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Abstract—Tensor representation and tensor decompositions ( )

are natural approaches to deal with large amounts of data with -
multiple aspects and high dimensionality in modern applications, T )
such as environmental analysis, chemometrices, pharmaceutical = +

analysis, spectral analysis, neuroscience. The two most popular’

decomposition/factorization models for N-th order tensors are

the Tucker model and the more restricted PARAFAC model. .

The Tucker decomposition allows for the extraction of different (1 X8, <L) 4 X X)) XL) >4, X1)

numbers of factors in each of the modes, and permits interactions _ ) ) ) »
within each modality while PARAFAC does not. This advantage, Fig. 1. lllustration and notations used for a higher-order Tucker decomposition;

however, is also one of the weakness of this decomposition. Thetx?n?bjectlve here is to find optimal component (common factor) matrices

difficult problem is to |dent|_fythe QOmlnant relatlonshlps be_tween impose additional constraints on the component matrices and/or the core
components, and to establish unique representation. In this paper, tensor such as nonnegativity and sparsity.

we will introduce a new measure index which is called the Joint
Rate (JR) index, in order to evaluate interactions among various
components in the general Tucker decomposition. The Hinton . . "
diagram is also extended to 3-D visualization. The use of the representing common factors or loadings” [4], [3], [6]

JR index will be illustrated with the analysis of EEG data for T T JINn
classification and BCI applications. X:Z Z Z Gjrinin aj(i) oa@o...0 aﬁ? +E

J2

€ RInxJn and a core tensofz € R7/1xJ2%xJn_We usually

J1=172=1 jn=1
=G x; AW x, A® ... x vy AN L E

|. TENSORDECOMPOSITIONS ANDINTERACTIVE -
=Gx{A}+E=Y+E, 1)

RELATION AMONG THEIR HIDDEN COMPONENTS

where tenso@ is an approximation of tensdY, and tensor

Standard matrix factorizations, such as PCA/SVD, |C® =Y — 2 denotes the residual or error tensor (See F|g
NMF, and their variants, are invaluable tools for featur¢ g5 an example of a 3-way Tucker decomposition). There
selection, dimensionality reduction, noise reduction, and d&jg several existing Tucker decomposition algorithm, such as
mining [1]. However, they have only two modes or 2-wayhe Higher-Order Singular Value Decomposition (HOSVD),
representations, and their use is therefore limited. In maplgher Order Orthogonal Iteration (HOOI) algorithms which
applications such as studies in neuroscience, the data structdtgfsider orthogonal factors [5], [7], [3], [8]. For analyzing data
often contain higher-order ways (modes) such as trials, tagih nonnegative constraints, the nonnegative Tucker decom-
conditions, subjects, and groups together with the intringisition (NTD) is an extension with multiplicative algorithms
dimensions of space, time, and frequency. If the data f@), [10], [11], [12], The recently proposed hierarchical ALS
every subject were analyzed separately by extracting a maiigorithm for NTD [13] that sequentially estimates compo-
or slice from a data block, we would lose the covarianggents in each factor gives a high performance and is suitable
information among subjects. To discover hidden componemgs large scale data.
within the data and retain the integrative information, the pARAFAC is a special case of the Tucker decomposition
analysis tools should reflect the multi-dimensional structufig which the core tensor is a cubical superdiagonal or super-
of the data [2], [3]. This way all dimensions or modes argjentity tensor with nonzero elements only on the superdiag-
retained by virtue of multi-linear models which often producgnal (7, = J, = ... = Jy). In PARAFAC, a component in a
unique and physically meaningful components. factor has only one direct relation to components at the same

The two most popular decompositions/factorizations§or order in the other factors.
th order tensors are the Tucker model and the more restrictedror real-world data, there often exist multiple interactive
PARAFAC model. The Tucker decomposition is describelations among components in different factors. Analysis of
as a “decomposition of a givetw-th order tensorY € a 4-way spectral (Morlet wavelets) EEG tensor (frequercy
RI1xI2-xIn jnto an unknown core tens@k € R71*/2*/~  time x channelx trial) recorded during right and left hand
multiplied by a set of N unknown component matrices,motor imagery is an example. Both left-hand and right-hand
A = [a§">,ag">, . .,af}z)] € RI~xJ» (n = 1,2,...,N), imageries are characterized by similar spectral features in the
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mean of frequency and time, but spread on different spatafl all the rank-one tensors, to which both componenﬁ?

