
A Conflict-free Multi-Symbol Arithmetic Encoder for
H.264/AVC

De-Yuan Shen, Che-Wei Chang, Yu-Nan Pan and Tsung-Han Tsai
Dept. of Electrical Engineering, National Central University,

Taoyuan 32001, Taiwan
E-mail: {dyshen, cwc, kobbe, han}@dsp.ee.ncu.edu.tw

Abstract—This paper proposed a conflict-free multi-symbol
arithmetic encoder (AE) for H.264/AVC. The throughput of a
multi-symbol AE is usually limited by concurrent access of
context memory which degrades the performance of the whole
H.264/AVC encoder. With proposed Hybrid Context Memory
architectures (HCM), about 1/10 contexts under critical conflict
are implemented by Critical Register Array to solve the
insufficient ports bottleneck. The number of encoding symbol
per cycle is improved by 15% and 55.5% in 2-symbol and 4-
symbol version, respectively. The implementation results also
show that the hardware design can achieve a high encoding rate
and throughput comparing to the previous works.

I. INTRODUCTION

H.264/Advanced Video Coding (AVC) is the latest video
coding standard developed by the ITU-T Video Coding
Experts Group (VCEG) and the ISO/IEC Moving Picture
Experts Group (MPEG) [1]. Two entropy coding techniques,
context-based adaptive binary arithmetic coding (CABAC)
and context-based adaptive variable length coding (CAVLC)
are used in the standard. CABAC adopted in main and high
profiles, offers comparison results that are 9%-14% better than
those obtained with the baseline CAVLC [2] but at the
expense of increased complexity in the entropy coder.

Fig. 1 shows a CABAC block diagram. First, a syntax
element and neighboring side information are processed to
generate its binary symbols and associated context indexes by
Binarizer and Context Address Generator, respectively. Then,
the pairs of symbol and context index are consecutively loaded
into a binary arithmetic encoder (AE). The encoding process
of AE consists of three functional elements: probability state
accessing, tag (low) and interval (range) maintaining. Most
Probable Symbol (MPS) and range of Least Probable Symbol
(rangeLPS) can be obtained after probability state of a symbol
is accessed from context memory. If the symbol is matched to
the MPS, range is subtracted by rangeLPS; otherwise, range is
set equal to rangeLPS. low is always updated to the lower
bound of next range. Moreover, a renormalization process that
enlarges the range and generates the coded bits for output is
evoked if range is considered small. Besides regular coding,
bypass coding is applied for the symbols with equal
probability to speed up encoding process.

Several researches have been proposed to reduce the
architecture complexity and improve the throughput of AE.

Fig. 1 The CABAC block diagram.

Basically, they can be classified by its parallelism as one-
symbol or multi-symbol. A multi-symbol AE is more suitable
under high throughput and low power consideration. It
encodes multiple symbols at a cycle so that the given
throughput can be achieved with relatively low operating
frequency, and vice versa. Lo et al. [5] encode 2 residual
symbols in parallel to enhance the throughput. Moreover,
Chen et al. [3] proposed the forwarding and pre-read/write
techniques to increase the throughput of SRAM-based AE.
Ideally, the throughput should be increased proportionally to
the parallelism of the design. For example, 2 symbol/cycle is
generated with a 2-symbol AE and 4 symbol/cycle is generated
with a 4-symbol AE. However, it does not usually reach the
case. The bottleneck lays in conflict of the context memory
which would degrade half of the throughput.

This work proposed a conflict-free multi-symbol AE that
aims to deal with the throughput loss suffering from memory
conflict. Contexts are divided into two groups based on the
rate of conflict happens. Then, Hybrid Context Memory
(HCM), i.e. a multi-bank dual-port SRAM and Critical
Register Array, individually implements the two groups of
contexts. The simulation results show that up to 55.5%
throughput improvement is reached.

The remainder of the work is organized as follows. In
Section 2, the proposed multi-symbol AE and its’ design
bottleneck are described. In Section 3, the proposed HCM
architecture is introduced. Section 4 shows the implementation
results. Finally, we conclude the work in Section 5.

