
Recent Development of WFST-Based Speech
Recognition Decoder

Paul R. Dixon ∗, Tasuku Oonishi ∗, Koji Iwano† and Sadaoki Furui ∗
∗ Department of Computer Science, Tokyo Institute of Technology

2-12-1, Ookayama, Meguro-ku, Tokyo, Japan, 152-8552
E-mail: oonishi,dixonp@furui.cs.titech.ac.jp,furui@cs.titech.ac.jp Tel: +81-3-5734-3480

† Faculty of Environmental and Information Studies, Tokyo City University
3-3-1 Ushikubo-nishi, Tsuzuki-ku, Yokohama, Japan, 224-8551

E-mail: iwano@tcu.ac.jp Tel: +81-45-910-2598

Abstract—In this paper we present an overview of the Tokyo
Tech Transducer-based Decoder T 3 (pronounced tee-cubed).
There is a high level overview of the engine’s design and features
which is accompanied by a more detailed description of the
features that are unique to our engine. These include the ability to
perform acoustic computations on a graphics card and general-
ized fast on-the-fly composition and optimization algorithms. We
describe voice activity detection functionality recently added to
the engine and finally results are presented which show the engine
achieving very high recognition throughput at a high recognition
accuracy.

I. INTRODUCTION

The T 3 (pronounced tee-cubed) speech recognition engine
is a modern state-of-the-art speech decoder that is currently
under development at Tokyo Institute of Technology. T 3 began
with the goals of developing a recognition engine which would
not only provide high performance in terms of accuracy,
speed and resource usage but also a robust foundation for
use in practical applications and as a research platform for
implementing and exploring new techniques.

The engine is designed to operate on Weighted Finite State
Transducers (WFSTs) [25] which are a type of finite state
machine that can provide a mapping between strings with an
optional weight to represent uncertainty. Recently, the use of
WFSTs in speech recognition has become extremely popular,
one of the main advantages of the approach is the unified
manner all of the models optimized and combined together.
Furthermore, performing the optimization ahead of decoding
allows for the development of speech recognition engines that
can often deliver faster recognition speeds when compared to
more traditional dynamic decoders[16].

A speech recognition system will often be part of a
much larger spoken language processing system and re-
quire additional support tools. For example Grapheme-
to-Phoneme conversion for generating pronunciations[7],
dialog processing[13], machine translation[21] or speech
synthesis[6], [1] to name a few. The general nature of WFSTs
allows each of these tasks to be represented in the WFST
paradigm bringing further unification of tools and techniques.

However, there are several drawbacks to the unified ap-
proach, firstly large amounts of memory can be required to
hold the fully composed network during recognition and the

off-line memory usage during composition and optimization
may become prohibitively large. After the composition access
to the information source is lost and therefore changing the
models on-line becomes much more difficult. Later in the
paper we describe the on-the-fly techniques we have developed
to deal with these issues.

In this paper we first provide a broad overview of the
design and features of T 3 and describe in detail some of
the more important and unique features. During development
we focused heavily on resource usage and recognition speed.
Two of the important features of the engine are the ability to
offload acoustic computations to a Graphics Processor Unit
(GPU) enabling extremely fast decoding even on very large
acoustic models and novel versions of the WFST algorithms
that perform on-line composition and optimization.

The core feature set includes all of the functionality one
would expect from a modern recognition engine, such as an
integrated front end, lattice output, n-best lists and confidence
scores. The decoder was designed with compatibility in mind
to allow the use of existing resources and compare perfor-
mance. For example the decoder and supporting tools can
deal with acoustic models in ATT[24] or HTK[33] format and
the frontend can generate features that are compatible with
HTK/Julius[33], [19] or the CMU Sphinx[18] toolkits. We use
the ATT format for the text representation of WFST and this
gives compatibility with the ATT FSM[24] and OpenFst[4]
toolkits.

To reduce physical memory usage during recognition T 3

can leave the static search network on the disk and pull in
the required state and arc information as requested by search.
The initial motivation for this technique was to allow for the
T 3 to run as an embedded recognition engine for example on
a PDA. Since the initial development of T 3 the disk based
approach has become more appealing because of the recent
proliferation of solid state drives in particular on low-end
netbooks which are well suited to this approach. In addition T 3

can also perform the composition on-the-fly and this allows for
the component models to be loaded and used by the decoder
directly without having to perform the off-line composition
phase.

The memory savings achievable by on-the-fly composition

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

09-0101380147©2009 APSIPA. All rights reserved.

often come at the cost of a reduction in the speed of the
decoder. This is mainly because it is not possible to perform
optimization on the fully composed network and the cost of
the composition itself. To deal with these issues specialized
fast on-the-fly composition and optimization schemes have
been proposed by others [14], [8]. In the T 3 decoder we have
also developed a generalized fast on-the-fly composition which
requires no modification to the decoder similar to the work
by [8]. The proposed method can also perform optimization
on-line and places no restrictions on the topology of the
component networks.

II. WEIGHTED FINITE STATE TRANSDUCERS

We first start with a brief overview of WFSTs that will cover
the theoretical foundation needed to describe the algorithms
presented later in the paper. For a more in depth description
of WFSTs in speech recognition the reader is referred to [25],
[26], [23]

A WFST is a generalized type of finite automata where each
of the transitions has an output label and optional weight in
addition to the input label. Formally a transducer T is defined
as the 8 tuple[26], [23]:

T = (Σ,Δ, Q, I, F,E, �, �) (1)

Where:
∙ Σ is a finite input alphabet.
∙ Δ is a finite output alphabet.
∙ Q is a finite set of states.
∙ I ⊆ Q is the set of initial states.
∙ F ⊆ Q is the set of final states.
∙ E ⊆ Q× (Σ ∪ {�})× (Δ ∪ {�})×K×Q is a finite set

of transitions.
∙ � : I 7→ K the initial weight function.
∙ � : F 7→ K the final weight function.