regions over the visual cortex: on the right hemisphere for t (a) ; :

left-hand imagery, and on the left hemisphere for the righ}l‘?—%d Py .contrllbute, and the tota(!)e.nergy of all the rank-one

hand imagery. This means that this spectral tensor can tsgsors in which the componenqu Interacts.

explained by only one spectral component (frequency-time) forAssume that all the components;:) are /o-norm unit

the first two modes, a_nd tW(_) spatial components for the thirgngth vectors: |la™ 2 T () 1 for n —

one. However, analyzing this tensor based on the PARAFA I |lg In In o

model needs at least two separate spectral components. 1,2,..., N, the {;-norm of a rank-one tensol’; in its
This is the major difference between Tucker and PARAFA¥ECtorized form is given by

models. The Tucker model allows for the extraction of dif-

ferent numbers of factors in each of the modes, and permifgY ||,

interactions within each modality while the PARAFAC model

a

2
Ivec(x,)|, = ng al) ©al @ a(}N)H2

JIN

_ o) T (W (N
does not. In other words, the Tucker model encompasses all =gj\a;, ® - ®a;, a; ®---®aj;,
possible linear interactions between the components (vectors) = g2 MOk a(‘l)) .. (a(mT a(,N)) = g2 (4)

J1 J1 IN IN

pertaining to the various modalities of the data. These inter-
actions can be explicitly expressed by a core teSoDUe  tharefore, for Tucker model, if all components akenorm
to these reasons, the Tucker decomposition has high alblhtyut'c')It length vectors, the energy of the original data will be

compress data with the minimum number of components. o ;?ressed only by the coefficients of the core tensor. This

. . X
This advantage, however, is also the greatest weaknes§Qlys (4 5 simplified expression of thek index as follows
this decomposition. In general, each component in the Tucker

decomposition may havd,, different interactions with all 9 )

the components for all the other factoAs™). The difficult , Z 9 HG o

problem is to identify the dominant relationships between Jpgk» — P=rrda=ka )= ’“;) E (5)
components. For Tucker-3 decomposition, an intuitive method ! Z 93 ng .

is to use the Hinton diagram to visualize slices of the core do=Fq coiE

tensor G. The major interactions for the mode fixed in

each illustrated slice can be recognized based on the largéBgre G, _,, is an (N — 1)-th order subtensor of size
coefficients in that slice [14], [15]. However, this techniquel X - X Jg—1 X Jg41 X - -~ x .Jy obtained by fixing the;-
is limited for the 3-way tensor, and also misses a quantitife index of the core tensdk to valuek,, andG;, ; )=k, k,)
measure to evaluate how strong the relation is. In this papran (IV — 2)-th order subtensor of sizé, x --- x J,_1 x
we will introduce a new measure index which is called thép+1 - X Jg—1 X Jgp1 X --- x Jy by fixing the p-th index
Joint Rate (JR) index, and allows us to evaluate how strong fifevaluek,, and theg-th index to value,.

interactions among various components in the general Tuckefor example, for a third-order core tensor, th& index
decomposition is. The Hinton diagram is also extended to Between the first component” of the factorA() and the
D visualization. The use of the JR index will be illustratedecond componem(f) of the factorA(® is given by

with the analysis of EEG data for classification and BCI

applications. Ja
PP > G 2
[I. THE JOINT RATE INDEX L T2 ng H
) JRL  — Ja=1 _ ==Ll (6)
Let Y, j = [j1,j2,-..,jn] denote the rank-one tensor 2T b TN
bui o @ () - 2 2he
uilt up from N components:; ’, a;,’, ..., a;’, thatis Z Z 951,42,2
1 1 N Ji1=1j2=1
¥, = ggall oall o oal) @

where G, is the second frontal slice of core teng@y, and

i < < =1,... _ , L :
For each paittk,, k). 1 < p# ¢ < N, K =1, ’Jpr']ichq—% is the first row vector of this slice. The mdeXR,’j:,

ke = 1,...,Jq4, we define the Joint Rate (JR) index w!

