
Automatic Generation of Character Animations
Expressing Music Features

Ka-Chon Loi* and Tsai-Yen Li*
*Computer Science Department, National Chengchi University, Taipei, Taiwan.

E-mail: {g9506, li}@cs.nccu.edu.tw Tel: +886-2-29387642

Abstract — In this paper, we propose to use procedural ani-
mation of a human character to enhance the interpretation of
music. The system consists of a procedural motion generator
which generates expressive motions according to music features
extracted from a music input, and uses Dynamic Programming
(DP) to segment a piece of music into several music segments for
further planning of character animations. In the literature, much
animation research related to music uses reconstruction and
modification of existing motions to compose new animations. In
this work, we analyze the relationship between music and mo-
tions, and then use procedural animation to automatically gen-
erate expressive motions for the upper body of a human charac-
ter to interpret music. Our experiments show that the system can
generate appropriate motions for music of different styles and
allow a user to modify system parameters to satisfy his/her visual
preferences.

I. INTRODUCTION

The recent advances in multimedia technologies have en-
abled new types of applications combining visual and audio
effects to create enhanced entertainment. It is common to see
videos or image slide show be accompanied with appropriate
music, possibly chosen by the computer. On the contrary,
although desirable, it is less common to see 3D character an-
imations accompanying music, probably due to the high cost
of producing computer animation. As the technologies for 3D
graphics are improving rapidly, real-time 3D animations are
becoming more feasible. Nevertheless, we have not seen
many computer animations that can be automatically gener-
ated based on the interpretation of music.

Among the possible ways of expression, dance is one of the
most popular forms that can be used to interpret or enhance
music. For example, some recent research focused on com-
posing new dance motions based on existing motion libraries
[11]. Dances performed by professional dancers may be diffi-
cult for regular audience to understand sometimes. Neverthe-
less, most people can respond to music by casual motions
such as moving the hands, swinging the body, or shaking the
legs. These types of motions are typically impromptu motions
based on personal interpretation of music features such as
rhythm, melody, etc. In this paper, we propose to analyze the
features of music and model the relationship between music
and motion in order to automatically generate casual expres-
sive motions for the upper body of an animated character to
enhance the interpretation of music. However, the generated
motions are casual motions that are not necessarily con-
strained by the general rules followed by music conductors.

We organize the rest of the paper as follows. We will first
review the previous work pertaining to this research. Then
will give an overview of the system that we have designed in
Section II. We will then describe how we segment the music
for the generation of motion segments of appropriate lengths.
In Section IV, we will describe our procedural animation ap-
proach to the generation of synchronized upper-body motions.
Then we will present some of the results obtained in our ex-
periments and conclude at the end with future research direc-
tions.

II. RELATED WORK

Melody is the most essential feature of music that can be
remembered more easily. Delone [2] stated that the main ele-
ments of a melody include duration, pitch, quality (timbre),
texture and loudness. However, relatively speaking, quality is
less important because their experiments showed that the
same melody can be recognized by users even when played
with a wide variety of timbres, textures, and loudness.
Dowling [3] discovered that melody contours are easier to
remember than exact melodies. A contour refers to the profile
of the melody, indicating whether the next note goes up, down,
or stays at the same pitch. It was found that it was relatively
easy to distinguish two melodies that have different contours.

In the literature of character animation related to music, we
can find three types of research with different objectives. The
research in the first category aimed to generate music accord-
ing input motions. For example, Mishra and Hahn [9] pro-
posed to generate music according to the motions performed
by a human in a virtual reality setting. Nakamura et al. [10]
also proposed to use motions to compose background music.
The main differences between the two works were that the
former generated music in real time based on music features
and motion features while the latter selected background mu-
sic from a music library in a post-processing step.

The second category of research used music to generate
motions. The authors in [11] used a machine learning ap-
proach to analyze the relationships between motions and mu-
sic by a great amount of synchronized examples. The system
aimed to generate animations for new music inputs. The au-
thors in [1] proposed to further analyze the waveform repre-
sentation of an audio soundtrack in addition to the MIDI for-
mat to consider different aspects of the music for the auto-
matic generation of synchronized musical animations. The
authors in [4] also proposed to synthesize animations based

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

09-0102160221©2009 APSIPA. All rights reserved.

on the beat analysis of motion captured data and input music.
Our work belongs to this category. In this paper, we propose
to generate the upper body motion from scratch by creating a
mapping between the music features and procedural anima-
tions as described in the next few sections.