A. WFSTs in Speech Recognition

The power in the WFST framework is the way we can
represent each of the knowledge sources used in speech
recognition in a consistent manner, compose them together
and apply the optimization algorithms.

We construct our recognition cascade from the following
components; the language model G which represents the
recognition grammar, the lexicon L which is built from
the pronunciation dictionary and maps phoneme sequences
to words, a transducer C that converts context-dependent
phonemes to context-independent phonemes, and optionally
the acoustic models H .

The full recognition cascade is constructed according to
min (det (H ∘ det (C ∘ det (L ∘G))))[26], where det is the
determinization algorithm that performs a prefix sharing of the
WFST, and min the minimization operation which performs
a suffix sharing.

During the search T 3 dynamically expands the arc defini-
tions which are either Hidden Markov Model arcs correspond-
ing to H or factorized sequences of acoustic model states. It
is also possible to decode at state level networks by omitting

the factorization step and then simulating the self-transitions
via an appropriate arc definition that contains a single HMM
state.

III. T 3 DESIGN

The architecture of the T 3 decoder is shown in Figure 1. Our
decoding engine is not just the search component, but is a fully
functioning standalone real-time speech recognition engine[9].
The whole system can be broadly thought of as several phases.
A training phase where the language and acoustic models are
trained on speech data. Next is the off-line conversion phase
where the knowledge sources are then transformed into WFST
representations and combined using the method described in
section II-A. In the recognition phase the engine is configured
with the processed models and then it converts the speech
input to the desired output format.

Within the recognition engine there are three main blocks
the frontend, decoder and control units. The control unit is
the simplest of the blocks, which takes the configuration
information and sets up the decoder and front-end. The job
of the frontend is to take the raw speech and convert it to
a set of feature vectors suitable for recognition. The decoder
sub-unit performs the actual searching of the feature vectors on
the models to produce the recognition results. The significance
in the separation of the decoder and frontend modules is that
either of these models can be operated as individual standalone
units. This means the decoder can consume pre-computed
features directly and the frontend can perform conversion for
off-line usage.

A. Frontend

The frontend is designed to be modular and extensible
using an architecture similar to the scheme described[18]. The
extraction pipeline is constructed from a sequence of smaller
filter units that perform some transformation on the signal. We
provide a repertoire of filters and place no restriction on the
length or ordering of the filter chain. The filter library con-
tains all of the operations needed to perform Mel-Frequency
Cepstrum Coefficient (MFCC) conversion, including but not
limited to the following:

1) Pre-emphasis
2) Windowing
3) Fast Fourier transform
4) Filter bank analysis
5) Discrete cosine transformation
6) Dynamic features
7) Normalization

The frontend is capable of operating in batch or streaming
modes either connected to the decoder or standalone mode.
The modularity of the design allowed us to incorporate the
VAD into the frontend. The speech data is loaded into a
data packet object and propagated along the filter pipeline.
In addition to the signal the data packet contains additional
status flags and signals for other elements of the engine.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

Audio

WFST

Word sequence/
Lattice

AM+Scoring

DecoderRecognizer

Language

model
Lexicon HMM

2. 右 ウ、ユウ みぎ right

 Right hand feeds mouth.

 右派 うは rightist faction

 右岸 うがん right bank

 左右 さゆう influence, control, domination, left and right

 右 みぎ right

 右手 みぎて right hand

3. 雨 ウ あめ、あま rain

 Four raindrops fall from clouds in heaven.

 雨季 うき rainy season

 雨 あめ rain

 大雨 おおあめ heavy rain

 雨雲 あまぐも rain cloud

4. 円 エン まるい、まどか、まろやか round, yen

 Round coins from bank-teller's window.

 円形 えんけい circle

 円高 えんだか strong yen

 百円 ひゃくえん hundred yen

 円い まるい round, spherical

 円か まどか round, tranquil

 円やか まろやか round, circular, spherical, mild (taste)

Config

Acoustic
model

on-the fly

Disk

Frontend

Filters

Control

Active
Search GC

GPU

WFST
Tools

Static
Network

Fig. 1. Architecture of the T 3 recognition engine.

B. Decoder

The decoder is broken down into smaller abstractions where
the main blocks includes the following:
∙ Active search and traceback
∙ Output processing
∙ WFST interface and implementation
∙ Acoustic scoring
1) Search and Traceback: The decoder’s core runs the

Viterbi algorithm in a time-synchronous manner. When a state
is activated from the WFST a set of corresponding search
states and search arcs are added to an active lists. Search states
or search arcs considered active when they contains a valid
token[34]. To decode an input utterance the search algorithm
runs the following token passing[34] procedure for each frame:

1) For each active state propagate the token to the initial
state of every non-epsilon search arc leaving the state.

2) For each active arc propagate the active tokens one
frame. This step uses a specialized time synchronous
Viterbi algorithm optimized to the arc topology. If at
this point the search arc contains an active token in the
last state, the token is propagated to the destination state.

3) For each active state propagate the token over any input
epsilon arcs leaving the state.

To contain the size of the search space, beam pruning is
applied at several points of each iteration by removing hy-
potheses that have a cost greater than the combined current
best cost plus beam width. Additionally a search band is used
to restrict the maximum number of active arcs at any time.
Every time a token crosses a phone boundary a record is added
to a traceback structure and once the decoding has finished
the best path of lattice is obtained by traversing this structure
backwards from the best token.

