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Abstract— The realization of an electronically tunable phase 

shifter using current differencing transconductance amplifiers 
(CDTAs) as active components is presented. The proposed filter 
employs only two CDTAs and one virtually grounded capacitor, 
which its phase shift can be electronically adjusted by varying 
the bias current of the CDTA. The circuit also exhibits high-
output impedance, which is easy cascading in the current-mode 
operation. As application example, the current-mode biquad 
filter based on the proposed CDTA-based phase shifter circuit is 
also presented. PSPICE simulation results of the proposed 
circuit and its application are given to confirm the theoretical 
analysis. 

I. INTRODUCTION 

 The phase shifter is widely used in analog signal-
processing applications.  In general, it is used for phase 
shifting from 0° to 180° (or from 180° to 0°), while keeping 
the amplitude of the signal constant over the frequency range 
of interest.  It can also be used to realize universal biquadratic 
filters, to synthesize quadrature and multiphase oscillators, 
and to implement high quality factor frequency selective 
filters [1]-[6].  Current-mode circuits are receiving much 
attention because of their potential advantages such as wider 
bandwidth, wider dynamic range, simpler circuitry, and lower 
power consumption.  Considering this fact, a number of 
current-mode first-order allpass filter realizations using 
different active building blocks were reported in the literature 
[6]-[10].  Most of these circuits use a large passive component 
count and suffer from the need of passive component ratio-
matching conditions.  Moreover, none of them are 
electronically adjustable.  Although first-order translinear-C 
current-mode allpass sections with electronic tuning 
properties were reported in [11], they suffers from low output 
impedances. 

 In this paper, we propose an electronically tunable phase 
shifter realization using only two CDTAs and one virtually 
grounded capacitor.  Due to electronically tunability 
properties of the CDTA [6], [12], the phase response of the 
proposed circuit can be adjusted by an external bias current.  
No component-matching condition for realizing the allpass 
function is required.  Also, the circuit is cascadable and 
suitable for monolithic integration.  The second-order current-
mode notch and allpass filters consisting of the proposed 
CDTA-based phase shifter sections are also discussed as an 

application example.  Simulation results that agree very well 
with the theoretical values are obtained. 

II. CURRENT DIFFERENCING TRANSCONDUCTANCE 
AMPLIFIER (CDTA) 

The electrical symbol of the CDTA is shown in Fig.1, 
where p and n are input terminals, z and x are output 
terminals.  The terminal relations of the CDTA can be 
expressed by the following equations : 
 

vp = vn = 0 ,  iz = ip - in  and  ix = gmvz = gmZziz       (1) 
 

where gm is the transconductance gain of the CDTA, and Zz 
is an impedance connected at the terminal z.  From equation 
(1) can conclude that the current through the terminal z (iz) 
follows the difference of the currents through the terminals p 
and n  (ip-in), and flows from the terminal z into an outside 
impedance Zz.  The voltage drop at the terminal z is 
transferred to a current at the terminal x (ix) by a 
transconductance gain (gm), which is electronically 
controllable by an external bias current. 

 
I

vx

ixip

in
n

+x

z

p
CDTA

B

ix
vx-

vp

vn -x

iz

+

vz  
Figure 1. Symbol of the CDTA 

 
The possible bipolar implementation of the CDTA circuit 

used in this work is shown in Fig.2 [13]-[14].  It mainly 
consists of a current subtractor formed by current followers 
Q1p-Q4p and Q1n-Q4n, and a multiple-output transconductance 
amplifier Q8-Q20 that converts the voltage drop at the terminal 
z (vz) to its corresponding differential output currents ix.  In 
this case, the transconductance gain gm is directly proportional 
to the external bias current IB, which can be written by :  
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where VT ≅ 26 mV at 27οC is the thermal votage. 
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Figure 2.  Possible bipolar implementation of the CDTA. 
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Figure 3.  Proposed electronically tunable phase shifter using CDTAs. 

