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ABSTRACT— In this paper we propose a novel 
hierarchical-based workload prediction algorithm that 
integrates the proportion control, integral control, derivative 
control, frame structure, and analysis of a game or benchmark 
to make game workload predictions and perform power 
estimation. By hierarchical analysis of a game or benchmark, 
one can know the complexity of a future frame of interactive 
3D games in advance. Hence, the prediction error is small. 
Experimental results show that the proposed algorithm 
requires only 41.2 ms of extra workload, but provides an 
improvement of more than 15.7% in cycle count estimation as 
compared to competing algorithms. 

I. INTRODUCTION 

With the growing popularity of mobile devices in recent 
years, interactive 3D games are increasingly being 
transferred from desktops to mobile devices (e.g., PDAs, 
cell phones, and portable game consoles). However, 
because of limitations in computational capacity and power 
limitations, 3D graphic (3DG) applications need to support 
3D real-time rendering and minimize power consumption to 
be run on embedded systems. These requirements have led 
to growing interest in power management and to efforts 
toward enhancing battery life. 
 

Though different applications have different performance 
and power workload, most 3DG applications are 
computationally intensive and power-consuming. For 
mobile devices, it is necessary to provide users with 
high-quality 3DG experience under limited power and 
processing. Unfortunately, 3DG application workloads vary 
in significantly scene change. Dynamic Voltage and 
Frequency Scaling (DVFS) [1][2] and Dynamic Frequency 
Scaling (DFS) are usually used to reduce power 
consumption and make power management by changing the 
processor frequency based on the requirements of an 
application, e.g. for  fix-duration tasks, in particular during 
periods of low utilization as waiting, the results in a 
proportional reduction of energy use in mobile devices. In 

addition to the process frequency the processor voltage can 
also be changed to reduce power consumption. 
 

Recently many workload prediction techniques have 
been proposed such as history predictor, Proportion Integral 
Derivative (PID) predictor [3], frame structure-based 
predictor [4], signature table predictor [5], and hybrid 
predictor [6]. The history-based predictor uses the average 
of the workload of certain amount of frames to estimate the 
workload of next frame, and it is the simplest one that can 
be easily implemented into hardware. Based on the 
feedback from recent prediction errors, PID consists of 
three components (Proportional control, Integral control and 
Derivative control), where the proportional control 
measures the variation in predicted workload and actual 
workload. The integral control measures the variation based 
on the sum of the recent workload difference. Finally, the 
derivative control measures the change of frame rate in the 
process. According to the workload variation between the 
actual workload and the predicted workload from the 
proportional, integral and derivative control, one can predict 
the next estimated frame workload via the PID predictor.  
 

The 3DG applications have a minor difference in 
adjacent frames but scene change, the signature table 
predictor needs to recognize whether the current frame is 
similar to the previous frame and then predict the workload 
of current frame. The signature table predictor uses four 
parameters such as average triangle area, triangle counts, 
average triangle height and vertex counts obtained from the 
triangles in the signature buffer to construct signatures. The 
signature concatenates these four parameters into a string 
and needs to find the best matching signature from the 
signature table with the smallest distance metric [5].  
 

Based on Intel® VTune™ [3][4], Gu and Chakraborty 
used a theory-based DVS to scale the operating frequency 
and voltage of the processor to match a varying 
computational workload as closely as possible. Moreover, 
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they proposed a hybrid DVS scheme which combines frame 
structure-based and PID predictor to estimate the frame 
workload. The frame structure-based workload in rendering 
a game frame is roughly linearly correlated with its 
rasterization workload which is generated by processing the 
different objects, e.g. brush models and alias models. The 
existing techniques can be used to do frame workload 
prediction, but they often have more error when the 3DG 
application workloads vary in scene change.  
 