The pruning of hypotheses will create dead paths in the
traceback lattice which will not be extended by active tokens.
A mark-sweep garbage collector is used to periodically collect
these dead nodes. During the garbage collection marks are
propagated back along the traceback by starting at the pointers
contained in the active tokens. At the end of this process
any node that is not marked is inaccessible from any active
hypothesis and can be removed and the memory reclaimed.
When the decoder is operating in live mode at this point we
also look for a common prefix in the traceback that can be
output immediately. In previous work we investigated a multi-
threaded decoder implementation. We recently re-visited the
multi-threading issue and evaluated more recent libraries in
particular Intel’s Thread Building Blocks (TBB)1. The use of
the data parallel library massively simplified adding multiple
processor support by allowing the decoding loops to be divided
across cores. Unfortunately we were only able to achieve
speed-ups similar to those reported earlier[9].

IV. OUTPUT FORMATTING

The decoder can output recognition results in single best
path and phone lattice output formats. The phone lattices are
represented as a WFST and this means we can apply standard
WFST operations to transform them into other representations
such as word lattices, n-best lists[27] or confidence scores.

V. WFST INTERFACE

The purpose of the WFST abstraction is to provide a
consistent approach to various underlying WFST implementa-
tions including the disk based representations and the on-the-
fly composition implementations. The design of the WFST
interface follows the design described in [22].

1http://www.threadingbuildingblocks.org/

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

A. Generalized On-the-fly Algorithms

Lazy or on-the-fly composition techniques in speech recog-
nition [11] are motivated by the need to reduce memory
consumption both during network construction and decoding
phases. The on-the-fly techniques also allow the component
knowledge sources to be changed and modified more easily.
The memory reduction occurs because the size of the final
composed machine is often greater than sum of the compo-
nent transducers. The T 3 decoder can directly use several
component transducers thus making on-line switching and
modifications much less costly.

However, performing on-the-fly composition during decod-
ing causes performance reduction due to a combination of
the overhead of the actual combination and the omission of
optimizations that would normally be applied to the fully
composed WFST.

In the T 3 decoder we have developed a generalized fast
on-the-fly scheme that differs from previous approaches in
several key areas that will be explained in the following
sections. The technique is fully implemented within the WFST
abstraction removing any requirement for ad-hoc decoder
modifications. Our approach is a generalized version of the
operations proposed by Caseiro and are extended to make use
of a special composition filter that circumvents the restrictions
Caseiro placed on topology of the individual WFSTs [25].

B. Weighted Composition

Given the WFST L which will map from x to y with
weight wl and the WFST R which maps from y to z with the
weighting wr, the composition WFST L ∘R will map from x
to z with wl × wr in the tropical semiring. Each state in the
composed transducer L ∘ R is represented as a pair (ql, qr)
that corresponds to the states ql and qr from the transducers
L and R. The arcs of each state (ql, qr) in L∘R are computed
using the following:

1) When the left transducer has an epsilon output label
(ol = �) create the arc ((ql, qr), il, �, wl, (q

′

l , qr)).
2) When the right transducer has an epsilon input label

(ir = �) create an arc ((ql, qr), �, or, wr, (ql, q
′

r)).
3) When the symbols match, that is ol = ir create an arc

((ql, qr), il, or, wl⊗wr, (q
′

l , q
′

r)). Epsilon labels are also
treated the same as regular labels and in the case when
ol = � and ir = � we also generate an arc.

Here, the tuple (q, i, o, w, q
′
) denotes an arc with the source

state q, input symbol i, output symbol o, weight w and a
destination state q

′
.

VI. OPTIMIZATION IN ON-THE-FLY COMPOSITION

Caseiro[8] proposed the following on-line algorithms that
perform optimizations during on-the-fly composition: dead-
end state avoidance, dynamic pushing and state sharing,
however these approaches placed topological restrictions on
the input WFSTs.

For the T 3 decoder we have developed generalized versions
of these optimization operations and the key improvement is
the ability to accept transducers of arbitrary structure.

In the following section we describe the dead-end state
avoidance and dynamic pushing operations that were origi-
nally proposed by Caseiro then describe our extended imple-
mentations.

A. Dead-end State Avoidance

Any state which is not part of a path to valid final state
is called a non-coaccessible or dead-end state. These useless
states can be generated during the composition procedure
because of delays in symbols matching or the presence of
epsilon arcs. When performing the composition off-line a post-
processing step is often employed to remove the dead-end
states and ensure the final WFST is trim. For practical ASR it
is essential to remove such states because they waste resources
and negatively effect the performance of the decoder. However,
when using on-the-fly composition removing such states is
much more difficult.

In [8] Caseiro proposed a specialized on-the-fly composition
procedure that would avoid the generation of dead-end states.
There are two extensions in the method, the first modification
is a pre-processing where for every state in the lexicon
transducer L an anticipated label set is constructed. Each
of these anticipated label sets will contain all of the outputs
labels that can be reached from the hosting state. The second
modification occurs during on-line composition, given a pair
of states (ql, qr) we take the intersection of the anticipated
label set in state ql with the input label set from qr. In the
case when the intersection is empty there are no valid future
matches and no arcs will be generated.

However, when there are arcs with epsilon input labels at
state qr the application of the above procedure can often
lead to difficulties . If the state qr has only epsilon input
labels, the intersection becomes empty causing no arcs to be
generated and an incorrect WFST. Caseiro’s solution is to only
allow � input transitions in R when ql is the initial state of
L. Otherwise, use composition rules 2 and 3 and to prevent
the excessive generation of dead-end states restrict L in the
following ways:
∙ The transducer must loop through the initial state.
∙ Each path between the initial and final state must output

only one label.
We proposed[28], [29] a generalized extension which im-

poses no topological restrictions by utilizing a composition
filter to remove redundant paths from the composed WFST.