measure how strongly the componeit’ affects the compo- (kp = 1,2,...,Jp) of a J, between componemff;) and
nenta,(f). ’ componentz,(c‘i) gives the percent rate of the interaction for the
¢ each pair. The maximum value of this index is 1, meaning that
Z HY||2 componenhg) is completely expressed by componaﬁ),
o e —alr and does not depend on other components of the fa’c_f@r.
W= AT Et! (3) Otherwise, the minimum value of this index is 0, meaning that
' Z ey a,(;i) it is not related t0a§f;).
Ja=kq

We note that the index*R,’:: has different meaning to the

Jp D)
The Jqu index between componem;p , and the compo- indexJR’,i"‘. For the two modesy{ g), we can build a,, x .J,

(q)

nenta, ’ can be interpreted as the ratio of the total energyatrix of all JR indices among their components.
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TABLE |

Ill. COMPUTATION OF A REFERENCETENSOR COMPONENTS OFFACTOR A (3) FOR THETHREE CLASSES OFSTIMULI .
Most Tucker algorithms do not retur@-norm unit length Component| Cosfiicients | Class
components. Hence the core teng@ris often not ready — 3 00 0. 1426 0. 9898 | 3 - Auditory+Visual

to compute JR indices. Due to thIS. reason, we nged toa§3> 0.9938 0.0489 0.0 1 - Auditory
evglyate a reference core.tensor. This section describes aQ;) 0.0 0.9999 0. 0169 > - Visual
efficient method for computing the reference core tei@Gdry

normalizing factorsA (™ to unit length vectors. For a general

. TABLE ||
case, a reference core teng@rcan be defined as follows

FRONTAL SLICES OF THEESTIMATED CORE TENSORG.

G; =G x1 Dy x3Dy--- xy Dy =G x {D}, (7)

Gq Go G3
. - . : 0.00 316.66 175.46  50.80 91.92 0.00  79.53 0.00 54.39
Wher.egf is the core tensor after flxmg;),.b is the diagonal 74.51 275.45 104.64 157.36 0.00 222.92 8543818 0.00
matrix of £5-norms of the column vectors in facté(), that 40420 0.00 0.00 0.00 188.031155 205.80 26.08 32.18

is,

do = [laf”ll2. 108" s, Nl l] (@)
D, = diag{d,}, Vn. 9)

IV. EXPERIMENTS

. ) A. Example 1
A considerably simpler and faster method for the reference

core tensor is given below. L& denote a Kronecker product
of two diagonal matricediag{d, } anddiag{d,}

We illustrate the use of the JR index with example of
analysis and classification of EEG signals according to the
nature of the stimulus for the benchm&kG_AV_sti nul i

C = diag{d,} ®diag{d,} (10) [16], [17], [18], [19]: auditory stimulus with a single tone
N of 2000 Hz of 30 ms duration; visual stimulus of 30 ms
From the def|n|t|_o_n of the Kronecker product, an eleme?ﬁlration in the form of a 5< 5 checkerboard (60& 600
Ctpgtpy AL the positiont,y = (j, = 1) Jg + jg Up =1,..., Jp, pixels) displayed on a LCD screen (32 25cm); both the
Jq=1,...,Jg) on the diagonal of matrbC is calculated as auditory and the visual stimuli simultaneously. In each trial,
(11) EEG signals were recorded from 61 channels during 1.5
seconds after stimulus presentation at a sampling rate of 1 kHz.
Thus, the diagonal of matridC is exactly the Kronecker The observed tensor consists the WTav measurements which
product of two vectorsl, andd, are the average amplitudes of the oscillations along the 25
diag{C} = d, ® d, (12) trials in the time-frequency domain using the corr_]plex Morlet
wavelet. The measure tensor corresponds to the time-frequency
or transformed Event Related Potentials (ERP) [20]. Finally, we
) ) ) vectorized the spectral slices to form a third-order nonnegative
diag{d,} @ diag{d,} = diag{d, ® d}. (13)  tensory of the size 61 channels 3906 frequency-time (31