Some power modeling analysis [7][8][9] for systems 
components provide trade-off between power estimation 
accuracy and computation workload, e.g. Nam et al. use 
extra hardware circuit to predict the workload [8]. In order 
to get better understand the workload/complexity of an 
application, one can use a suitable tool such as NVperfHUD 
[10], gDEBugger [11] or Intel®VTune™ [3] to find the 
bottleneck of graphics applications and game workload. 
Unfortunately, many performance tools [12][13] and 
benchmarks[14][15] are only developed for desktop 
computers and OpenGL [16], e.g. SPMark04 [17] and 
3DMarkMobile06 [18]. Furthermore, these tools just 
support special hardware namely the platform dependent 
(e.g. Intel®VTune is for Intel’s CPU) and they can not 
analyze power consumption to come up with a power 
management plan. In order to overcome these problems and 
conduct on-line power management, the proposed tool [19], 
Graphics Performance Tuning Tool (GPTT), is defined to 
be the extension functions of OpenGL ES [20] and is 
embedded in standard graphics library for measuring the 
performance of GPU on embedded systems. GPTT solves 
the problem that specific performance tool is only 
supported by a specific platform. Moreover, for doing 
power management GPTT can catch and visualize the 
statistics information of each part of rendering pipeline, 
then developers could easily get the performance 
information they need without conforming to a specific 
platform. 
 

In this paper, we propose a hierarchical-based workload 
prediction algorithm to yield a better prediction for scene 
change in an interactive game. The rest of this paper is 
organized as follows. Section II presents the proposed 
system architecture for power management. The 
hierarchical-based workload prediction and performance 
evaluation are discussed in Section III and Section IV, 
respectively. Finally, conclusion and future work are given 
in Section V. 

II. SYSTEM OVERVIEW 

The overall of system architecture for power 
management as shown in Fig. 1 includes application, frame 
workload prediction, power management and 
software/hardware layers. 
  

Application

Frame workload prediction

Power management

Software/Hardware: Nsysu 3D Graphics SoC

GameGUI of  GPTT (client)

Hierarchical-based 
Game Analysis

Frame structure
and PID Analysis

Ev ent/ Script Complexity Power Modules

GPTT 
(Serv er)

OpenGL ES 1.x Driv er

Windowing System and Operating System (Linux) 

Geometry 
Engine(GE) 

Power
Management
Engine(PME)

Rendering
Engine(RE) 

EGL

 
Fig. 1 System architecture for power management 

 
Application layer consists of the game and graphics user 

interface (GUI) of GPTT, the analysis of game including 
scene change, variable camera etc., and the hierarchical tree 
of a game that will be discussed in Section III. Additionally, 
the GUI of GPTT displays the run time frame information 
such as triangle counts, pro-triangle counts from the server 
for the frame workload prediction. 

 
In order to get better analysis for frame workload 

prediction layer, one can analyze the game and store the 
hierarchical tree information of the game into a database. 
The variations of frame workload can be predicted by the 
hybrid algorithm including PID and frame structure-based. 
Moreover, according to the complexity of the different 
events in the power management layer one can find the 
corresponding module in advance and select appropriate 
voltage (or frequency). The detailed information about the 
frame workload prediction and power management layers 
will be discussed in Section III. 

 
In the software/hardware layer, the system collects 

information via GPTT during the run time, such as triangle 
counts from the Geometry Engine (GE), pixel counts from 
the Rendering Engine (RE), and the current frame workload, 
and uses PID and frame structure-based workload 
prediction algorithm in the frame workload prediction layer, 
then checks position of the user in the hierarchical tree to 
estimate the next frame workload in advance and finally 
selects the corresponding power module in the power 
management layer. 

 
Functions of GPTT is a unique feature in our Nsysu 3DG 

core [21] during development stage which is integrated 
within the SoC for high-end 3DG products. It is a 
cross-platform to facilitate real-time profiling, debugging 
and performance measurement/tuning and collects real-time 
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statistics of a 3DG application running in software or 
hardware. Via such on-time information the developer can 
investigate the interaction between applications, workload 
prediction algorithms, GE and RM components, and come 
up with a power management plan for low-power systems. 

 
The system architecture of GPTT can be divided into two 

components: One is the debugging capability in the 
embedded system (server) and the other is GUI for 
performance (client) observing of each part of rendering 
pipeline, e.g. transformation, lighting or fragment 
operations. The debugging capability is defined to be the 
extension functions of standard graphics library, gl.h, to 
realize OpenGL ES. Developers could insert these functions 
as using extension functions in OpenGL ES to their source 
codes, then display performance information via GPTT. 
Currently, not only one can print the performance 
information in the text file but also one can use the 
client-server framework for decreasing unnecessary burden 
to send the performance statistics to client, and display the 
different information. The GUI is responsible to collect and 
arrange information coming from rendering pipeline and to 
display some information, e.g. triangle counts, pro-triangle 
counts or pixel counts. 
 