II. PROPOSED MULTI-SYMBOL AE

The block diagram of proposed multi-symbol AE is shown
in Fig. 2. For each one-symbol AE coding engine, it is divided
into a seven-stage pipeline architecture, i.e. AG context, read

09-0102900293©2009 APSIPA. All rights reserved.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

Fig. 2 The proposed multi-symbol AE block diagram.

Fig. 3 The conflict in the multi-symbol AE.

context, update context, write context, range, low and output.
In AG, read, update and write context stage, it reads
probability state of a context, updates it; and then writes back
to the context memory. range and low stage maintain the
updated value of range and low, respectively. Finally, output
stage resolves outstanding bits and packs output bits into
coded bitstreams. The AEs are cascaded in order to encode n
symbols in parallel. The probability states of each encoding
symbol are read/update/write concurrently. Moreover, the
updated value of range and low are propagated to next symbol
so that the updated value can be used in the same cycle.

As we can see, n times read and n times write would
simultaneously operate in a cycle. That means, unless, 2n ports
are required for the context memory. A multi-bank dual-port
memory, then, is adopted in the proposed design. To meet a
better performance, the number of bank in the memory is
chosen equal to n. Because read/write ports utilization would
be low if the number is larger than n; on the contrary, access
conflict would frequently occurred if it is less than n.

A conflict occurs when more than one context has to read
from or write to the same bank concurrently. For example, as
shown in Fig.3, if contexts of symbol4 and symbol5 are stored

TABLE I
THROUGHPUT LOSS OF THE MULTI-SYMBOL AE.

parallelism test
sequences

throughput throughput loss
(%)

2-symbol 352x288 1.71 14.5%
720x480 1.68 16%
1920x1088 1.63 18.5%

4-symbol 352x288 2.45 38.8%
720x480 2.43 39.3%
1920x1088 2.27 43.3%

Fig. 4 The conflict rate for context of residual symbols.

in the same bank in the 4-symbol AE, a conflict may arises.
The symbol5 would not be encoded at current cycle because its
probability state is not ready. Due to the data dependency, the
symbols after symbol5 would not be coded as well. A bubble
cycle would arise and only one symbol is coded in the cycle.
Obviously, the throughput is degraded a lot in this case. The
simulation results show that the conflict brought up to 43%
throughput loss as shown in Table I. With the serious
throughput loss, the hardware utilization is also considered low.
Therefore, to design a conflict-free context memory
architecture is quite necessary for multi-symbol AE.

III. PROPOSED CONFLICT-FREE HYBRID CONTEXT MEMORY
ARCHITECTURE

The Hybrid Context Memory architecture (HCM) is
proposed in our design. Contexts are divided into two groups,
i.e. critical context and normal context, depending on the rate
of conflict happens. For the critical ones, conflict constantly
happens because they easily occur conflict with the contexts
of neighboring symbols. To solve this problem, critical
contexts are better to be implemented by a memory
component with sufficient read/write ports. Thus, we use
register array, i.e. Critical Register Array (CRA), to
implements the critical contexts since it does not have limited
port characteristic. On the contrary, the remaining contexts
are simply implemented by multi-bank dual-port SRAM since
2n ports may be quite enough. It should be noted that the area
cost may be increased by adopting the register array and
several comparators. Therefore, only partial but most critical
of contexts are selected to critical group.
 In fact, as shown in Fig. 4, we observed that most conflicts
are occurred during the encoding the residual data especially

0

20

40

60

80

100

20 30 40

re
si

du
al

 c
on

fli
ct

 ra
tio

 (%
)

QP

2-symbol
4-symbol

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

TABLE II
THE CRITICAL CONTEXTS DEFINED IN THE DESIGN.

Syntax element number of context

Luma block last0~last15 15

Chroma DC block last0~last3 3

Chroma AC block last0~last14 14

Coded block pattern 12

Total 44

Fig. 5 Example of encoding symbols for a 4x4 luma block.

CRA and it is considered as a fair tradeoff between area cost
and throughput.