This result can be readily extended to the Kronecker proddtgauency bins (10-40 Hzx 126 time frames (0-500ms))

of N vectorsdy, do, ...,dn 3 classes. .
The nonnegative Tucker model was chosen to decompose

diag{d,} ® --- ® diag{dn } = diag{d1 ® ---®@dn}. (14) this preprocessed tensor data, in order to find the complex
interactions and relationships between components expressing
three modes: channels (space), spectra (time frequency repre-
vec(G;) = (Dy®---®D;) vec(G) sentation), and classes (corresponding to three stimuli). The
= (diag{dy}® - @ diag{d, }) vec(G) > HALS NTD algorithm [13], [1] was selected to extract
— diag{dy ® - ® d1}vec(G) underlying components: The number of components was set
= to three, that is, the size of core tensor was<33 x 3.
= (dyv®--®di)®vec(G) The estimated factors are illustrated in Fig. 2. Using such
= vec(diodyo---ody)®vec(G) (15) multi-way analysis, the three classes of stimuli were clearly
classified, as illustrated by Table I.
The Hinton diagram in Fig. 3 visualizes the estimated core
G; = (diodyo---0dy)®G tensorG_r whose \{alues are giyen in_ Table Il. The volume
— De&G. (16) of b(_)x_ is proportlonz_:ll to the |r.1t.en3|ty. of a corrgqundmg
= coefficient. The dominant coefficients in each sli€g in-
Finally, computation of the reference core tenggy can dicate the most significant interactions of spatial and spectral
be achieved conveniently via the Hadamard product of théemponents for eacli-th category. Using this visualization,
core tensor and the rank-one tensor built up frdila-norm  gsse2 = 511.55 is the major coefficient on the 2-nd frontal slice,
vectors. the auditory class (corresponding to the compome(fib is

Ctmtm = dpjp d‘]jq :

Equation (7) can be represented in vectorized form as

and its matricization yields the final expression
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>
220
g
=3
o
L 47200 400 12 3
~ Time (ms) Categories Fig. 3. lllustration of the core tensor yia Hint'on diagrams. Frontal slices
1 a® 1, G; = G, ;,J = 12,3 express the interaction of the compon
2 20 30_0 with components expressing channel and spectrogram in fadtéts and
S 0. A®@: auditory class -af) mainly concentrates on coefficiemtzzz, or
=3 0. spreads omél) by spectrogranuff); visual class a'¥ spreads oSV by
ff 4 0.2 spectrograrmg), auditory + visual class a§3> spreads omgl), aél , and
_200 400 1 2 3 agl) by spectrogrammgm, aéQ) and agg). Darker colors indicate dominant
Time (ms) Categories components for each of the three factors.
(a) Spherically-splined (b) Spectrograms A (2 (c) Classes A @ @)
as as 1,

1 -
field maps -A (%) 9332 ag ) ‘

Fig. 2. Visualization of components for example 1. (a) factof!) charac-

20)

terizes spatial components displayed in spherically-spline EEG field ma@s:1.55 X O 3 O
(b) spectral components expressed by facdd®); (c) expression of factor
A®) for 3 classes: componemgs) - auditory-visual class, componeaég) 4 '0
. ION 200 400 1 2 3
- auditory class, and componeat™’ - visual class.
(a) Channel map (b) Spectrogram (c) Class expression

. . . Fig. 4. Visualization of the three significant componemgé), a.gQ), agg) for
therefore mainly characterized by the third spectral COMPONE ominant rank-one tensor for e category component - the auditory

a'? (see in Fig. 2(b)) and spreads on the spatial componenss.
aﬁ”. lllustration of this relation is given in Fig. 4.

