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Abstract—Tensor representation and tensor decompositions
are natural approaches to deal with large amounts of data with
multiple aspects and high dimensionality in modern applications,
such as environmental analysis, chemometrices, pharmaceutical
analysis, spectral analysis, neuroscience. The two most popular
decomposition/factorization models forN -th order tensors are
the Tucker model and the more restricted PARAFAC model.
The Tucker decomposition allows for the extraction of different
numbers of factors in each of the modes, and permits interactions
within each modality while PARAFAC does not. This advantage,
however, is also one of the weakness of this decomposition. The
difficult problem is to identify the dominant relationships between
components, and to establish unique representation. In this paper,
we will introduce a new measure index which is called the Joint
Rate (JR) index, in order to evaluate interactions among various
components in the general Tucker decomposition. The Hinton
diagram is also extended to 3-D visualization. The use of the
JR index will be illustrated with the analysis of EEG data for
classification and BCI applications.

I. TENSORDECOMPOSITIONS ANDINTERACTIVE

RELATION AMONG THEIR HIDDEN COMPONENTS

Standard matrix factorizations, such as PCA/SVD, ICA,
NMF, and their variants, are invaluable tools for feature
selection, dimensionality reduction, noise reduction, and data
mining [1]. However, they have only two modes or 2-way
representations, and their use is therefore limited. In many
applications such as studies in neuroscience, the data structures
often contain higher-order ways (modes) such as trials, task
conditions, subjects, and groups together with the intrinsic
dimensions of space, time, and frequency. If the data for
every subject were analyzed separately by extracting a matrix
or slice from a data block, we would lose the covariance
information among subjects. To discover hidden components
within the data and retain the integrative information, the
analysis tools should reflect the multi-dimensional structure
of the data [2], [3]. This way all dimensions or modes are
retained by virtue of multi-linear models which often produce
unique and physically meaningful components.

The two most popular decompositions/factorizations forN -
th order tensors are the Tucker model and the more restricted
PARAFAC model. The Tucker decomposition is described
as a “decomposition of a givenN -th order tensorY ∈
R

I1×I2···×IN into an unknown core tensorG ∈ R
J1×J2···×JN

multiplied by a set ofN unknown component matrices,
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Fig. 1. Illustration and notations used for a higher-order Tucker decomposition;
the objective here is to find optimal component (common factor) matrices
A

(n)
∈ R

In×Jn and a core tensorG ∈ R
J1×J2×···×Jn . We usually

impose additional constraints on the component matrices and/or the core
tensor such as nonnegativity and sparsity.

representing common factors or loadings” [4], [5], [6]

Y=
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· · ·
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(2) · · · ×N A
(N) + E

=G× {A} + E = Ŷ + E, (1)

where tensor̂Y is an approximation of tensorY, and tensor
E = Y − Ŷ denotes the residual or error tensor (see Fig.
1 as an example of a 3-way Tucker decomposition). There
are several existing Tucker decomposition algorithm, such as
the Higher-Order Singular Value Decomposition (HOSVD),
Higher Order Orthogonal Iteration (HOOI) algorithms which
consider orthogonal factors [5], [7], [3], [8]. For analyzing data
with nonnegative constraints, the nonnegative Tucker decom-
position (NTD) is an extension with multiplicative algorithms
[9], [10], [11], [12], The recently proposed hierarchical ALS
algorithm for NTD [13] that sequentially estimates compo-
nents in each factor gives a high performance and is suitable
for large scale data.

PARAFAC is a special case of the Tucker decomposition
in which the core tensor is a cubical superdiagonal or super-
identity tensor with nonzero elements only on the superdiag-
onal (J1 = J2 = . . . = JN ). In PARAFAC, a component in a
factor has only one direct relation to components at the same
order in the other factors.

For real-world data, there often exist multiple interactive
relations among components in different factors. Analysis of
a 4-way spectral (Morlet wavelets) EEG tensor (frequency×
time × channel× trial) recorded during right and left hand
motor imagery is an example. Both left-hand and right-hand
imageries are characterized by similar spectral features in the
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mean of frequency and time, but spread on different spatial
regions over the visual cortex: on the right hemisphere for the
left-hand imagery, and on the left hemisphere for the right-
hand imagery. This means that this spectral tensor can be
explained by only one spectral component (frequency-time) for
the first two modes, and two spatial components for the third
one. However, analyzing this tensor based on the PARAFAC
model needs at least two separate spectral components.