The third category of research studied the interaction be-
tween music and motion. For example, the authors in [7] ex-
tended the music theories in [1] and proposed music graph, a
concept similar to motion graph for animation. A music graph
consists of music clips as nodes and the possible transitions as
arcs. Music is composed in real time with appropriate time
scaling for each music clip according to the input motions.
The authors in [13][14] analyzed dance performance to ex-
tract the correspondence between music features and motion
features. Then animations are synthesized from the motion
library according to a new piece of music input.

III. SYSTEM OVERVIEW

An overview of the system proposed in this work is shown
in Figure 1. In this work, we focus on using the upper body to
create animations for expressing music. The upper body of a
human figure is composed of four parts: right arm, left arm,
head, and body. The two arms are used to express melody and
rhythm while head and body are used mainly to express
rhythm. The source input of the system is a piece of music in
the MIDI format with the melody and rhythm tracks identified.
The system parses the MIDI file and segments the music into
several music segments of appropriate lengths by using a DP
approach. Next, in the planning module, we use the music
features such as melody, rhythm, and loudness in each music
segment to plan a feasible trajectory under kinematics con-
straints for the bodies of the human character to trace. Then,
we use the inverse kinematic [16] technique to generate the
motions for the human character with appropriate timing. To-
gether with the music, the motions are then rendered and syn-
chronized in real time in a 3D display engine, called IM-
Browser, developed in our previous work [7].

IV. MUSIC SEGMENTATION

Due to the kinematics constraints of a human figure, the
reachable space by hands without moving the global position
of the body is also limited. Therefore, in order to express a
long piece of music with the upper body, one must divide a

piece of music into several music segments of appropriate
lengths for the hands to trace back and forth. However, how
do we perform the segmentation such that all constraints can
be satisfied and certain criteria can be used to create sound
visual effects? In this section, we will describe how we design
the criteria to compose the objective function that is used to
search for the optimal segmentation of music for a given piece
of music and a human character.

A. Music feature space
We assume that the input of the system is a music file in

the MIDI format with appropriate melody and rhythm chan-
nels. From these two channels, we can express a clip of music
with a sequence of notes s = [n1,n2, …, nm]. A note ni is de-
scribed by four features [pitch, duration, intensity, isBeat].
Pitch ranges from 0 to 127 with octave as the unit; duration
ranges from 0 to 64 with the sixteenth note as the unit; inten-
sity ranges from 0 to 120. Pitch, duration, and intensity are
extracted from the melody channel while the isBeat feature is
extracted from the rhythm channel. A note in the melody
channel is a beat note only if there is also a note in the rhythm
channel.

B. Objective function
A melody contour is described by pitch and duration. In

this work, we propose to map pitch and duration to the verti-
cal and horizontal components of a hand position. Since the
reachable space of a hand is limited, there exist limits for
these vertical and horizontal positions. In addition, since the
end of a segment is a turning point with discontinuous veloc-
ity and acceleration, it is desirable to have this end point at a
beat point of the music. In order to determine the goodness of
a music segment in the search algorithm to be described in the
next section, we have designed the objective function as fol-
lows. We assume that a music segment s is composed of m
notes and can be represented as s = [n1,n2, …, nm]. The objec-
tive function f is composed of four components:

f1(s)=isBeat(s.nm) (1)

f2(s)=pitchRange(s) (2)

Figure 1. System Overview

Algorithm: Segment(melody)

1. Table T ;
2. while length from minimal to melody.length
3. begin
4. while i from 0 to melody.length – length - 1
5. begin
6. while mid from i + 1 to i + length - 1
7. begin
8. value = normalize(T[i][mid], T[mid][i + length]);
9. if value <= T[i][i + length]

10. T[i][i + length].segmentAt = mid;
11. T[i][i + length] = value;
12. end
13. end
14. end

Figure 2. Algorithm for segmenting music

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

f3(s)=rhythmDensity(s) (3)

f4(s)=totalDuration(s) (4)

f(s)=w1* f1(s) + w2* f2(s) + w3* f3(s) + w4* f4(s) (5)

If the last note is at a beat or a rest, f1 return 1, otherwise 0.
The function f2 is used to determine how far the range of the
pitch in this segment is from the ideal range (say, 12 half-
tones). The function f3 is used to determine how far the den-
sity of the beats in the segment is from the average density of
the whole music. The fourth function f4 is used to constrain
the total duration of the segment to an ideal value as much as
possible. These four component functions are normalized into
the range of [0, 1] and then combined with appropriate
weights to form the final objective function in eq. (5). These
weights are subjective parameters that can be specified by the
users with a graphical user interface provided by the system.
The smaller the values returned by this function, the better the
results in the search.

