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Abstract—This paper proposed a conflict-free multi-symbol 
arithmetic encoder (AE) for H.264/AVC. The throughput of a 
multi-symbol AE is usually limited by concurrent access of 
context memory which degrades the performance of the whole 
H.264/AVC encoder. With proposed Hybrid Context Memory 
architectures (HCM), about 1/10 contexts under critical conflict 
are implemented by Critical Register Array to solve the 
insufficient ports bottleneck. The number of encoding symbol 
per cycle is improved by 15% and 55.5% in 2-symbol and 4-
symbol version, respectively. The implementation results also 
show that the hardware design can achieve a high encoding rate 
and throughput comparing to the previous works. 

I. INTRODUCTION 

H.264/Advanced Video Coding (AVC) is the latest video 
coding standard developed by the ITU-T Video Coding 
Experts Group (VCEG) and the ISO/IEC Moving Picture 
Experts Group (MPEG) [1]. Two entropy coding techniques, 
context-based adaptive binary arithmetic coding (CABAC) 
and context-based adaptive variable length coding (CAVLC) 
are used in the standard. CABAC adopted in main and high 
profiles, offers comparison results that are 9%-14% better than 
those obtained with the baseline CAVLC [2] but at the 
expense of increased complexity in the entropy coder. 

Fig. 1 shows a CABAC block diagram. First, a syntax 
element and neighboring side information are processed to 
generate its binary symbols and associated context indexes by 
Binarizer and Context Address Generator, respectively. Then, 
the pairs of symbol and context index are consecutively loaded 
into a binary arithmetic encoder (AE). The encoding process 
of AE consists of three functional elements: probability state 
accessing, tag (low) and interval (range) maintaining. Most 
Probable Symbol (MPS) and range of Least Probable Symbol 
(rangeLPS) can be obtained after probability state of a symbol 
is accessed from context memory. If the symbol is matched to 
the MPS, range is subtracted by rangeLPS; otherwise, range is 
set equal to rangeLPS. low is always updated to the lower 
bound of next range. Moreover, a renormalization process that 
enlarges the range and generates the coded bits for output is 
evoked if range is considered small. Besides regular coding, 
bypass coding is applied for the symbols with equal 
probability to speed up encoding process. 

Several researches have been proposed to reduce the 
architecture complexity and improve the throughput of AE.  

 

Fig. 1   The CABAC block diagram. 
 
Basically, they can be classified by its parallelism as one-
symbol or multi-symbol. A multi-symbol AE is more suitable 
under high throughput and low power consideration. It 
encodes multiple symbols at a cycle so that the given 
throughput can be achieved with relatively low operating 
frequency, and vice versa. Lo et al. [5] encode 2 residual 
symbols in parallel to enhance the throughput. Moreover, 
Chen et al. [3] proposed the forwarding and pre-read/write 
techniques to increase the throughput of SRAM-based AE. 
Ideally, the throughput should be increased proportionally to 
the parallelism of the design. For example, 2 symbol/cycle is 
generated with a 2-symbol AE and 4 symbol/cycle is generated 
with a 4-symbol AE. However, it does not usually reach the 
case. The bottleneck lays in conflict of the context memory 
which would degrade half of the throughput. 

This work proposed a conflict-free multi-symbol AE that 
aims to deal with the throughput loss suffering from memory 
conflict. Contexts are divided into two groups based on the 
rate of conflict happens. Then, Hybrid Context Memory 
(HCM), i.e. a multi-bank dual-port SRAM and Critical 
Register Array, individually implements the two groups of 
contexts. The simulation results show that up to 55.5% 
throughput improvement is reached. 

The remainder of the work is organized as follows. In 
Section 2, the proposed multi-symbol AE and its’ design 
bottleneck are described. In Section 3, the proposed HCM 
architecture is introduced. Section 4 shows the implementation 
results. Finally, we conclude the work in Section 5. 

II. PROPOSED MULTI-SYMBOL AE 

The block diagram of proposed multi-symbol AE is shown 
in Fig. 2. For each one-symbol AE coding engine, it is divided 
into a seven-stage pipeline architecture, i.e. AG context, read  
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Fig. 2   The proposed multi-symbol AE block diagram. 

 

 

Fig. 3   The conflict in the multi-symbol AE. 
 
context, update context, write context, range, low and output. 
In AG, read, update and write context stage, it reads 
probability state of a context, updates it; and then writes back 
to the context memory. range and low stage maintain the 
updated value of range and low, respectively. Finally, output 
stage resolves outstanding bits and packs output bits into 
coded bitstreams. The AEs are cascaded in order to encode n 
symbols in parallel. The probability states of each encoding 
symbol are read/update/write concurrently. Moreover, the 
updated value of range and low are propagated to next symbol 
so that the updated value can be used in the same cycle. 