In filter composition the � outputs in L are substituted with
�2 symbols and � inputs in R are substituted with �1. A
self loop with output �1 is added to every state in L and a
self loop with input �2 is added to every state in R. These
transducers are denoted L

′
and R

′
respectively. Performing

the composition L
′ ∘F ∘R′

, where F is the composition filter
will give a WFST with the redundant paths removed. With the
introduction of a filter the following three way composition of
L, F and R gives states identified with the following tuple
(ql, qf , qr).

The additional parameter qf is one of the three filter states
which we can enter as follows; State zero is composition rule

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

3 - generation by symbol matching. State one is generation
by � input and state two is generation by � output. The filter
does not permit a transition between states one and two, which
means the composition WFST will not have the paths which
contain an � output (input) transition followed by an � input
(output) transition before a transition by symbol matching.

The proposed method exploits these transition restrictions
to perform dead-end state avoidance and is implemented
by application of the following rules given the state triplet
(ql, qf , qr) .

1) If qf = 0 and qr has no � input transition, then perform
standard dead-end checking with intersection of ql and
qr.

2) If qf = 1 and ql has only � output transitions, do not
expand.

3) If qf = 2 then perform standard dead-end checking with
intersection of ql and qr.

B. Dynamic Pushing

The pushing operation is used to move either weights or
labels closer to either the initial or final states of WFST.
Pushing weights closer to the initial state is informally a
similar idea to language model look-ahead [30], during the
decoding process the weights are encountered earlier and this
influences the pruning in a beneficial way that can help to
improve recognition speed.

Caseiro also developed an on-the-fly approximation to
weight pushing known as dynamic pushing [8]. To avoid the
difficulty in calculating best path scores and re-weighting, he
instead used the following look-ahead approximation. When
the arcs are generated by matching � outputs, select the
smallest arc weight from qr whose input is also contained
in the anticipated label set of ql, or for all the other matching
cases do not set a lookahead score. Epsilon edges can lead to
conflicts when the two heuristics attempt to set two different
scores in a state, however, the use of the composition filter can
be again used to rectify the situation. Under filter composition
the matching rules will lead to the generation of different com-
position states depending on the matching rules and therefore
no collisions in the lookahead heuristics will occur.

VII. ACOUSTIC SCORING

A. Improvements in Acoustic Scoring

The acoustic scoring interface has several invocation points
that are activated during the decoding cycle. A method is
invoked to request a state score, after which the underlying
implementation can either compute the score on-demand or
return a pre-cached value. Signals are given at the start and
end of frame which will indicate the acoustic model states
that will be active for the next arc propagation. These signals
allow for blocks of scores to be computed and cached inside
the acoustic scoring module, furthermore the ability to peak
the feature stream is also available to permit windowing and
lookahead caching of the acoustic scores.

In T 3 we introduced the technique of using the graphics card
for acoustic scoring[9], [10]. Current GPUs are programmable

processors that are massively parallel. Recently a field has
emerged known as General Purpose GPU (GPGPU) which
aims to make use of the high floating point performance
offered by GPUs for non-graphics application. In the field of
GPGPU many computational intensive tasks have been moved
off the CPU to GPU and often very large speed improvements
are reported. Our GPGPU scheme is programmed through
CUDA for use with NVIDIA GPUs.

As part of the development process and to provide a selec-
tion of techniques to compare the GPU we also implemented
several CPU baselines. Before discussing the GPU in more
technique we will give a brief overview of the CPU scoring
techniques available and how they perform in combination.

The acoustic models in T 3 are weighted Gaussian mixture
models (GMMs) of the form:

log p (x) = log

(∑
i

wipi (x ∣ �i)

)
(2)

Where, x denotes the acoustic feature vector, wi the prior
probabilities and each diagonal covariance Gaussian density
pi is parameterized by �i and calculated according to:

wi

2�
J
2

(∏
j �

2
ij

) 1
2

exp

⎛⎝−∑
j

(
xij − �ij

�ij

)2
⎞⎠ (3)

Where wi is the weight, �ij and �2
ij are the mean and variance

in the jtℎ dimension. When scoring with the CPU the logsum
in equation 2 is extremely expensive and the following logmax
substitution is used instead:

log p (x) ≈ max
i

logN (x ∣ �i) (4)

This alone has yielded good speed-ups with a very small
reduction in recognition performance.

To obtain further speed-ups we use the SSE instructions
which allow four floating operations to be computed in par-
allel. The acoustic score cache uses a likelihood batching
scheme that compute the scores for an additional block of K
future frames as described in [31]. This frame caching helps
to make better use of memory bandwidth which is the main
computation bottleneck. T 3 can also distribute the acoustic
scoring across multiple cores, however we have only observed
good speedups when using the full logsum, because under the
logmax approximation memory is the bottleneck and we have
not observed any substantial speedups when using more than
one core. We also have implemented dimensional pruning[19]
and noticed in practice either dimensional pruning or SSE
leads to similar gains, we opt for SSE as it gives the slightly
larger speed-up of the two.

By far our most successful speedup technique has been to
use the GPU to perform the acoustic scoring whilst the CPU
performs all the other computations. The next section contains
an explanation of the technique and the methods we use to
ensure the GPU is kept working as much as possible during
decoding.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

1) Approach to GPU Based Likelihood Computations: The
GPU approach is a massively parallel approach that computes
every Gaussian in parallel using a highly efficient matrix-
matrix multiplication routine [32]. Unlike the CPU scheme
a full logsum is used because the GPU can perform the
logarithm and exponential much faster and the computation
can be further accelerated by using the large scale parallelism
of the GPU.