C. Segmentation algorithm
The problem of segmenting a piece of music is similar to

the problem of multi-paragraph text segmentation, where one
needs to find a way to segment a paragraph into lines such
that the total amount of blank space is optimized globally [4].
This problem can be nicely solved with the classical DP ap-
proach. The DP algorithm used in our system is shown in
Figure 2. We use a two-dimensional table T to record the op-
timal segmentation point for a given segment specified by the
two indices of T. The procedure consists of three loops. The
first loop is performed over the length of what a segment can
have from the shortest to the longest. The second loop is per-
formed over the starting location of a segment, and the third
loop is over the possible new segmentation points to search
for better segmentation. The whole DP algorithm is per-
formed in a bottom-up fashion such that examination of
longer segments can make use of the results from shorter
segments. The overall complexity of the algorithm is O(n3),
where n is the number of notes in the music. The final seg-
mentation is determined by recursively examining the seg-
mentation points (if exist) of the segments starting from
T[0][melody.length]. The output of the algorithm is a se-
quence of segments s1, s2, …, sk, k>0 with an optimal value in
the objective function.

V. PLANNING MOTIONS

A. Segmentation algorithm
According to Laban Movement Analysis (LMA) [6], the

motion of a human figure can be described with four different
aspects: body, effort, shape, and space. Among these aspects,
shape and effort are the ones that are more related to the ex-
pression of affect and therefore can be used to interpret music.
Even though not professional dancers or conductors, most
people can easily use body motions to express their interpreta-
tion of music. In these casual motions, simple rules can be
deduced. For example, the rhythm of a motion is synchro-
nized with the rhythm of music. Similarly, the strength of a
motion can also reflect the loudness of music.

Therefore, we propose to map music features into three fea-
tures (shape qualities, weight effort, and time effort) in LMA
and then map these features into motion parameters (position
and velocity) in an animation as shown in Figure 3. The mel-
ody and rhythm of music are reflected on the vertical (y) and
horizontal (x) locations of the hand while beat affects the
heights of via points and velocity changes along the generated
trajectory. For example, according to [12], sudden changes in
speed and orientation give strong indication of beat points.
Larger intensity in music can also be expressed by larger ver-
tical changes of the hand. With these principles, we attempt to
plan the trajectory of the hand of a human character according
to a given music segment. The motion planner is composed of
three parts: setting keyframes, creating trajectory curves, and
determining the speed of the hand along the trajectory as de-
scribed below.

B. Keyframes
We use the right hand of a human character to express mel-

ody of a music segment as shown in Figure 4. The keyframe
locations of the right hand in a music segment are determined
mainly by the attributes of the notes. The horizontal axis (x)
represents the time while the vertical axis (y) represents the
pitch. Since the hand location is limited roughly by a sphere
centered at the shoulder, we need to first determine total dura-
tion and pitch range of a music segment in order to know how
to scale the keyframe locations to fit the motion for the whole
music segment in the reachable space. The formula for deter-
mining these keyfarmes are shown in the equations below.

Figure 4. Reachable space and the coordinate system for the right arm

Figure 3. Mapping between music features and animation parameters

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

⎩
⎨
⎧

+
=

−−)).(),(),().((
)(

11 znPnynxxnP
P

nP
iiii

init
i

,
otherwise

i 0= (6)

where

scaleXdurationsegmentdurationnnx *_/..)(= (7)

scalemidi Ypitchnpitchnny *)..()(−= (8)

The direction of the x-axis is changed alternatively such
that the arm can move back and forth without resetting the
hand position. As shown in eg. (7), the horizontal movements
(x) are scaled with Xscale such that the hand can span the whole
reachable horizontal range during the whole music segment.
For the vertical dimension, since the range of pitch for each
music segment is different, we map the median pitch of the
music segment to the mid-point of height (y-axis) in the
reachable range. The height of the hand position for each
node can then be computed relative to the mid-point, as
shown in eq.(8).

D. Trajectory generation
The trajectory along the keyframes consists of C0 continu-

ous Bezier curves controlled by control points defined in ac-
cordance with the model of music features. According to the
fact whether a keyframe is on a beat, on a rest, or neither, we
construct the curve differently. If the keyframe is for a regular
note (not on a beat or on a rest), we create a C1 smooth curve
passing this keyframe location. For example, as shown in
Figure 5, P0 and P3 are the keyframe points while P1 and P2

are the control points controlling the curves connecting at P0.
For regular notes, P0, P1, and P2 should lie on the same line.