The items to be measured as listed in Table 1. Main 
information such as processed triangles from GE and 
processed pixels from RE. Fig. 2 shows the screenshot of a 
downtown benchmark and the performance results 
respectively, one can observe some performance 
information which displays triangle counts, pixel counts, 
computing time ratio, and understand the complexity 
benchmark from frame to frame by the variation of the 
curve as illustrated in the right part of Fig. 2. In addition, 
the information are helpful in workload prediction and 
power management. The detailed frame workload 
prediction will be discussed in Section III. 
 

Table 1 
Measurement items for software 

1.  Primitives 12.Lighting-module processed time
2.  Processed primitives 13.Pixel processed time
3.  Pixels 14.Utility rate of each per-fragment
4.  Processed pixels 15.Buffer bandwidth

5.  Triangles per second 16.History of functions call
6.  Pixels per second 17.Video memory utility rate
7.  Frames per second 18.GPU idle time   (hardware only)
8.  Screen resolution 19.Driver idle time (hardware only)
9.  Texture size 20.Batch
10.Frame processed time 21.# of draw functions call
11.Transformation processed time  

 

 
Fig. 2 Screenshot of benchmark and performance result for 

the Downtown benchmark 

III. THE HIERARCHICAL-BASED WORKLOAD 
PREDICTION FOR POWER MANAGEMENT 

In this section, we introduce a hierarchical-based 
workload prediction algorithm to predict the next frame 
workload by collecting frame workload information, 
including the frame workload, triangle counts and pixel 
counts and further reduce prediction error. Based on the 
complexity of the applications in the on-line game or 
mobile game can be obtained from analysis in advance, and 
by detecting the avatar position in the run time. The 
complexity of the current event one can predict the frame 
workload trend and select a corresponding module in next 
fame/second. The detailed description about the 
hierarchical-based game analysis and the prediction of 
frame workload will be discussed in Subsection III.A. and 
Subsection III.B, respectively. 

A HIERARCHICAL-BASED GAME ANALYSIS 
A game engine is a software system designed for the 

creation and development of computer games. Its core 
functionalities typically include a rendering engine for 
2D/3D graphics, physics engine, animation, characters, 
2D/3D sprite and 3D scene graph and so on. The task to 
process a frame is to process geometry throughput, lighting, 
texture and rendering etc. As illustrated in Fig. 3, a game 
system can be divided into the game player layer and game 
engine layer. According to the analysis of different game 
player layers (e.g. combat, story or script, AI and trading 
system), one can obtain the workload of each script. In 
addition, the different element of game engine layer often 
has different workload in a scene, e.g. shot change, moving 
object, avatar position and variable camera, by using these 
information will lead to a better frame workload prediction. 
 

For experiment convenience we create a game alike 
benchmark, which consists of four stories and seven events 
as illustrated in Fig. 4. The different nodes of an n-branch 
hierarchical structure contain n different events which can 
be observed according to the avatar position or player 
information in 3D environment. 
 

Game Engine Lay er

Game P layer Layer

Game/Benchmark

Combat System

NPC System/ AI Trad ing System

Story/Script System

3D Scene Graph

Collis ion

Virtua l Agent/Ava tar

3D/2D Sprite

Rendering Physics

Sound Animation Character

 

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



  

Fig. 3 The block diagram of a game system 
 

Story 1

Story 2

Story 3

Story 4

 
Fig. 4 Different stories and events: the windmill (story1), 

factory (story2), shop (story3) and downtown (story4) 
 

The hierarchical structure can represent story relations 
and topological properties in 3D space. In other words, the 
current scene is detected to be corresponded to a known 
story node. 
 

By using the knowledge of the hierarchical structure one 
can predict the next event or the next path in the database. 
Furthermore, one can record complexity and coordinates of 
current event of 3D environment, when the event is enabled 
by a player. Based on the hierarchical structure it offers an 
insight into many stories as illustrated in Fig. 5(a). 
According to an avatar’s position in 3D space, one can 
further predict which story in the future the avatar will be 
close to. 
 

Fig. 5 shows windmill, factory, shop and downtown 
stories in the second level and room, foot, car, helicopter, 
store and building scene in the third level of a hierarchical 
structure. When the avatar walks in a certain space, one can 
check the current complexity (story) in the database as 
listed in Table 2 and predict next story. For example, If the 
distance in 3D space between the avatar position (AP) and 
coordinates of factory story (CS) is less than a threshold (ε ) 
which is set to 1/400 of the scene, ε<− )zy,(x,Cz)y,(x,A SP , 
one can predict that the avatar may enable the factory event 
in the next several frame/seconds from this hierarchical 
structure as illustrated in Fig. 5(b)-(c). The user may select 
a certain type of transportation in the factory story, e.g. foot, 
car and helicopter. Moreover, one can check whether the 
prediction is correct by checking the complexity in the next 
frame. 
 