This is the major difference between Tucker and PARAFAC
models. The Tucker model allows for the extraction of dif-
ferent numbers of factors in each of the modes, and permits
interactions within each modality while the PARAFAC model
does not. In other words, the Tucker model encompasses all
possible linear interactions between the components (vectors)
pertaining to the various modalities of the data. These inter-
actions can be explicitly expressed by a core tensorG. Due
to these reasons, the Tucker decomposition has high ability to
compress data with the minimum number of components.

This advantage, however, is also the greatest weakness of
this decomposition. In general, each component in the Tucker
decomposition may haveJn different interactions with all
the components for all the other factorsA(n). The difficult
problem is to identify the dominant relationships between
components. For Tucker-3 decomposition, an intuitive method
is to use the Hinton diagram to visualize slices of the core
tensor G. The major interactions for the mode fixed in
each illustrated slice can be recognized based on the largest
coefficients in that slice [14], [15]. However, this technique
is limited for the 3-way tensor, and also misses a quantitive
measure to evaluate how strong the relation is. In this paper,
we will introduce a new measure index which is called the
Joint Rate (JR) index, and allows us to evaluate how strong the
interactions among various components in the general Tucker
decomposition is. The Hinton diagram is also extended to 3-
D visualization. The use of the JR index will be illustrated
with the analysis of EEG data for classification and BCI
applications.

II. T HE JOINT RATE INDEX

Let Yj , j = [j1, j2, . . . , jN ] denote the rank-one tensor

built up from N componentsa(1)
j1

, a
(2)
j2

, . . . , a
(N)
jN

, that is
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For each pair(kp, kq), 1 6 p 6= q 6 N , kp = 1, . . . , Jp,
kq = 1, . . . , Jq, we define the Joint Rate (JR) index which
measure how strongly the componenta
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(p)
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Therefore, for Tucker model, if all components areℓ2-norm
unit length vectors, the energy of the original data will be
expressed only by the coefficients of the core tensor. This
leads to a simplified expression of theJR index as follows

JR
kp

kq
=

∑

jp=kp,jq=kq

g2
j

∑

jq=kq

g2
j

=

∥∥∥G(jp,jq)=(kp,kq)

∥∥∥
2

F∥∥∥Gjq=kq

∥∥∥
2

F

, (5)

where Gjq=kq
is an (N − 1)-th order subtensor of size

J1 × · · · × Jq−1 × Jq+1 × · · · × JN obtained by fixing theq-
th index of the core tensorG to valuekq, andG(jp,jq)=(kp,kq)

is an (N − 2)-th order subtensor of sizeJ1 × · · · × Jp−1 ×
Jp+1 · · · × Jq−1 × Jq+1 × · · · × JN by fixing thep-th index
to valuekp, and theq-th index to valuekq.

For example, for a third-order core tensor, theJR index
between the first componenta

(1)
1 of the factorA(1) and the

second componenta(3)
2 of the factorA(3) is given by

JR11
23

=

J2∑

j2=1

g2
1,j2,2

J1∑

j1=1

J2∑
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g2
j1,j2,2
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2

2

‖G2‖
2
F

, (6)

whereG2 is the second frontal slice of core tensorG, and
g21

is the first row vector of this slice. The indexJR
kp

kq
,

(kp = 1, 2, . . . , Jp) of a Jp between componenta(p)
kp

and

componenta(q)
kq

gives the percent rate of the interaction for the
each pair. The maximum value of this index is 1, meaning that
componenta(q)

kq
is completely expressed by componenta

(p)
kp

,
and does not depend on other components of the factorA

(p).
Otherwise, the minimum value of this index is 0, meaning that
a

(q)
kq

it is not related toa(p)
kp

.

We note that the indexJR
kp

kq
has different meaning to the

indexJR
kq

kp
. For the two modes (p, q), we can build aJp×Jq

matrix of all JR indices among their components.
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III. C OMPUTATION OF A REFERENCETENSOR

Most Tucker algorithms do not returnℓ2-norm unit length
components. Hence the core tensorG is often not ready
to compute JR indices. Due to this reason, we need to
evaluate a reference core tensor. This section describes an
efficient method for computing the reference core tensorG by
normalizing factorsA(n) to unit length vectors. For a general
case, a reference core tensorG can be defined as follows

Gf = G ×1 D1 ×2 D2 · · · ×N DN = G× {D}, (7)

whereGf is the core tensor after fixing,Dn is the diagonal
matrix of ℓ2-norms of the column vectors in factorA(n), that
is,

dn =
[
‖a

(n)
1 ‖2, ‖a

(n)
2 ‖2, . . . , ‖a

(n)
N ‖2

]
, (8)

Dn = diag{dn}, ∀n. (9)

A considerably simpler and faster method for the reference
core tensor is given below. LetC denote a Kronecker product
of two diagonal matricesdiag{dp} anddiag{dq}