If the keyframe is at a beat or a rest note, we create abrupt
changes in slopes at both sides of this keyframe. In Figure 6,
we show how the control points (P1 and P2) of the Bezier
curves around the keyframe point (small blue square) are
computed. First, P2 is a linear combination of G1 and G2, de-
fined by two distances L1 and L2. L1 is determined by duration
of the note such that the speed limit for the hand is not vio-
lated, and L2 is a user-specified parameter. The intensity of
the note determines where P2 is located between G1 and G2.
Second, as shown at the right of Figure 5, P1 is located be-
tween the keyframe point and the vertical reflex point of P2.
The location of P1 between these two points or the amount of
bounce back from the reflection is specified by the user.

E. Determining speed profile
Once a trajectory is determined, we also need to determine

the speed profile along the trajectory to express the time effort
of the motion. We also use Bezier curves to define the desired
velocity profile in the space of arc length and time. There are
three types of speed profiles in our system. The first type is
for beat notes as shown in Figure 7(a). We express the sense
of beat not only on the trajectory discontinuity in slope but
also on the change of speed at the beat point by a sudden stop
after acceleration. The second type, as shown in Figure 7(b),

Algorithm: right hand planning(music segments)

1. Pinit = current wrist location
2. for each segment in music
3. begin
4. plan key position for each note in segment
5. if any key position is out of bound
6. rescale y
7. Pinit = the last key position
8. end
9. KeyPos = the first key position of second segment

10. for each segment in music
11. begin
12. plan trajectory between key positions
13. if any part of the trajectory is out of bound
14. rescale y
15. KeyPos = the first key position of next segment
16. end

Figure 8. Motion planning algorithm for the right hand

Figure 5. Illustration of how the control points P1 and P2 are aligned with
the keyframe point P0 to create smooth transition at P0.

Figure 6. Illustration of how P1 and P2 are computed at a beat note

(a) beat note

(b) non-beat note (c) non-beat note
after beat note

Figure 7. Speed profiles for three difference cases

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

is a regular note where a constant speed is preferred in order
to produce smooth motion. The third type is for a regular note
whose starting speed is zero because of the prior note is a beat,
as shown in Figure 7(c).

F. Motion planning algorithm for the right hand
The algorithm for generating the trajectory of the right

hand according to the principles described in the previous
subsections is listed in Figure 8. The input to the algorithm is
music that has already been properly segmented, and the out-
put is a sequence of unidirectional trajectories for the right
hand to move back and forth in front of the character. In each
music segment, if any part of the generated trajectory will
cause the hand to be out of bound, the whole trajectory will be
re-scaled in the y direction automatically (lines 4-7). These
keyframes are then used to generate the trajectories (lines 12-
14). A trajectory is also re-scaled to reduce the height if any
part of it is out of the reach of the right hand.

G. Designing the motion of other body parts
While the right hand is used to express melody and rhythm

of music, the left hand and other parts of the body are used to

compensate the right hand. For example, the left hand is used
to express long notes and staccato. When a note is longer than
a quarter of the whole note, we extend the left hand outward
to stress the long duration of the note. When a staccato note is
encountered, the left hand is used to perform a rapid drop and
sudden stop. The body and the head are also used to stress
rhythm by nodding and swinging. However, in order to avoid
rapid swinging or nodding, we require a minimal duration
between two beat points for changing the direction of these
two types of motions.

VI. EXPERIMENTAL RESULTS

The system described above has been fully implemented in
Java. The graphical user interface (GUI) of the system is
shown in Figure 9. In order to evaluate the effectiveness of
our system, we have conducted experiments with different
size of characters on different sets of parameters for different
styles or user preferences. For example, in Figure 10, we
show the trajectories of the first three music segments gener-
ated with two sets of parameters for the music of “Air on the
G String” by Bach. In the first experiment (denoted as E1),
the L1 parameter is larger than the one in the second experi-
ment (denoted as E2). Consequently, the magnitude of the
curves in E1 is much larger than the ones in E2. The snap-
shots of the animation generated for this music in experiment
E1 and E2 are shown (left to right and up to down) in Figure
11 and Figure 12, respectively. Note that the left hand of the
character moves from time to time along with the major

Figure 9. Graphical user interface of the system

Figure 12. Snapshots of animations generated in experiment E2.

Exp.
No.

1st
trajectory

2nd
trajectory

3rd
trajectory

E1

E2

Figure 10. Trajectories created with two different parameter sets for three
consecutive music segments

Figure 11. Snapshots of animations generated in experiment E1.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

movement of the right hand. The body swings left and right
synchronized to the beats in the music. We have also tried the
system on various animated characters of different size and
three different styles of music, including classic, country, and
jazz. The trajectories of three typical segments for these three
types of music are shown in Figure 13.