To compute all the acoustic scores together the following
matrix multiplication is performed y = AW [31], where A
has a row corresponding to each of the Gaussian components
in every GMM, and W is a window of feature vectors. Each
row in A is derived from equation 3 using:{

Ki,
�i1

�2
i1

, . . . ,
�ij

�2
ij

,− 1

2�2
i1

, . . . ,− 1

2�2
ij

}
(5)

Ki is computed using:

logwi −
J

2
log 2� − 1

2

∑
j

log �2
ij −

1

2

∑
j

�2
ij

�2
ij

(6)

Each column in W is an an acoustic feature vector x expand-
ing to:

x′ =
{

1,x1, . . . ,xJ ,x
2
1, . . . ,x

2
J

}
(7)

The result of the multiplication is a matrix y which contains
the log weighted scores for every Gaussian component for
every state mixture model across the windows of features
vectors.

The next step is to compute the logsum of equation 2, in
this step we launch a large amount of threads to calculate all
of the logsums in parallel by using a reduction pattern. This
approach ensures the memory bandwidth is used effectively
on the GPU.

There is no need for the on-demand interface discussed
previously because we have all of the acoustic scores for
the window in a buffer. All of the work and communication
with the GPU is hidden in to the function which is called at
the beginning of frame search and all of the expansion and
communications is implemented here in a manner that does
not require other changes to the main decoding loop. Because
the acoustic model can peak into the stream of feature vectors
we can in fact make a further improvement and perform
work concurrently. The GPU’s asynchronous launches make it
possible for the next window of samples to be batched off to
the GPU whilst the CPU decoder searches the current window
of scores. Under the hood the acoustic model implementation
launches the transfers and computations. In the case where
the searching completes before the next window of scores
has been calculated the acoustic model can block the main
decoding loop until it is safe to continue.

B. Miscellaneous Extensions

The GPU method can be extended in various ways, one
technique is the ability to partition the acoustic model and
distribute them across multiple GPUs. In this case we use
a set of worker threads to co-ordinate the multiple graphics

cards as opposed to the asynchronous technique described
in the previous section. For our current system and models
the multi-GPU technique does not lead to any performance
improvements as a single GPU is adequate, however, the
technique has been successively used with acoustic models
that are too large to fit into the memory of an individual
graphics card. We also have the ability to essentially perform
the opposite and use a single GPU to perform scoring on
multiple set of acoustic models in parallel for use in multi-
stream scenarios.

VIII. ROBUST VOICE ACTIVITY DETECTOR

We have recently developed a novel Voice Activity Detector
(VAD) that integrates into both the front-end and the acoustic
scoring part of the decoding engine. The VAD technique
illustrates the flexibility of T 3 and how the multiple extension
points are used for developing and implementing new ideas
and techniques.

The basic idea is when a frame acoustic score is requested
for a silence type model a confidence measure of non-speech
is added. When the state belongs to a phonetic model a
confidence measure of speech is added. By using the speech
and non-speech confidence score as a continuous value rather
than a hard binary decision inside the decoder it should be
possible to perform a better discrimination of speech and
silences.

The first step is to add a new filter type to the front-end
which contains the speech and non-speech Gaussian mixture
models that are used to compute the likelihoods p(Xi∣H1)
and p(Xi∣H0) for the itℎ frame, where H1 is the hypothesis
of speech and H0 is the hypothesis of non-speech. If the
scores strongly indicate the frame contains no speech, these
non-speech frames can be discarded early in the recognition
pipeline, and thus the computational cost is reduced as not all
of the input needs to be processed by the decoder . Otherwise,
these likelihoods are then used to calculate the following
confidence measures:

Ci
H1

=
p(Xi∣H1)

p(Xi∣H1) + p(Xi∣H0)
(8)

Ci
H0

=
p(Xi∣H0)

p(Xi∣H1) + p(Xi∣H0)
(9)

Where Ci
H1

is the confidence measure of the frame containing
speech and Ci

H0
represents the confidence measure of the

frame not containing speech. The denominator terms ensure
the confidence measures exist in the range 0 to 1.

The confidence measures are added into the data packet
containing the feature vector payload and passed thought the
recognition engine without influencing any other components
of the system. An extended acoustic model is plugged into
the engine that will use the confidence measures to bias the
acoustic model as follows. In the case where the recognition
hypothesis in the token belongs to a phone model the acoustic

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

model score is biased using:

log p̂am(Xi∣�) = log pam(Xi∣�)
+� log C̄i

H1
(10)

C̄i
H1

=

∑i+n
i−n Ci

H1

2n+ 1
(11)

Otherwise the hypothesis must belong to a silence model and
the acoustic model score is biased using:

log p̂am(Xi∣�) = log pam(Xi∣�)
+� log C̄i

H0
(12)

C̄i
H0

=

∑i+n
i−n Ci

H0

2n+ 1
(13)

Where Xi is the itℎ feature vector, � is hypothesis, pam(Xi∣�)
is the acoustic model score, � is a scaling factor and n is
a smoothing parameter for computing Ci

H1
and Ci

H0
over a

window.
When the � scaling parameter is set to zero the biased

acoustic scores log p̂am(Xi∣�) are equivalent to the standard
non-biased scores log pam(Xi∣�).

In the interval where Ci
H1

becomes one, the acoustic model
scores in the word models becomes log pam(Xi∣�) and the
score from the silence model will tend to −∞, and therefore it
is only possible to recognize a word in this interval. Similarly,
when Ci

H0
is one it will only become possible to allow silence

hypotheses in this interval. Under these perfect conditions the
proposed method will have no affect on the acoustic scores.

Part of the following section contains a summary of some
recent evaluations that illustrate the performance of our VAD
technique.

IX. EXPERIMENTS

In this section we present several sets of evaluations that
illustrate the performance of the techniques previously de-
scribed.

A. GPU Evaluations

This section provides a recent evaluation on the Corpus of
Spontaneous Japanese (CSJ) using the following training and
testing protocols[20].

The speech waveforms were first converted to sequences
of 39 dimensional feature vectors with 10 ms frame rate and
25 ms window size. Each feature vector was composed of
12 MFCCs with deltas and delta-deltas, augmented with log
energy, log delta and log delta-delta energy terms.