As we can see, n times read and n times write would 
simultaneously operate in a cycle. That means, unless, 2n ports 
are required for the context memory. A multi-bank dual-port 
memory, then, is adopted in the proposed design. To meet a 
better performance, the number of bank in the memory is 
chosen equal to n. Because read/write ports utilization would 
be low if the number is larger than n; on the contrary, access 
conflict would frequently occurred if it is less than n. 

A conflict occurs when more than one context has to read 
from or write to the same bank concurrently. For example, as 
shown in Fig.3, if contexts of symbol4 and symbol5 are stored  

TABLE   I   
THROUGHPUT LOSS OF THE MULTI-SYMBOL AE. 

parallelism test 
sequences 

throughput throughput loss 
(%) 

2-symbol 352x288 1.71 14.5% 
720x480 1.68 16% 
1920x1088 1.63 18.5% 

4-symbol 352x288 2.45 38.8% 
720x480 2.43 39.3% 
1920x1088 2.27 43.3% 

 

 

Fig. 4   The conflict rate for context of residual symbols. 
 
in the same bank in the 4-symbol AE, a conflict may arises. 
The symbol5 would not be encoded at current cycle because its 
probability state is not ready. Due to the data dependency, the 
symbols after symbol5 would not be coded as well. A bubble 
cycle would arise and only one symbol is coded in the cycle. 
Obviously, the throughput is degraded a lot in this case. The 
simulation results show that the conflict brought up to 43% 
throughput loss as shown in Table I. With the serious 
throughput loss, the hardware utilization is also considered low. 
Therefore, to design a conflict-free context memory 
architecture is quite necessary for multi-symbol AE. 

III. PROPOSED CONFLICT-FREE HYBRID CONTEXT MEMORY 
ARCHITECTURE 

The Hybrid Context Memory architecture (HCM) is 
proposed in our design. Contexts are divided into two groups, 
i.e. critical context and normal context, depending on the rate 
of conflict happens. For the critical ones, conflict constantly 
happens because they easily occur conflict with the contexts 
of neighboring symbols. To solve this problem, critical 
contexts are better to be implemented by a memory 
component with sufficient read/write ports. Thus, we use 
register array, i.e. Critical Register Array (CRA), to 
implements the critical contexts since it does not have limited 
port characteristic. On the contrary, the remaining contexts 
are simply implemented by multi-bank dual-port SRAM since 
2n ports may be quite enough. It should be noted that the area 
cost may be increased by adopting the register array and 
several comparators. Therefore, only partial but most critical 
of contexts are selected to critical group. 
  In fact, as shown in Fig. 4, we observed that most conflicts 
are occurred during the encoding the residual data especially  
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TABLE   II   
THE CRITICAL CONTEXTS DEFINED IN THE DESIGN. 

Syntax element number of context 

Luma block last0~last15 15 

Chroma DC block last0~last3 3 

Chroma AC block last0~last14 14 

Coded block pattern 12 

Total 44 

Fig. 5   Example of encoding symbols for a 4x4 luma block. 
 

 

 
CRA and it is considered as a fair tradeoff between area cost 
and throughput. 

The architecture and dataflow of HCM for 4-symbol AE is 
shown in Fig. 7 (a), (b). CRA stores the probability state of 
critical contexts, and the remaining contexts are stored in the 
4-bank dual-port SRAM. For each context read operation, the 
probability state can be read from the dual-port memory path 
or CRA path. If the context is a critical context, the data from 
CRA is chosen; otherwise, the one from dual-port path with 
corresponding bank is chosen. In addition, each updated 
probability state is written to either dual-port memory or CRA 
depending on whether its associated context belongs to critical 
context. 

Fig. 6   The conflict between sig and last symbols. 
 
when video quality is high (larger amount of residual data). 
The residual syntax elements include coded block 
pattern(CBP), significant coefficient flag (sig), last significant 
coefficient flag (last), coded block flag, coefficient level and 
coefficient sign flag. 

IV. IMPLEMENTATION RESULTS Fig. 5 shows an example of a 4x4 block of luma transform 
coefficients. Coefficients are scanned in zig-zag order and a 
sig bit is used to determine whether its value is zero. If a sig bit 
is not zero, it is follow by a last bit to determine whether the 
last nonzero coefficient in the block is reached. After sig and 
last were coded, coefficients level and sign flag start to be 
coded in the backward direction. 