Windmill Fac tory

Store
Scene

Downtown

Helicopter
Scene

Car
Scene

Foot
Scene

Main

Room
Scene

Shop

Room1 Room2

Building
Scene

 
(a) 

Factory

Helicopter
Scene

Car
Scene

Foot
Scene

Main

 

Fac tory

Helic opter
Scene

Car
Scene

Foot
Scene

Main

 
(b) (c) 

Fig. 5 Hierarchical structure of the benchmark: (a) 
hierarchical structure, (b) current event (black block) and 

predicted event (blue block) and (c) predicted scene 
 

Table 2 
Analysis of scene complexity from game 

7.4250000 0.000000 0.00000004886

0.000000 0.000000 0.00000091228418

0.000000 0.000000 0.00000084186830

-6.460000 4.900000 0.000000302013487

-2.250000 -0.350000 0.00000073583020

-2.184000 1.250000 0.00000058647358

4.550000 -0.050000 0.000000640011267

0.000000 0.000000 0.00000039060

0.000000 0.000000 0.00000068303906

2.800000 0.000000 -0.938000112674886

7.350000 0.000000 0.000000488610202

4.000000 0.000000 6.000000134876400

-3.258000 4.250000 0.000000134875864

10202

Next
Complexity

9122

Current
Complexity

0.000000 0.000000 0.000000

Coordinate (X,Y and Z)

 
 

In order to do power management one can define 
different power modules for different complexities, e.g. one 
can define 1~1500 triangles per second as module 1 and 
1501~3000 as module 2. According to the difference of 
triangle counts between foot scene (triangle counts: 2400) 
and car scene (triangle counts: 3644), when the player 
chooses the type of transportation from foot to car one can 
know that the CPU cycle counts or power needed have 
better to increase from power module 2 to 3. According to 
the transportation selection a corresponding complexity can 
be known, and then one can select power needed for 
running the game via analyzing the complexity of the 
virtual scene as listed in Table 3. 
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Table 3 
Analysis of scene complexity for power management 

Module 2
Module 1

Module 1

Module 4
Module 3

Module 2 

Module 3 
Power Module

1362Room1 Scene

3240Windmill Scene

2400Foot Scene

913Store Scene

2364Room2 Scene

Helicopter Scene 
Car Scene

5138
3644

Triangle Count

 
 

The different events and corresponding module are 
shown in Fig. 6, according to the event, one can find a 
corresponding module by searching the original complexity 
of stories in the database, and then select an appropriate 
voltage (or frequency) based on the hierarchical-based 
workload prediction algorithm for power management. 
 

Ev ents /ScriptEv ents /Script Workload/Workload/
Complexity  Lev elComplexity  Lev el Power ModulesPower Modules

WindmillWindmill

Register/Register/
Game ov erGame ov er

…
.

Lev el 2Lev el 2

Lev el 3Lev el 3

Lev el 1Lev el 1

…
.

Module 2Module 2

ModuleModule 33

Module 1Module 1

…
.

DowntownDowntown
(indoor)(indoor)

Lev el nLev el n ModuleModule nn

Hierarchical-based 
Game 

Analys is

GPTT  analysis , frame workload predic tion of  PID and frame s truc ture 

FactoryFactory

Shop/Shop/
TradingTrading Lev el nLev el n--11 ModuleModule nn-- 11

 
Fig. 6 Different event and corresponding module 

B THE PREDICTION OF FRAME WORKLOAD 
To do power management we need to predict the frame 

workload, if the error between predicted workload and 
actual workload is closer to zero, one will get a better 
power module and further adjust the voltage and frequency 
of FPGA/hardware or software. The different story often 
has the different complexity (triangle counts) when the 
avatar selects from the current story into another, one can 
predict the frame workload of the next story according to 
the hierarchical-based analysis in Subsection III.A. In fact, 
the frame workload in two adjacent frames iF  and 1iF +  
are usually utmost similar to each other because their 
original (pre-process) triangle counts )Tricount(F# i and 