III. PROPOSED CIRCUIT 

The proposed electronically tunable phase shifter 
employing  two CDTAs and one virtually grounded capacitor 
is shown in Fig 3. From routine calculations for the proposed 
filter, the current transfer function can be given by :  
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 Equation (3) shows that the circuit in figure 3 realizes the 
first-order allpass transfer function. Because the output 
terminal of the proposed first-order allpass filter is connected 
to the x terminal of the CDTA2, the output terminal can be 
directly connected to the next stage. Where gm1 is the trans-
condutance of CDTA1. For CDTA2, its transconductance can 
be set arbitrary. The pole frequency (ωo) and the phase 
response (φ) can be found as : 
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Therefore, the phase response of the proposed phase shifter 
can be electronically controlled through CDTA’s bias current.   

IV. SIMULATION RESULTS 

To verify the theoretical analysis, PSPICE simulation has 
been used to confirm the characteristics of the proposed filter 
of Fig.3.  In simulations, the CDTA was performed with the 
transistor model of PR100N (PNP) and NP100N (NPN) of the 
bipolar arrays ALA400 from AT&T [15].  The bias conditions 
were chosen as : V = ±3V, IA = 100 μA, IC = 50 μA and  C1 = 
1 nF. IB is given externally to control the transconductance. 
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Figure 4. Magnitude and phase responses of the proposed electronically 

tunable phase shifter. 
 
To obtain fo ≅ 292 kHz, while their theoretical value is fo = 

ωo/2π ≅ 318 kHz, the active and passive components were 
chosen as : gm1 = 2 mA/V (IB = 100 μA), and C1 = 1 nF.  Fig.4 
shows the magnitude and phase responses of the 
electronically tunable phase shifter, which is obvious that the 
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simulated responses are found to be in good agreement with 
the theoretically predicted behavior. 
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Figure 5. Simulated phase responses of the proposed electronically tunable 
phase shifter when gm1 is varied. 

 
To demonstrate the electronically controllability property 

of the phase shift, Fig.5 shows the simulated phase responses 
of the proposed electronically tunable phase shifter when gm1 
is respectively adjusted to 1 mA/V, 2 mA/V  and 4 mA/V. 
From the simulations, it can be observed that the phase shift 
are approximately located at  -127o, -90o and  -53o, while the 
theoretical values are -126o, -90o and  -50o, respectively. 

V. APPLICATION EXAMPLE 

As an application of the proposed CDTA-based phase 
shifter circuit, the current-mode biquadratic filter realizing 
both notch and allpass functions is implemented.  The 
resulting circuit is now shown in Fig.6.  By setting i1 = i2 = iin, 
the current transfer function of this circuit can be given by: 
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From equation (6), if gm2  = 3gm1   and   C1  = C2, a second-order 
notch funtion can be realized.  Moreover, if  gm1   gm2≥  and 
C2  ≥  C1, a second-order allpass funtion can also be obtained.  
The pole angular frequency (ωo) and the quality factor (Q) of 
the proposed filter can be expressed as: 
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The sensitivities with respect to the active and passive 

parameters can be written as : 
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It is important to node that the active and passive sensitivities 
are lower than 0.5 in magnitude.  
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Figure 6. Current-mode biquadratic filter using the proposed CDTA-based 
phase shifter sections. 
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Figure 7. Theoretical and simulated results of the notch filter of Fig.6 

(a) magnitude response    (b) phase response 
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Fig.7 depicts the simulated magnitude and phase responses 
of the notch filter of Fig.6 with gm1 = 1 mA/V, gm2 = 3 mA/V  
and C1 = C2 =    1 nF.  Fig.8 shows the simulated frequency 
responses of the allpass filter of Fig.6, comparing with the 
ideal responses, when gm1 = gm2 = 2 mA/V and C1 = C2 = 1 nF.  
It should be noted from both figures that, by properly setting 
the gm-value, the filter can realize current-mode second-order 
notch and allpass filter functions without changing the circuit 
topology.   
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Figure 8. Magnitude and phase responses of the allpass filter of Fig.6 

VI. CONCLUSIONS 

This paper has been proposed a new configuration for the 
realization of electronically tunable phase shifter.  The 
proposed filter requires two CDTAs and a single virtually 
grounded capacitor, thus results in a canonical allpass filter.  
The output of the proposed circuit exhibits high-output 
impedance that makes the circuit attractive from the 
viewpoint of cascading in current mode.  An application 
example of the current-mode second-order notch and allpass 
filter realization is also given to demonstrate the design 
possibilities using the proposed CDTA-based phase shifter 
section.  PSPICE simulation results are given to confirm the 
theory.   
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