VII. CONCLUSIONS

In this paper, we have developed an intelligent motion gen-
erator for an animated character to use upper body motions to
interpret music features. The system accepts general inputs
such as a LOA1 humanoid model and MIDI music and allows
a user to specify his/her preferences when generating different
styles of motions. The motion generation is facilitated by a
mapping between music features and the motion parameters
in procedural animation. In our experiments, we have shown
the effectiveness of the system through several types of music
and human models.

In the current system, several parameters such as smooth-
ness still rely on user tuning for producing more desirable
results. In the future, we hope to investigate the relation be-
tween these parameters and music features such as tune and
timbre to choose these parameters automatically. In addition,
we would like to extend the current animation procedures to
include full-body animations with global movements. Fur-
thermore, although we believe that music can be effectively
enhanced with appropriate animations, in the future we will
conduct in-depth user studies to evaluate the overall effec-
tiveness of the system and its potential applications.

ACKNOWLEDGMENT

This research was funded in part by National Science
Council of Taiwan under contract no. NSC96-2221-E-004-
008.

REFERENCES

[1] M. Cardle, L. Barthe, S. Brooks, and P. Robinson, “Music
Driven Motion Editing: Local Motion Transformations Guided
By Music Analysis,” in Proc. of the 20th Eurographics UK
Conf., 2002.

[2] R. Delone, “Aspects of Twentieth-Century Music,” Englewood
Cliffs, New Jersey: Prentice-Hall, Chap. 4, pp.270-301, 1975.

[3] W.J. Dowling, “Scale and Contour: Two components of a the-
ory of memory for melodies,” Psychological Review, vol. 85,
pp.341-354, 1978.

[4] T.H. Kim, S.I. Park, and S.Y. Shin, “Rhythmic-Motion Syn-
thesis Based on Motion-Beat Analysis,” ACM Transactions on
Graphics, 20(3):392-401, 2003.

[5] D.E. Knuth, and M.F. Plass, “Breaking Paragraphs into Lines,”
Digital Typography, 1999.

[6] R. Laban, and L. Ullmann, Mastery of Movement, Princeton
Book Company Pulishers, 1960.

[7] H.C. Lee, and I.K. Lee, “Automatic Synchronization of Back-
ground Music and Motion in Computer Animation,” Computer
Graphics Forum, vol. 24, pp. 353-362, 2005.

[8] M.Y. Liao, and J.F. Liao and T.Y. Li, “An Extensible Scripting
Language for Interactive Animation in a Speech-Enabled Vir-
tual Environment," in Proc. of the IEEE Int’l Conf. on Multi-
media and Expo, 2004.

[9] S. Mishra, and J.K. Hahn, “Mapping motion to sound and mu-
sic and in computer animation and VE,” in Proc. of the Pacific
Graphics '95, 1995.

[10] J. Nakamura, T. Kaku, T. Noma, and S. Yoshida, “Automatic
Background Music Generation Based on Actors ‘Emotion and
Motions’,” in Proc. of the Pacific Graphics, 1993.

[11] S. Oore, and Y. Akiyama, “Learning to Synthesize Arm Mo-
tion to Music By Example,” in Proc. of the 14-th Int’l Conf. in
Central Europe on Computer Graphics, Visualization and
Computer Vision, 2006.

[12] T. Shiratori, A. Nakazawa, and K. Ikeuchi, “Detecting dance
motion structure through music analysis,” in Proc. of IEEE
Int’l Conf. on Automatic Face and Gesture Recognition, 2004.

[13] T. Shiratori, A. Nakazawa, and K. Ikeuchi, “Dancing-to-Music
Character Animation,” in Computer Graphics Forum, vol. 25,
pp. 449-458, 2006.

[14] L. Torresani, P. Hackney, and C. Bregler, “Learning Motion
Style Synthesis from Perceptual Observations,” in Proc. of the
Neural Information Processing Systems Foundation, 2006.

[15] A.L. Uitdenbogerd, and J. Zobel, “Manipulation of music for
melody matching,” in Proc. of ACM Int’l. Multimedia Conf.,
1998.

[16] IKAN(Inverse Kinematics using Analytical Methods).
http://cg.cis.upenn.edu/hms/software/ikan/ikan.html

style 1st
trajectory

2nd
trajectory

3rd
trajectory

Classi-
cal

Country

Jazz

Figure 13. Trajectories created for different classes of music in three

consecutive music segments

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

	pg216: 216
	pg217: 217
	pg218: 218
	pg219: 219
	pg220: 220
	pg221: 221