)Tricount(F# 1i+ are equal in the same scene. If the 
difference, FΔ , of triangle counts of two adjacent frames is 
equal to zero, the two frames are belong to the same scene, 
otherwise they have different scene. Hence, in order to do 
power management the scene change of the benchmark is 

needed to be detected. The definition of scene change is 
given as follows: 
 

       )Tricount(F# - )Tricount(F# F i1i+=Δ        (1) 

      

decreases complexity and change   sceneelse       
increases complexity and change   scenethen           

 0 F if else
 scene samethe  then  0 F If

>
=
Δ

Δ

(2) 

 
Moreover getting the information of scene change, one 

can predict the variation of the next frame based on a 
simple analysis of scene animation, e.g. zoom-in and 
zoom-out. For example, in order to detect zoom-in, one can 
extract the variations of eye coordinates in frames iF  
and 1iF +  from the gluLookAt function i.e. gluLookAt 
function creates a viewing matrix derived from an eye point, 
a reference point indicating the center of the scene. If the 
camera behavior is zoom-in, z value coordinates of eye 
point, ZLΔ , will decrease, the whole workload will increase. 
The variation of gluLookAt function are given as follows: 
 

          )(Flookat - )(Flookat L iz1izz +=Δ       (3) 

out-zoom else in-zoom  then  0 L if else
function zoom activate tdoes' camera the  then  0 L If

z

z

<
=
Δ

Δ
(4) 

 
Moreover, we also use the CPU workload iC  in frame i 

and average CPU workload of previous several frames, pC , 
from frame (i-1-T) to frame i-1. T is set to be five frames. If 
the difference, CΔ , of CPU workload is smaller than zero, 
we know that CPU workload may decrease in frame i+1. 
The CPU workload trend of previous prediction is given as 
follows: 
 

                pi C-CC =Δ              (5) 

              /TCC  where
1-i

T-1)-(ix
xp ∑=

=
          (6) 

       
decreases   workloadthe else       

   increases   workloadthe  0C if  else
   workloadthe in  changes no    then   0C If

>
=
Δ

Δ
    (7) 

 
By using the variations of FΔ , LzΔ and CΔ , one can 

predict the CPU workload trend. For example, when the 
adjacent frames are belong to the same scene and if 
the 0C >Δ and 0Lz <Δ , one can know the whole workload 
will increase. The prediction of CPU workload trend is 
given as follows: 
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decreases  workloadthe else     
 increases  workloadthe  then  0 F if else

 workloadthe in change no else                
decreases   workloadthen  0))  L( | 0) C(( if else            
increases  workloadthe  then  0))  L( | 0) C(( if else      

 workloadthe in change no  then 0)  L & 0 Cif(      
 then 0 F If

Z

Z

Z

>

≥≤
≤≥

==
=

Δ

ΔΔ
ΔΔ

ΔΔ
Δ

  (8) 

 
After the trend of CPU workload is known, one needs to 

calculate the frame workload variations ifwΔ that is 
measured by the hybrid algorithm including PID and frame 
structure-based. PID predictor is a generic control loop 
feedback mechanism based on the feedback from recent 
prediction difference, PID includes three components 
(Proportional control, Integral control and Derivative 
control). The proportional control measures the variation 

(t)ε of the system in predicted workload iw  and actual 

workload iw , where by using GPTT one can receive the 

actual workload iw . The integral control based on recent 
variation is used to measure the sum of the recent errors 
∑

iT
(t)ε  from frame (i-TI) to frame I and TI  is set to the 

frame interval. Finally, the derivative control measures the 
change of frame rate in the process DD ))/TT-(t-(t)( εε , 
where TD is set to be equal to the frame execution time. The 
frame workload variation of the PID predictor is given as 
follows: 
 

    
D

D

T
pi T

)T-(t-(t)
D(t)

I
1(t)KPIDw

I

εε
εεΔ ⋅+∑⋅+⋅=      (9) 

 
where pK and I are the proportional and integral coefficients, 
and D is derivative coefficient. For experiment convenience 
one can obtain the best result by manually tuning these 
parameter values when pK =0.9. I=28 and D=0.0033. In 
addition, we also need to calculate the predicted workload 

iFSw  using the frame structure-based predictor. Let 

iFSwΔ  denote the frame workload variation of the frame 
structure-based predictor, and its workload variation is 
given by iii FSw-wFSw =Δ , where we suggest that the 
predicted frame workload iFSw  which is almost linearly 
correlated with its rasterization workload, therefore one can 
predict the total frame workload via estimating the 
rasterization workload of a frame. 
 