C = diag{dp} ⊗ diag{dq} (10)

From the definition of the Kronecker product, an element
ctpqtpq

at the positiontpq = (jp − 1)Jq + jq (jp = 1, . . . , Jp,
jq = 1, . . . , Jq) on the diagonal of matrixC is calculated as

ctpqtpq
= dpjp

dqjq
. (11)

Thus, the diagonal of matrixC is exactly the Kronecker
product of two vectorsdp anddq

diag{C} = dp ⊗ dq (12)

or

diag{dp} ⊗ diag{dq} = diag{dp ⊗ dq}. (13)

This result can be readily extended to the Kronecker product
of N vectorsd1, d2, . . . , dN

diag{d1} ⊗ · · · ⊗ diag{dN} = diag{d1 ⊗ · · · ⊗ dN}. (14)

Equation (7) can be represented in vectorized form as

vec
(
Gf

)
= (DN ⊗ · · · ⊗D1) vec(G)

= (diag{dN} ⊗ · · · ⊗ diag{d1}) vec(G)

= diag{dN ⊗ · · · ⊗ d1}vec(G)

= (dN ⊗ · · · ⊗ d1) ⊛ vec(G)

= vec(d1 ◦ d2 ◦ · · · ◦ dN ) ⊛ vec(G) (15)

and its matricization yields the final expression

Gf = (d1 ◦ d2 ◦ · · · ◦ dN ) ⊛ G

= D ⊛ G. (16)

Finally, computation of the reference core tensorGf can
be achieved conveniently via the Hadamard product of this
core tensor and the rank-one tensor built up fromN ℓ2-norm
vectors.

TABLE I
COMPONENTS OFFACTORA(3) FOR THETHREE CLASSES OFSTIMULI .

Component Coefficients Class

a
(3)
1 0. 0 0. 1426 0. 9898 3 - Auditory+Visual

a
(3)
2 0. 9988 0. 0489 0. 0 1 - Auditory

a
(3)
3 0. 0 0. 9999 0. 0169 2 - Visual

TABLE II
FRONTAL SLICES OF THEESTIMATED CORE TENSORG.

G1 G2 G3

0.00 316.66 175.46 50.80 91.92 0.00 79.53 0.00 54.39
74.51 275.45 104.64 157.36 0.00 222.92 85.07839.18 0.00

404.20 0.00 0.00 0.00 188.03511.55 205.80 26.08 32.18

IV. EXPERIMENTS

A. Example 1

We illustrate the use of the JR index with example of
analysis and classification of EEG signals according to the
nature of the stimulus for the benchmarkEEG_AV_stimuli
[16], [17], [18], [19]: auditory stimulus with a single tone
of 2000 Hz of 30 ms duration; visual stimulus of 30 ms
duration in the form of a 5× 5 checkerboard (600× 600
pixels) displayed on a LCD screen (32× 25cm); both the
auditory and the visual stimuli simultaneously. In each trial,
EEG signals were recorded from 61 channels during 1.5
seconds after stimulus presentation at a sampling rate of 1 kHz.
The observed tensor consists the WTav measurements which
are the average amplitudes of the oscillations along the 25
trials in the time-frequency domain using the complex Morlet
wavelet. The measure tensor corresponds to the time-frequency
transformed Event Related Potentials (ERP) [20]. Finally, we
vectorized the spectral slices to form a third-order nonnegative
tensorY of the size 61 channels× 3906 frequency-time (31
frequency bins (10-40 Hz)× 126 time frames (0-500ms))×
3 classes.

The nonnegative Tucker model was chosen to decompose
this preprocessed tensor data, in order to find the complex
interactions and relationships between components expressing
three modes: channels (space), spectra (time frequency repre-
sentation), and classes (corresponding to three stimuli). The
ℓ2 HALS NTD algorithm [13], [1] was selected to extract
underlying components. The number of components was set
to three, that is, the size of core tensor was 3× 3 × 3.
The estimated factors are illustrated in Fig. 2. Using such
multi-way analysis, the three classes of stimuli were clearly
classified, as illustrated by Table I.