The acoustic models were three-state left-to-right HMM
tri-phone models and the complexity of GMM state models
contained power-of-two sizes from four to 512 inclusive.
Regular EM training with splitting was performed utilizing
the data from 967 lectures.

The Kneser-Ney smoothed tri-gram language model G was
constructed using the AT&T GRM toolkit [3]. The C ∘L ∘G
search network was composed and optimized using the dmake
tool from the AT&T DCD toolkit [2]. The final search network
contained approximately 3M states and 6M arcs.

The test set used for the evaluation was composed of 2338
utterances which spanned 10 lectures. This yielded a total of
116 minutes of speech. The experiments were conducted on a
2.4 GHz Intel Core2 machines with 2GB of memory.

In this evaluation we used an NVIDIA 8800GTX card
which is equipped with a 128 core G80 GPU. The G80 is
implemented as a set of eight multiprocessors, where each
multiprocessor is a Single Instruction Multiple Data (SIMD)
processor containing 16 cores. Each of the multiprocessor
cores execute the same instruction stream in parallel operating
on different portions of data.

The results in Figure 2 show several important results.
Firstly in terms of accuracy even though we are only using
standard EM training we are able to achieve very good recog-
nition accuracy. The figure clearly illustrates a key benefit
of using the GPU for acoustic scoring. When the search
parameters are fixed there is virtually no increase in the Real
Time Factor (RTF) as the GMM complexity is increased.

When compared to the CPU baseline using a lookahead
cache of 10 frames the GPU accelerated scheme is on average
over two times faster. For these best speed-up case approxi-
mately half of the CPU time was spent on the acoustic scoring.
By using the GPU acceleration we are essentially removing all
of this cost off the CPU. The acoustic likelihood computations
which are traditionally the most expensive part of search,
are now just a few percent of the runtime in T 3. A drop
of accuracy is observed when using the 512 this is due to
insufficient training data to robustly train these large acoustic
models.

B. On-the-fly Evaluations

In these evaluation we again used CSJ for training and
testing to explore various aspects of our proposed on-the-fly
algorithms. As in the previous section 39 dimensional acoustic
feature vectors were used in combination with acoustic models
that had 32 Gaussians per mixture . The language model was
Katz smoothed [17] back-off tri-gram with a vocabulary of
65k words trained on the 2,682 lectures of data and pruned to
give approximately 199,636 states and 1,422,453 arcs.

The recognition cascade (H ∘C) ∘L ∘G consisted of three
WFSTs (H ∘ C), L and G combined using our on-the-fly
composition with optimization. To understand the benefits of
our approach we compare the recognition cascade to a fully
pre-composed and optimized cascade (H ∘ C ∘ L ∘ G). We
also used another baseline cascade that used Caseiro method
in which the L and G WFSTs were composed with on-the-fly
optimizations as describe in [8] and (H ∘ C) was composed
without any optimizations.

For efficiency reasons inside the on-the-fly WFST im-
plementation a cache technique was used to hold the arc
information once a state has been composed on-the-fly. Before
decoding each new utterance the cache was cleared.

For each of the composition methods the total parameter
counts for the search space is given in Table 1. The values
reveal that all of the techniques generate a composition WFST
L∘G of approximately the same size. The slight size increase

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

 74

 75

 76

 77

 78

 79

 80

 81

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ur
ac

y
(%

)

RTF

004
008
016
032
064
128
256
512

Fig. 2. Accuracy vs Real Time Factor (RTF) when using GPU acoustic scoring on the CSJ task. The acoustic models had between four to 512 Gaussians per
mixture where each model complexity is shown as a separate curve.

TABLE I
THE WFST PARAMETER COUNTS FOR THE VARIOUS COMPOSITION

METHODS.

Network Method Ave. Memory #states #arcs
L ∘G Static N/A 1,031,229 2,207,982
L ∘G Caseiro N/A 1,040,267 2,251,670
L ∘G Proposed N/A 1,198,351 2,409,754

(H ∘ C ∘ L ∘G) Static 152MB 1,091,075 2,437,298
(H ∘ C) ∘ L ∘G Caseiro 133MB 25,357,146 34,054,721
(H ∘ C) ∘ L ∘G Proposed 136MB 5,505,110 9,433,757

in our method over the Caseiro method is because of extra
states which the composition filter inserts.

In the case of (H ∘ C) ∘ L ∘ G WFST we are able to
produce a network with substantially fewer arcs and states
when compared to the Caseiro approach, which is because of
the additional optimizations applied when (H∘C) is composed
with L ∘ G. In the Caseiro approach we use a standard
composition at this stage, which causes many more dead-end
states to be created. The standard static approach achieves a
much smaller search space. This is because the final WFST
has no dead-end states, more optimization can be applied and
further size reductions are achieved by factoring the phone
arcs in longer chains.

Figure 3 shows the RTF vs accuracy for the various
composition approaches. In this figure the static network is
fully pre-composed and optimized, whilst the other techniques
contain two on-the-fly operations. The result shows that the
proposed method decodes slightly faster than the standard
Caseiro method.

C. VAD Evaluations

We evaluated our VAD approach using the Drivers Japanese
Speech Corpus in a Car Environment (DJSC) corpus [12].
This is a hands-free command and control task composed of
utterances recorded in a car driving on a motorway. The test
set consists of 40 speakers equally split between male and

female speakers. Each participant provided 41 commands in
an utterance continuously that would operate navigation whilst
driving. The commands within each utterance are separated
by one to two seconds non-speech regions which capture the
background noise conditions. The recordings were performed
at 16 kHz using a microphone mounted in the position of
the navigation device. The acoustic models were trained on
52 hours of speech data from the Japanese Newspaper Article
Sentences (JNAS [15]) corpus. The training material is gender
balanced containing 130 male speakers giving 25 hours of
speech and 130 female speakers providing another 27 hours
of speech.