Based on the frame workload variations iPIDwΔ  and 

iFSwΔ , the frame workload variation we select the 
minimum of them as the output 

)FSw ,PIDwmin(fw iii ΔΔΔ =  and use the CPU workload 
trend from Eq.(8), one can do the frame workload 

prediction. If the whole workload will increase in frame i+1, 
the next estimated frame workload is given by 

ii1i fwwffw Δ+=+ , otherwise the frame workload is given 
by ii1i fw-wffw Δ=+ . The prediction of frame workload is 
given as follows: 
 

      
⎪
⎩

⎪
⎨

⎧ +
=+  

                     otherwise           ,fw
decreases   workloadthe if  ,fw-fw
increases   workloadthe if  ,fwfw

fw

i

ii

ii

1i Δ
Δ

   (10) 

IV. PERFORMANCE EVALUATION 

The evaluation environment is built around a game alike 
benchmark as illustrated in Fig. 5(a). The experiments were 
run in the PC environment, PC with an AMD Athlon 1400+ 
and 512megabytes main memory. By using GPTT one can 
receive the real CPU cycle counts from the software 
implementation. Performance evaluation is conducted on 
the proposed algorithm, the traditional history-based 
method and the Gu et al’s hybrid algorithm [6] . 
 

As illustrated in Fig. 7(a), the proposed algorithm 
performs much better from frame 87 to 88. This is due to 
the proposed algorithm can predict the scene change in 
frame 88 according to the game analysis in advance as 
illustrated in Fig. 7(b), but the competing algorithms don’t 
consider scene variation and may get more error. To give a 
better comparison, the CPU cycle counts for each algorithm 
are given in Fig. 8, and the proposed algorithm yields more 
than (8152-6872)/8152 * 100% = 15.7% improvement in 
cycle count estimation. Hence, it is a feasible way via game 
analysis to help us to predict the frame workload and match 
the diagrammatic curve of real CPU workload as illustrated 
in Fig. 9. 
 

(a) 

(b)  
Fig. 7 Triangle counts and CPU cycle counts: (a) Triangle 

counts (b) Red small-dot line is real cycles by GPTT, green 
dash-dot line is the prediction by history-based predictor, 

black dotted line is the prediction by the Gu et al’s 
algorithm, and purple line is the prediction by the proposed 

algorithm 
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Fig. 8 Comparisons of cycle difference for different 

algorithms 
 

 
Fig. 9 Workload predictions: Black line is real CPU cycles 

and red dotted line is the prediction by the proposed 
algorithm 

Currently, the proposed algorithm for game workload 
prediction only spends 171.2 microseconds to finish the 
work as illustrated in Fig. 10. Originally, each frame takes 
0.0333333 seconds to finish. After using the 
hierarchical-based workload prediction algorithm, each 
frame will take 0.0335045 seconds, which is 0.51 % longer 
than the original period. Each frame takes 0.0344907 
seconds to receive data after enabling GPTT (0.000903 
seconds). In other words, there are 28.99 frames displayed 
within one second. The overhead is very insignificant. It 
almost doesn’t affect the performance of CPU or graphics 
chip.  
 

Moreover, the proposed algorithm provides an 
improvement of more than 1.028 frames and requires only 
0.037 frame of extra workload as compared to the 
competing algorithms.  
 

 
Fig. 10 Calculation workload for different algorithms 

 

V. CONCLUSIONS 

We have proposed a novel hierarchical-based workload 
prediction algorithm for power management. Based on 
measurement of GPTT, the proposed algorithm for game 
workload prediction spends only 41.2 ms of more than the 
competing algorithm to finish the work, but achieves an 
improvement of more than 15.7 % in cycle count 
estimation. 

ACKNOWLEDGMENT 

The authors would like to thank the National Science 
Council of Taiwan, for financially supporting this research 
under contract no. NSC96-2220-E-110-003. 

REFERENCES 

[1] C. J. Hughes, and S. V. Adve, "A Formal Approach to 
Frequent Energy Adaptations for Multimedia Applications,” 
In International Symposium on Computer Architecture 
(ISCA), pp. 138–149, Munich, Germany, 2004. 

[2] C. Im, H. Kim, and S. Ha, “Dynamic Voltage Scheduling 
with Buffers in Low-Power Multimedia Applications,” ACM 
Transactions in Embedded Computing Systems, pp. 686–705, 
2004. 