The architecture and dataflow of HCM for 4-symbol AE is
shown in Fig. 7 (a), (b). CRA stores the probability state of
critical contexts, and the remaining contexts are stored in the
4-bank dual-port SRAM. For each context read operation, the
probability state can be read from the dual-port memory path
or CRA path. If the context is a critical context, the data from
CRA is chosen; otherwise, the one from dual-port path with
corresponding bank is chosen. In addition, each updated
probability state is written to either dual-port memory or CRA
depending on whether its associated context belongs to critical
context.

Fig. 6 The conflict between sig and last symbols.

when video quality is high (larger amount of residual data).
The residual syntax elements include coded block
pattern(CBP), significant coefficient flag (sig), last significant
coefficient flag (last), coded block flag, coefficient level and
coefficient sign flag.

IV. IMPLEMENTATION RESULTS Fig. 5 shows an example of a 4x4 block of luma transform
coefficients. Coefficients are scanned in zig-zag order and a
sig bit is used to determine whether its value is zero. If a sig bit
is not zero, it is follow by a last bit to determine whether the
last nonzero coefficient in the block is reached. After sig and
last were coded, coefficients level and sign flag start to be
coded in the backward direction.

The proposed multi-symbol AE hardware architecture is
written in Verilog HDL and synthesized using Synopsys
Design Compiler targeted towards as Artisan TSMC 0.18 um
cell library. We choose and implemented 2-symbol and 4-
symbol versions. Several video sequences from 352x288
(foreman, akiyo, mobile), 720x480 (crew, habour, sailormen)
to 1920x1088 (sunflower, rush_hour, station2), with low to
high motion and different quantization parameter (20, 30, 40)
are used for simulation. Table III and IV show the
comparisons with other multi-symbol AE designs. With HCM,
a higher symbol per cycle and throughput is achieved. In 2-
symbol and 4-symbol, the symbol per cycle is increased to
1.92 and 3.70 which are close to the ideal value 2 and 4.
Notably, there is still throughput loss in the multi-bank dual-
port SRAM. Comparing to the case without optimization
(referring to Table I), it achieves 15% and 55.5% improvement
of throughput. The improvement is also significant comparing
to other designs (4.3%~37.1%). Moreover, since the symbol
per cycle is higher in the proposed design, we can achieve a
lower operating frequency in a given real-time application.
The hardware can achieve 639M/685M throughput operating
at 185M/333MHz with 12.6K/34.6K gates in 2-symbol/4-
symbol versions. Our design exhibits better performance than
Lo‘s work [5] with higher symbol per cycle and throughput.
The maximum operating frequency is higher because the
architecture is well divided into balanced pipeline stages.
Compared with 1.84/3.32 symbol per cycle in Chen’s work [3],
a 48M higher encoding rate is reached with limited area
overhead.

The contexts between sig and last symbols contribute most
throughput loss. It is because they are interlacedly located in
encoding process. As shown in Fig. 6, a series of sig and last
symbols are coded by a 4-symbol AE. A last symbol is coded
depended on the value of prior sig symbol. For example, in
case 0, sig0, sig1 and sig2 are zero and no last symbol is coded.
Moreover, we assign sig0, sig1, sig2, sig3, last0 and last1 to
proper banks in order to avoid conflict in case 0~2. However,
eventually it causes conflict in case 3. Obviously, it is
impossible to assign them into four bank memory without any
throughput loss. Since the conflict is evitable, it frequently
happens during encoding series of sig and last symbols.
According to simulation results, the context of last symbols in
Luma4x4, Chroma DC and Chroma AC block are assigned as
critical context. Besides, CBP also introduces lots of
throughput loss. It indicates which 8x8 blocks in the
macroblock contain nonzero coded transform coefficients. It
tends to generates conflict between itself and neighboring
syntax elements.