The Hinton diagram in Fig. 3 visualizes the estimated core
tensorG whose values are given in Table II. The volume
of box is proportional to the intensity of a corresponding
coefficient. The dominant coefficients in each sliceGj in-
dicate the most significant interactions of spatial and spectral
components for eachj-th category. Using this visualization,
g332 = 511.55 is the major coefficient on the 2-nd frontal slice,
the auditory class (corresponding to the componenta

(3)
2 ) is

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



a
(1)
1

a
(1)
2

a
(1)
3

(a) Spherically-splined
field maps -A(1)

Time (ms)
F

re
qu

en
cy

(H
z)

0 200 400

10

20

30

40

a
(2)
1

Time (ms)

F
re

qu
en

cy
(H

z)

0 200 400

10

20

30

40

a
(2)
2

Time (ms)

F
re

qu
en

cy
(H

z)

0 200 400

10

20

30

40

a
(2)
3

(b) Spectrograms -A(2)

Categories
1 2 30

0.2
0.4
0.6
0.8

1a
(3)
1

Categories
1 2 30

0.2
0.4
0.6
0.8

1a
(3)
2

Categories
1 2 30

0.2
0.4
0.6
0.8

1a
(3)
3

(c) Classes -A(3)

Fig. 2. Visualization of components for example 1. (a) factorA
(1) charac-

terizes spatial components displayed in spherically-spline EEG field maps;
(b) spectral components expressed by factorA

(2); (c) expression of factor
A

(3) for 3 classes: componenta(3)
1 - auditory-visual class, componenta

(3)
2

- auditory class, and componenta
(3)
3 - visual class.

therefore mainly characterized by the third spectral component
a

(2)
3 (see in Fig. 2(b)) and spreads on the spatial component

a
(1)
3 . Illustration of this relation is given in Fig. 4.
In the next step we specify which spectral components and

spatial components mainly affect each class and how they
interact with each other by using the JR index. Note that all the
component vectors obtained by theℓ2 HALS NTD algorithm
have been already normalized to unit length vectors, hence the
coefficients of the core tensorG express the energy of rank-
one tensors which are built up from the basis components
a

(n)
j , (n = 1, . . . , N, j = 1, . . . , Jn). In general, we can

apply the fast fixing method described in section III.
The Joint Rate (JR) indices computed for all the pairs

of components are displayed in Fig. 5. The interactions be-
tween spatial and category components are given in Fig. 5(a),
whereas we can relations between spectral and category com-
ponents in Fig. 5(b). From these diagrams, it can be seen that
the auditory class (component 2) interacts predominantly with
the third spatial component, and the third spectral component,
whereas the visual class (component 3) links with the second
spatial component, and the second spectral component, and the
auditory+visual class (component 1) links with all the spatial
and spectral components.

B. Example 2

This example illustrates the analysis of real-world EEG data
containing the evoked spectral perturbation (ERSP) measure-
ments of EEG signals recorded from 62 electrodes during
right and left hand motor imagery [21]. The observed tensor
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Fig. 3. Illustration of the core tensor via Hinton diagrams. Frontal slices
Gj = G:,:,j , j = 1, 2, 3 express the interaction of the componenta
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j

with components expressing channel and spectrogram in factorsA(1) and
A

(2): auditory class -a(3)
2 mainly concentrates on coefficientg332 , or
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3 by spectrograma
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3 ; visual class -a(3)
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class.
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Fig. 5. Hinton diagrams of the Joint Rate indices between (a) spatial and
category components, (b) spectral and category components and (c) spatial
and spectral components.

has size of 62 channels× 25 frequency bins× 1000 time
frames× 2 classes (Left/Right). Decomposition of this tensor
with the core tensor size of 4× 3 × 3 × 2 gave us result
displayed in Fig. 6. To evaluate how strongly the spectral
componentsA(2) affect on the spatial componentsA(1), we
calculate and form their JR matrix which is displayed in Fig.
7. Componenta(1)

1 illustrates the ERD/ERS phenomena that
indicates in the spatial distribution a larger amplitude on the
left hemisphere and lower amplitude for the right hemisphere.
Whereas componenta(1)

4 shows ERD on the left hemisphere
and ERS on the right hemisphere. Both these components
are mainly affected by the spectral componenta

(2)
2 (see Fig.

7). Hence a larger amplitude is shown for class-1 (right-hand
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Fig. 6. Factor visualizations for example 2. From left to right, four columns
represent the four factors in the analysis.
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Fig. 7. Hinton diagram of the JR indices between spectral components and
spatial components for example 2. Two left and right hemispheres which
characterize the left- and right-hand imagery were mainly affected by the
second spectral component.

imagery) and lower amplitude on class-2 (left-hand imagery)
conditions (column 4 in Fig. 6).

V. CONCLUSIONS

We have presented the new index called the Joint Rate
index, to measure the interactive relation among components
in the Tucker decomposition. With available factors and core
tensor obtained by suitable Tucker decomposition algorithms,
the JR index can be easily and directly calculated from the core
tensor. The fast method for fixing core tensor is also proposed.
Moreover, the JR index can also be intuitively illustrated via 2-
D and 3-D Hinton diagrams. The experiments with real-world
EEG data confirm usefulness and insightful properties of the

proposed index.
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