[3] Y. Gu, and S. Chakraborty, “Control Theory-Based DVS for 
Interactive 3D Games,” Design Automation Conference 
(DAC), Anaheim, CA, USA, 8-13 June, 2008. 

[4] Y. Gu, and S. Chakraborty, “Power Management of 
Interactive 3D Games Using Frame Structures,” 21st 
International Conference on VLSI Design (VLSID), 
Hyderabad, India, January 2008. 

[5] B. Mochocki, K. Lahiri, S. Cadambi, and X. S. Hu, 
“Signature-Based Workload Estimation for Mobile 3D 
Graphics,” in Proc. Design Automation Conference (DAC), 
pp. 592-597, July 2006. 

[6] Y. Gu, and S. Chakraborty, “A Hybrid DVS Scheme for 
Interactive 3D Games,” IEEE Real-Time and Embedded 
Technology and Applications Symposium (RTAS), pp. 3-12, 
USA, April 2008. 

[7] N. Bansal, K. Lahiri, A. Raghunathan, and S. T. Chakradhar, 
"Power Monitors: A Framework for System-Level Power 
Estimation Using Heterogeneous Power Models," in Proc. 
The 18th international Conference on VLSI Design Held 
Jointly with 4th international Conference on Embedded 
Systems Design, pp. 579-585, 2005. 

[8] B. G. Nam, J. Lee, K. Kim, S. J. Lee, and H. J. Yoo, “A 
52.4mW 3D Graphics Processor with 141Mvertices/s Vertex 
Shader and 3 Power Domains of Dynamic Voltage and 
Frequency Scaling,” In Digest of the 2007 IEEE International 
Solid-State Circuits Conference (ISSCC’07), 2007. 

[9] M. Lajolo, A. Raghunathan, S. Dey, and L. Lavagno, 
“Efficient Power Co-Estimation Techniques for 
System-on-Chip Design,” in Proceedings of Design, 
Automation and Test in Europe (DATE '00), pp. 27–34, Paris, 
France, March 2000. 

[10] NVIDIA Corporation, “NVperfHUD,” 
http://developer.nvidia.com/object/nvperfhud_home.htm 

[11] graphicREMEDYCorporation,“gDEBugger,” 
http://www.gremedy.com. 

[12] Hawk Software, “GLTrace Programming Utility,” 

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



  

http://www.hawksoft.com/gltrace/ 
[13] N. Duca, K. Niski, J. Bilodeau, M. Bolitho, Y. Chen, and J. 

Cohen, “A Relational Debugging Engine for the Graphics 
Pipeline,”   Proc. of the ACM Transactions on Graphics 
(TOG), Vol. 24, Issue 3, pp. 453-463, 2005. 

[14] SPEC,“SPECvireperf 8.1,” 
http://www.spec.org/gpc/opc.static/vp81information.htm 

[15] Futuremark Corporation, “3D Mark series benchmarks,” 
http://www.futuremark.com/products/ 

[16] Silicon Graphics, “OpenGL,”http://www.opengl.org/ 
[17] Futuremark Corporation, “SPMark04,” 

http://www.futuremark.com/products/spmark04/ 
[18] Futuremark Corporation, “3DMark Mobile06,” 

http://www.futuremark.com/products/3dmarkmobile06/ 
[19] C. N. Lee, D. J. Zhang-Jian and K. Y. Lin, “A New 

FPGA-Based Cross-Platform Graphics Performance Tuning 
Tool for ARM  Versatile Platform,” Computer Graphics 
Workshop (CGW), Taiwan, 2007. 

[20] Khronos Group, “OpenGL ES Specification,” 
http://www.khronos.org/opengles 

[21] L. B.i Chen, T. Y. Ho, I. J. Huang, Y. N. Chang, S. W. Haga, 
J. H. Hong, S. F. Hsaio, S. R. Kuang, K. C. Kuo and C. N. 
Lee, "The Development of an Energy-Awared Mobile 3D 
Graphics SoC with Real-Time Performance/Energy 
Monitoring and Control," IEEE International SoC Design 
Conference (IEEE ISOCC'08), Busan, Korea, Vol. I, 
pp.234-237, Nov. 2008. 

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009


	pg208: 208
	pg209: 209
	pg210: 210
	pg211: 211
	pg212: 212
	pg213: 213
	pg214: 214
	pg215: 215