Therefore, there are 44 contexts stored in CRA as shown in
Table II. The remaining contexts are uniformly distributed to
each bank of dual-port memory by assigning them with
modular order (context index % numbers of bank). 44 of 496

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

bank0

4-bank dual-port
SRAM

Critical Register Array

Hybrid Context Memory

context0

context1

context2

context3

probability state0

context0 % 4
context1 % 4

context2 % 4
context3 % 4

context0 є critical ?

bank1

bank2

bank3

0

1

2

3

0

1

probability state1

context1 є critical ?

0

1

probability state2

context2 є critical ?

0

1

probability state3

context3 є critical ?

0

1

bank0

4-bank dual-port
SRAM

Critical Register Array

Hybrid Context Memory

context0

context1

context2

context3

update probability state0

bank1

bank2

bank3

update probability state1

update probability state2

update probability state3

(a) (b)
Fig. 7 Architecture and dataflow of HCM. (a) read context, (b) write context.

TABLE III

SYMBOL PER CYCLE COMPARE TO PREVIOUS WORKS.

Parallelism Design symbol/cycle imrpovement (%)

2-symbol [5] 1.4 ~ 1.70* 37.1%~12.9%
[4] 1.57 22.3%
[3] 1.84 4.3%
proposed 1.92 -

4-symbol [3] 3.32 11.4%
proposed 3.70 -

TABLE IV

HARDWARE PERFORMANCE COMPARE TO PREVIOUS WORKS.

(ALL IMPLEMENTED IN 0.18 UM TECHNOLOGY)

Parallelism Design Area Max
operating
frequency

Throughput
(symbol/sec)

2-symbol [5] 0.451
mm2

135MHz 189M ~
 230M

[3] 18.9K
gates

345MHz 635M

proposed 12.6K
gates

333MHz 639M

4-symbol [3] 32.1K
 gates

192MHz 637M

proposed 34.9K
 gates

185MHz 685M

V. CONCLUSIONS

The conflict-free Hybrid Context Memory for AE is
proposed in this work. With individually implementing
contexts under different memory component, the memory
access conflict can be avoided. The implementation results

show that symbol per cycle is improved by 15% and 55.5% in
2-symbol and 4-symbol version, respectively. For a given real-
time application, the proposed design is able to operate in a
corresponding low frequency or less cycle since the symbol
per cycle is higher. The hardware can achieve 639M/685M
throughput which is the highest comparing to the previous
works. Also, the proposed design is reconfigurable so that it
can be redesign with different parallelism scheme to meet the
system requirement.

REFERENCES

[1] Joint Video Team, Draft ITU-T Recommendation and Final
Draft International Standard of Joint Video Specification, ITU-T
Rec. H.264 and ISO/IEC 14496-10 AVC, 2003.

[2] D. Marpe, H. Schwartz and T.Wiegand, “Context-Based
Adaptive Binary Arithmetic Coding in the H.264/AVC video
compression standard,” IEEE Trans. Circuits System Video
Technology, vol. 13, no. 7, pp. 620–636, Jul. 2003.

[3] Yu-Jen Chen, Chen-Han Tsai and Liang-Gee Chen,
“Architecture design of area-efficient SRAM-based multi-
symbol arithmetic encoder in H.264/AVC”, IEEE International
Symposium on Circuits and Systems, Greece, May 2006.

[4] Sze, V., Chandrakasan, A.P., Budagavi, M. and Minhua Zhou,
“Parallel CABAC for low power video coding”, IEEE
International Conference on Image Processing, San Diego,
U.S.A, Oct. 2008.

[5] Chia-Cheng Lo, Ying-Jhong Zeng and Ming-Der
Shieh , “Design and test of a high-throughput CABAC
encoder”, IEEE Region 10 Conference, Oct. 2007.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28chia%20cheng%20lo%3CIN%3Eau%29&valnm=Chia-Cheng+Lo&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20ying%20jhong%20zeng%3CIN%3Eau%29&valnm=+Ying-Jhong+Zeng&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20ming%20der%20shieh%3CIN%3Eau%29&valnm=+Ming-Der+Shieh&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20ming%20der%20shieh%3CIN%3Eau%29&valnm=+Ming-Der+Shieh&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4428769

	pg290: 290
	pg291: 291
	pg292: 292
	pg293: 293