The proposed multi-symbol AE hardware architecture is 
written in Verilog HDL and synthesized using Synopsys 
Design Compiler targeted towards as Artisan TSMC 0.18 um 
cell library. We choose and implemented 2-symbol and 4-
symbol versions. Several video sequences from 352x288 
(foreman, akiyo, mobile), 720x480 (crew, habour, sailormen) 
to 1920x1088 (sunflower, rush_hour, station2), with low to 
high motion and different quantization parameter (20, 30, 40) 
are used for simulation. Table III and IV show the 
comparisons with other multi-symbol AE designs. With HCM, 
a higher symbol per cycle and throughput is achieved. In 2-
symbol and 4-symbol, the symbol per cycle is increased to 
1.92 and 3.70 which are close to the ideal value 2 and 4. 
Notably, there is still throughput loss in the multi-bank dual-
port SRAM. Comparing to the case without optimization 
(referring to Table I), it achieves 15% and 55.5% improvement 
of throughput. The improvement is also significant comparing 
to other designs (4.3%~37.1%). Moreover, since the symbol 
per cycle is higher in the proposed design, we can achieve a 
lower operating frequency in a given real-time application. 
The hardware can achieve 639M/685M throughput operating 
at 185M/333MHz with 12.6K/34.6K gates in 2-symbol/4-
symbol versions. Our design exhibits better performance than 
Lo‘s work [5] with higher symbol per cycle and throughput. 
The maximum operating frequency is higher because the 
architecture is well divided into balanced pipeline stages. 
Compared with 1.84/3.32 symbol per cycle in Chen’s work [3], 
a 48M higher encoding rate is reached with limited area 
overhead. 

The contexts between sig and last symbols contribute most 
throughput loss. It is because they are interlacedly located in 
encoding process. As shown in Fig. 6, a series of sig and last 
symbols are coded by a 4-symbol AE. A last symbol is coded 
depended on the value of prior sig symbol. For example, in 
case 0, sig0, sig1 and sig2 are zero and no last symbol is coded. 
Moreover, we assign sig0, sig1, sig2, sig3, last0 and last1 to 
proper banks in order to avoid conflict in case 0~2. However, 
eventually it causes conflict in case 3. Obviously, it is 
impossible to assign them into four bank memory without any 
throughput loss. Since the conflict is evitable, it frequently 
happens during encoding series of sig and last symbols. 
According to simulation results, the context of last symbols in 
Luma4x4, Chroma DC and Chroma AC block are assigned as 
critical context. Besides, CBP also introduces lots of 
throughput loss. It indicates which 8x8 blocks in the 
macroblock contain nonzero coded transform coefficients. It 
tends to generates conflict between itself and neighboring 
syntax elements. 

Therefore, there are 44 contexts stored in CRA as shown in 
Table II. The remaining contexts are uniformly distributed to 
each bank of dual-port memory by assigning them with 
modular order (context index % numbers of bank). 44 of 496  
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Fig. 7   Architecture and dataflow of HCM. (a) read context, (b) write context. 

 
 
 

TABLE   III   

SYMBOL PER CYCLE COMPARE TO PREVIOUS WORKS. 

Parallelism Design symbol/cycle imrpovement (%) 

2-symbol [5] 1.4 ~ 1.70* 37.1%~12.9% 
[4] 1.57 22.3% 
[3] 1.84 4.3% 
proposed 1.92 - 

4-symbol [3] 3.32 11.4% 
proposed 3.70 - 

 

TABLE   IV   

HARDWARE PERFORMANCE COMPARE TO PREVIOUS WORKS.  

(ALL IMPLEMENTED IN 0.18 UM TECHNOLOGY) 

Parallelism Design Area Max 
operating 
frequency 

Throughput 
(symbol/sec) 

2-symbol [5] 0.451  
mm2 

135MHz 189M ~ 
 230M 

[3] 18.9K  
gates 

345MHz 635M 

proposed 12.6K  
gates 

333MHz 639M 

4-symbol [3] 32.1K 
 gates 

192MHz 637M 

proposed 34.9K 
 gates 

185MHz 685M 

V. CONCLUSIONS 

The conflict-free Hybrid Context Memory for AE is 
proposed in this work. With individually implementing 
contexts under different memory component, the memory 
access conflict can be avoided. The implementation results 

show that symbol per cycle is improved by 15% and 55.5% in 
2-symbol and 4-symbol version, respectively. For a given real-
time application, the proposed design is able to operate in a 
corresponding low frequency or less cycle since the symbol 
per cycle is higher. The hardware can achieve 639M/685M 
throughput which is the highest comparing to the previous 
works. Also, the proposed design is reconfigurable so that it 
can be redesign with different parallelism scheme to meet the 
system requirement. 
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