From the processed data the acoustic models were EM
trained and this process yielded a set of three states left-
to-right tri-phone HMM with 2000 states. Each state output
density was a 16 component GMM with diagonal covariance.
In the evaluation the training and testing data were processed
as follows; The raw speech waveforms were converted to
a sequence of 38 dimensional feature vectors with 10 ms
frame rate and 25 ms windows size. Each feature vector
was composed of 12 MFCCs with deltas and delta-deltas,
augmented with log delta and delta-delta energy terms.

The language model was a network grammar and the
vocabulary size was 83 words to cover all of the commands.
The network had a path which corresponded to each of the
valid commands that looped through the initial state to allow
continuous recognition of the utterance stream.

The GMMs for the VAD each had four Gaussian compo-
nents. The speech GMM was trained using the data from 967
CSJ lectures and the non-speech GMM was trained with data
from car noise from Japan Electronic Industry Development
Association (JEIDA).

Figure 4 show the recognition accuracy when using the
proposed VAD methods and two baselines, where:

∙ baseline represents the result without any VAD.
∙ ZCR is the result when using zero crossing rate[5] and

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

 50

 55

 60

 65

 70

 75

 80

 0 0.5 1 1.5 2 2.5 3

W
or

d
A

cc
ur

ac
y

(%
)

RTF

static
caseiro

proposed

Fig. 3. Accuracy vs RTF when using static and on-the-fly composition schemes.

energy for VAD (front-end VAD).
∙ GMM is the result using the GMM based likelihood ratio

detector (front-end VAD).
∙ proposed is the result of our proposed VAD.
∙ manual corresponds to the result when using the corpus

labels to remove non-speech region.
The parameters of each of the VADs were optimized manually
to the following:
∙ In the ZCR system the power threshold was set to 0,

the threshold of zero crossing rate was set to 10 and the
frame length was 25ms.

∙ In GMM VAD the likelihood ratio threshold was -5.
∙ In the proposed method the scaling factor � was set to

10 and smoothing parameter n was set to 15.
∙ The thresholds and smoothing parameters of the VADs

where optimized and fixed for the whole target test set.
The scores Ci

H1
and Ci

H0
were calculated using the same

GMMs as the GMM based likelihood VAD.
The results show that without any VAD the word recognition

accuracy was 43.1%. The ZCR method achieved 46.5% and
GMM method achieved 45.8% word accuracy. These corre-
sponded to an absolute word improvement of 3.4% and 2.7%
respectively. The proposed technique achieved a 53.1% word
accuracy and this corresponded to an absolute 10.0% improve-
ment over the non-VAD baseline; this was the highest word
accuracy we obtained in the evaluations and this result shows
the effectiveness of our method. Using the labels from the
corpus 60.4% word accuracy was achieved and this indicates
that there is still room to improve the proposed method.

X. CONCLUSIONS

In this paper we have given an overview of the T 3 WFST
decoding engine and described the main features and compo-
nents. We have provided a more in-depth description of the
recent developments including GPU based acoustic scoring,
generalized on-the-fly composition and optimization and a
decoder integrated VAD scheme.

Our evaluations show by using the GPU we can achieve
good accuracy on the CSJ at a very high recognition speed.
The on-the-fly results show that our proposed method can
outperform the operations proposed by Caseiro in both WFST
size and accuracy given the same parameters. More impor-
tantly the proposed method can accept WFSTs of un-restricted
topology. The VAD approach has been shown to achieve
a large improvement in word recognition under real noisy
conditions.

In future work we not only want to continue to add new
features to the engine but also make improvements to the
current features, such as further improving the the on-the-fly
operations. In addition we are planning to add more function-
ality to the engine and are also interested in porting it to more
platforms. We are currently looking at more applications of
the engine such as integrating machine translation.

ACKNOWLEDGMENT

This work was supported by the Japanese government METI
Project “Development of Fundamental Speech Recognition
Technology”. The authors wish to thank Takahiro Shinozaki
for providing the acoustic models used in the GPU evaluations.

REFERENCES

[1] C. Allauzen, M. Mohri, and M. Riley. Statistical modeling for unit
selection in speech synthesis. In Proc. of 42st Annual Meeting of the
Assocication for Computational Linguistics, pages 55–62, 2004.

[2] C. Allauzen, M. Mohri, M. Riley, and B. Roark. A generalized
construction of integrated speech recognition transducers. In Proc
ICASSP, 2004.

[3] C. Allauzen, M Mohri, and B. Roark. Generalized algorithms for
constructing statistical language models. In Proc. of 41st Annual Meeting
of the Assocication for Computational Linguistics, pages 40–47, 2003.

[4] C. Allauzen, M Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: A
general and efficient weighted finite-state transducer library. In Proc. of
the Ninth International Conference on Implementation and Application
of Automata, (CIAA 2007), pages 11–23, 2007.

[5] A. Benyassine, E. Shlomot, H. Y. Su, D. Massaloux, C. Lamblin, and
J. P Petit. ITU-T recommendation G.729 annex B: a silence compression
scheme for use with G.729 optimized for V.70 digital simultaneous voice
and data applications. IEEE Communications Magazine, 35(9):64–73,
1977.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

 35

 40

 45

 50

 55

 60

 65

W
or

d
A

cc
ur

ac
y(

%
)

baseline
ZCR

GMM
proposed

manual

Fig. 4. The effect of VAD on recognition accuracy.

[6] I Bulyko and M Ostendorf. Unit selection for speech synthesis
using splicing costs with weighted finite state transducers. In Proc.
EUROSPEECH, pages 987–990, 2001.

