (8152-6872)/8152 * 100% = 15.7% improvement in
cycle count estimation. Hence, it is a feasible way via game
analysis to help us to predict the frame workload and match
the diagrammatic curve of real CPU workload as illustrated
in Fig. 9.

(a)

(b)
Fig. 7 Triangle counts and CPU cycle counts: (a) Triangle

counts (b) Red small-dot line is real cycles by GPTT, green
dash-dot line is the prediction by history-based predictor,

black dotted line is the prediction by the Gu et al’s
algorithm, and purple line is the prediction by the proposed

algorithm

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

Fig. 8 Comparisons of cycle difference for different

algorithms

Fig. 9 Workload predictions: Black line is real CPU cycles

and red dotted line is the prediction by the proposed
algorithm

Currently, the proposed algorithm for game workload
prediction only spends 171.2 microseconds to finish the
work as illustrated in Fig. 10. Originally, each frame takes
0.0333333 seconds to finish. After using the
hierarchical-based workload prediction algorithm, each
frame will take 0.0335045 seconds, which is 0.51 % longer
than the original period. Each frame takes 0.0344907
seconds to receive data after enabling GPTT (0.000903
seconds). In other words, there are 28.99 frames displayed
within one second. The overhead is very insignificant. It
almost doesn’t affect the performance of CPU or graphics
chip.

Moreover, the proposed algorithm provides an
improvement of more than 1.028 frames and requires only
0.037 frame of extra workload as compared to the
competing algorithms.

Fig. 10 Calculation workload for different algorithms

V. CONCLUSIONS

We have proposed a novel hierarchical-based workload
prediction algorithm for power management. Based on
measurement of GPTT, the proposed algorithm for game
workload prediction spends only 41.2 ms of more than the
competing algorithm to finish the work, but achieves an
improvement of more than 15.7 % in cycle count
estimation.

ACKNOWLEDGMENT

The authors would like to thank the National Science
Council of Taiwan, for financially supporting this research
under contract no. NSC96-2220-E-110-003.

REFERENCES

[1] C. J. Hughes, and S. V. Adve, "A Formal Approach to
Frequent Energy Adaptations for Multimedia Applications,”
In International Symposium on Computer Architecture
(ISCA), pp. 138–149, Munich, Germany, 2004.

[2] C. Im, H. Kim, and S. Ha, “Dynamic Voltage Scheduling
with Buffers in Low-Power Multimedia Applications,” ACM
Transactions in Embedded Computing Systems, pp. 686–705,
2004.

[3] Y. Gu, and S. Chakraborty, “Control Theory-Based DVS for
Interactive 3D Games,” Design Automation Conference
(DAC), Anaheim, CA, USA, 8-13 June, 2008.

[4] Y. Gu, and S. Chakraborty, “Power Management of
Interactive 3D Games Using Frame Structures,” 21st
International Conference on VLSI Design (VLSID),
Hyderabad, India, January 2008.

[5] B. Mochocki, K. Lahiri, S. Cadambi, and X. S. Hu,
“Signature-Based Workload Estimation for Mobile 3D
Graphics,” in Proc. Design Automation Conference (DAC),
pp. 592-597, July 2006.

[6] Y. Gu, and S. Chakraborty, “A Hybrid DVS Scheme for
Interactive 3D Games,” IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 3-12,
USA, April 2008.

[7] N. Bansal, K. Lahiri, A. Raghunathan, and S. T. Chakradhar,
"Power Monitors: A Framework for System-Level Power
Estimation Using Heterogeneous Power Models," in Proc.
The 18th international Conference on VLSI Design Held
Jointly with 4th international Conference on Embedded
Systems Design, pp. 579-585, 2005.

[8] B. G. Nam, J. Lee, K. Kim, S. J. Lee, and H. J. Yoo, “A
52.4mW 3D Graphics Processor with 141Mvertices/s Vertex
Shader and 3 Power Domains of Dynamic Voltage and
Frequency Scaling,” In Digest of the 2007 IEEE International
Solid-State Circuits Conference (ISSCC’07), 2007.

[9] M. Lajolo, A. Raghunathan, S. Dey, and L. Lavagno,
“Efficient Power Co-Estimation Techniques for
System-on-Chip Design,” in Proceedings of Design,
Automation and Test in Europe (DATE '00), pp. 27–34, Paris,
France, March 2000.

[10] NVIDIA Corporation, “NVperfHUD,”
http://developer.nvidia.com/object/nvperfhud_home.htm

[11] graphicREMEDYCorporation,“gDEBugger,”
http://www.gremedy.com.

[12] Hawk Software, “GLTrace Programming Utility,”

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

http://www.hawksoft.com/gltrace/
[13] N. Duca, K. Niski, J. Bilodeau, M. Bolitho, Y. Chen, and J.

Cohen, “A Relational Debugging Engine for the Graphics
Pipeline,” Proc. of the ACM Transactions on Graphics
(TOG), Vol. 24, Issue 3, pp. 453-463, 2005.

[14] SPEC,“SPECvireperf 8.1,”
http://www.spec.org/gpc/opc.static/vp81information.htm

[15] Futuremark Corporation, “3D Mark series benchmarks,”
http://www.futuremark.com/products/

[16] Silicon Graphics, “OpenGL,”http://www.opengl.org/
[17] Futuremark Corporation, “SPMark04,”

http://www.futuremark.com/products/spmark04/
[18] Futuremark Corporation, “3DMark Mobile06,”

http://www.futuremark.com/products/3dmarkmobile06/
[19] C. N. Lee, D. J. Zhang-Jian and K. Y. Lin, “A New

FPGA-Based Cross-Platform Graphics Performance Tuning
Tool for ARM Versatile Platform,” Computer Graphics
Workshop (CGW), Taiwan, 2007.

[20] Khronos Group, “OpenGL ES Specification,”
http://www.khronos.org/opengles

[21] L. B.i Chen, T. Y. Ho, I. J. Huang, Y. N. Chang, S. W. Haga,
J. H. Hong, S. F. Hsaio, S. R. Kuang, K. C. Kuo and C. N.
Lee, "The Development of an Energy-Awared Mobile 3D
Graphics SoC with Real-Time Performance/Energy
Monitoring and Control," IEEE International SoC Design
Conference (IEEE ISOCC'08), Busan, Korea, Vol. I,
pp.234-237, Nov. 2008.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

	pg208: 208
	pg209: 209
	pg210: 210
	pg211: 211
	pg212: 212
	pg213: 213
	pg214: 214
	pg215: 215