In the next step we specify which spectral components ar ~—,
spatial components mainly affect each class and how th;) 1-
interact with each other by using the JR index. Note that all ti§ .| o
component vectors obtained by the HALS NTD algorithm & 3
have been already normalized to unit length vectors, hence t 3-.-

Spectra

coefficients of the core tens@k express the energy of rank- I_2 3 T _.2 3 1 _2 3

. . . Classes Classes Spectra
one tensors which are built up from the basis componemds.r indices between  (b) JR indices between  (c) J R indices between
aETL), (TL _ 17 e N, j _ 1’ . Jn)- In general, we can channels and classes spectrograms and classes spectrograms and classes
apply the fast fixing method described in section IIl. Fig. 5. Hinton diagrams of the Joint Rate indices between (a) spatial and

The Joint Rate [R) indices computed for all the pairscategory components, (b) spectral and category components and (c) spatial
of components are displayed in Fig. 5. The interactions b&d spectral components.
tween spatial and category components are given in Fig. 5(a),

whereas we can relations between spectral and category com-

ponents in Fig. 5(b). From these diagrams, it can be seen tHaf Size Of 62 channels 25 frequency binsx< 1000 time

the auditory class (component 2) interacts predominantly witfgmesx 2 classes (Left/Right). Decomposition of this tensor

the third spatial component, and the third spectral componefffth the core tensor size of 4 3 x 3 x 2 gave us result

whereas the visual class (component 3) links with the secofigPlayed in Fig. 6. To evaluate how strongly the spectral
ponentsA (?) affect on the spatial componenss™), we

spatial component, and the second spectral component, an _ i SRR e
auditory+visual class (component 1) links with all the spati&@iculate and fo(gn_theu JR matrix which is displayed in Fig.
and spectral components. 7 (_Zompo_nen'm1 |II1_Jstra_tes_ the_ ERD/ERS phenpmena that
indicates in the spatial distribution a larger amplitude on the
B. Example 2 left hemisphere and lower amplitude for the right hemisphere.
This example illustrates the analysis of real-world EEG daWhereas componemiff) shows ERD on the left hemisphere
containing the evoked spectral perturbation (ERSP) measurad ERS on the right hemisphere. Both these components
ments of EEG signals recorded from 62 electrodes duriage mainly affected by the spectral componeéﬁ) (see Fig.
right and left hand motor imagery [21]. The observed tens@j. Hence a larger amplitude is shown for class-1 (right-hand
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proposed index.

(1]
(2]

| | B3l
€ ‘\ 10 20 30 9 ] 2 [4]
Frequency (Hz) Time (s)
: 5
041 0 Bl
Left Right
0.05 e Class [6]
28\ 10 20 30 % 5 : 7]
3 Frequency (Hz) Time (s) Q5 el
- 0.1
Left Right
0.05 Class (8]
P 0 : 0
Ll 10 20 30 0 1 2 (9]
‘ Frequency (Hz) Time (s)
.:‘. '#"
- (o]

Fig. 6. Factor visualizations for example 2. From left to right, four columng 1]
represent the four factors in the analysis.

[2]
= [12]
Q
c
o
[oX
g 13
S [13]
g [14]
(8]
3]
Q.
%2}

[15]

2 3
Spatial Components

Fig. 7. Hinton diagram of the JR indices between spectral components 4nl
spatial components for example 2. Two left and right hemispheres which
characterize the left- and right-hand imagery were mainly affected by the
second spectral component. [17]

[18]
imagery) and lower amplitude on class-2 (left-hand imagery)
conditions (column 4 in Fig. 6). [19]

V. CONCLUSIONS

We have presented the new index called the Joint Rate
index, to measure the interactive relation among components
in the Tucker decomposition. With available factors and Cofgy;
tensor obtained by suitable Tucker decomposition algorithms,
the JR index can be easily and directly calculated from the core
tensor. The fast method for fixing core tensor is also proposed.
Moreover, the JR index can also be intuitively illustrated via 2-
D and 3-D Hinton diagrams. The experiments with real-world
EEG data confirm usefulness and insightful properties of the
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