[7] D. Caseiro, I. Trancoso, L. Oliveira, and C. Viana. Grapheme-to-phone
using finite state transducers. In In Proc. 2002 IEEE Workshop on
Speech Synthesis, 2002.

[8] D. A. Caseiro and I. Trancoso. A specialized on-the-fly algorithm for
lexicon and language model composition. IEEE Transactions on Audio,
Speech, and Language Processing, 14(4):1281–1291, 2006.

[9] P. R. Dixon, D. A. Caseiro, T. Oonishi, and S. Furui. The Titech large
vocabulary WFST speech recognition system. In Proc. ASRU, pages
1301–1304, 2007.

[10] P. R. Dixon, T. Oonishi, and S. Furui. Fast acoustic computations using
graphics processors. In Proc. ICASPP, pages 4321–4324, 2009.

[11] Hans. J. G. A Dolfing and I.Lee Hetherington. Incremental language
models for speech recognition using finite-state transducers. Proc. ASRU,
pages 194–197, 2001.

[12] K. Hiraki, T. Shinozaki, K. Iwano, K. Shinoda A. Betkowska, and
S. Furui. Initial evaluation of the driver’s Japanese speech corpus in
a car environment. In IEICE Technical Reports, Asian Workshop on
speech science and Technology, pages 93–98, 2008.

[13] C. Hori, K. Ohtake, T. Misu, H. Kashioka, and S. Nakamura. A
statistical approach to expandable spoken dialog systems using WFSTs.
In Universal Communication, 2008. ISUC ’08. Second International
Symposium on, pages 24–27, 2008.

[14] T. Hori and A. Nakamura. Generalized fast on-the-fly composition al-
gorithm for WFST-based speech recognition. In Proc. INTERSPEECH,
pages 847–850, 2005.

[15] K. Itou, M. Yamamoto, K. Takeda, T. Takezawa, T. Matsuoka,
T. Kobayashi, K. Shikano, and S. Itahashi. JNAS: Japanese speech
corpus for large vocabulary continuous speech recognition research. In
J.Acoust. Soc. Jpn.(E), pages 199–206, 1999.

[16] S. Kanthak, H. Ney, M. Riley, and M. Mohri. A comparison of two
LVR search optimization techniques. In Proc. ICSLP, pages 1309–1312,
2002.

[17] S. M. Katz. Estimation of probabilities from sparse data for the
language model component of a speech recognizer. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 35(3):400–401, 1987.

[18] P Lamere, P Kwok, W Walker, E. Gouvea, R Singh, B Raj, and P Wolf.
Design of the CMU sphinx-4 decoder. In Proc. EUROSPEECH, pages
1181–1184, 2003.

[19] A Lee, T Kawahara, and K Shikano. Julius — an open source real-time
large vocabulary recognition engine. In Proc. EUROSPEECH, pages
1691–1694, 2001.

[20] K. Maekawa. Corpus of spontaneous Japanese: Its design and evaluation.
In Proc. ISCA and IEEE Workshop Spontaneous Speech Processing and
Recognition, pages 7–12, 2003.

[21] E. Matusov, S. Kanthak, and H. Ney. Integrating speech recognition

and machine translation: Where do we stand? In Proc. ICASSP, pages
1217–1220, 2006.

[22] F. Mohri, M .and Pereira, O. Pereira, and M. Riley. The design principles
of a weighted finite-state transducer library. Theoretical Computer
Science, 231:17–32, 2000.

[23] M. Mohri. Weighted automata algorithms. Handbook of weighted
automata, (to appear) 2009.

[24] M Mohri, F. Pereira, O. Pereira, and M. Riley. A rational design for a
weighted finite-state transducer library. In Lecture Notes in Computer
Science, pages 144–158, 1998.

[25] M. Mohri, F. Pereira, and M. Riley. Weighted finite-state transducers
in speech recognition. Computer Speech and Language, 16(1):69–88,
2002.

[26] M. Mohri, F. C. N Pereira, and M. Riley. Speech recognition with
weighted finite-state transducers. Handbook on Speech Processing and
Speech Communication, 2008.

[27] M. Mohri and M. Riley. An efficient algorithm for the n-best-strings
problem. In Proc. ICSLP 02, 2002.

[28] T. Oonishi, P. R. Dixon, K. Iwano, and S. Furui. Implementation and
evaluation of fast on-the-fly WFST composition algorithms. In Proc.
INTERSPEECH, pages 2110–2113, 2008.

[29] T. Oonishi, P. R. Dixon, K. Iwano, and S. Furui. Generalization of
specialized on-the-fly composition. In Proc. ICASPP, pages 4317–4320,
2009.

[30] S. Ortmanns, H. Ney, and A. Eiden. Language-model look-ahead
for large vocabulary speech recognition. Proc. Spoken Language
Processing, pages 2095–2098, 1996.

[31] M. Saraclar, M. Riley, E. Bocchieri, and V. Goffin. Towards automatic
closed captioning : Low latency real time broadcast news transcription.
In Proc. ICSLP, pages 1741–1744, 2002.

[32] V Volkov and J W. Demmel. Benchmarking GPUs to tune dense linear
algebra. In Proc. ACM/IEEE conference on Supercomputing, pages 1–
11, 2008.

[33] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollason,
V. Valtchev, and P. Woodland. The HTK Book (for HTK Version 3.2).
Cambridge University Engineering Department, 2002.

[34] S.J. Young, N.H. Russell, and J.H.S. Thornton. Token passing: A simple
conceptual model for connected speech recognition systems. Technical
report, Cambridge University Engineering Department, 1989.

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

	pg138: 138
	pg139: 139
	pg140: 140
	pg141: 141
	pg142: 142
	pg143: 143
	pg144: 144
	pg145: 145
	pg146: 146
	pg147: 147

