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Abstract—The empirical mode decomposition (EMD) is a time- of additive noise and decompose independent components. In
frequency analysis method for analyzing the nonlinear and non- the second stage, the EMD method is used to decompose the
stationary biomedical data which combined with the independent individual independent component into a finite and usually a

component analysis (ICA) approach allows for more powerful -
source noise reduction. This paper presents a novel technique for small number of IMF components. Then we combine the de-

decomposing and localizing the magnetoencephalographic (MEG) Sirable components which are obtained from the decomposed
data with auditory evoked fields (AEFs) experiment based on IMFs. In the third stage, the combined signal is projected
EMD and ICA associated with the source localization technique. into the sensor space, and the source localization technique is
Applying our technique to the unaveraged single-trial AEFs data,  5pplied to find location of dipoles based on the standard patio-
we demonstrate the simulation results. - . . .

Index Terms—empirical mode decomposition (EMD), intrinsic temporal fitting fO‘,J“”e- Applylng the proposed technique to
mode function (IMF), independent component analysis (ICA), the unaveraged single-trial AEFs data, we demonstrate the

magnetoencephalographic (MEG) simulation results.

I. INTRODUCTION II. METHOD OF DATA ANALYSIS

Magnetoencephalographic (MEG) is noninvasive monitoA. Independent component analysis

ing techniques for measuring human brain activity with a high This subsection presents applying the ICA approach based
temporal resolution. MEG-detected magnetic field is originallyn the JADE algorithm [3] associated with the FA method to
generated by the intercellular or extracellular currents @ecompose the observed data into the independent components
neurons. The motivation for studying MEG is to extract thpl]. ICA is a powerful statistical tool for extracting indepen-
essential features of measured data and represent thenyeé® components given only observed data that are mixtures
corresponding human brain functions. Since the magnetic figJtlunknown sources.

of a brain signal is relatively weak in the MEG experiment, Based on the principle of MEG experiment, the AEFs

the spontaneous and environmental noise usually effects ghgaset can be formatted in a data matrix form as
recorded data.

To remove or reduce the spontaneous and environmental X(mxN) = Amxn)Smxn) T Emxn)s 1)

noise or to identify the behavior and location of interestingihere N denotes data samples. When the sample size N is suf-
activities such as evoked responses, the most widely used gggntly large, the covariance matrix of the data can be written
reliable method is to take an average across multi-trial dgfas; — AA” + ¥, wherex= XX’ /N, and the covariance
sets. Moreover, to visualize the dynamics of brain activity, g noise component® represented by = EE”/N is a
robust data analysis method for decomposing and localiziggygonal matrix. For convenience, we assume Xidtas been
the unaveraged single-trial MEG data based on the indepgfyjided by+/N so thatthe covariance matrix can be given by
dent component analysis (ICA) approach has been develoged. xx7

[1], [2]. Considering the nonlinear and nonstationary featuresg estimate both matriy and the diagonal elements &

of biomedical data sets, the empirical mode decompositigym the data, we employ a cost function as

(EMD) method has been developed [4], and was applied to -
extract the essential features of multi-channel EEG data [6]. 1,(A, &) = ¢r [AAT —(C- \1;)} [AAT —(c-w)| .

In this paper, we propose a three-staged technique to the @)
unaveraged single-trial MEG data based on the EMD meth@flnimizing the cost function, we obtain an estimaesuch
assoc_lated with the_ ICA approach and the source Iocah_zatlgg ¥ - Dag(C — AAT). The estimate forA can be
technique. In the first stage, we apply the joint approxmatt% , LA D) :
diagonalization of eigenmatrices (JADE) algorithm [3] assocP tained fromT N 0. Here, we employ eigenvalue
ated with the factor analysis (FA) method to reduce the poweecompositionA = U, A2, where A,, is a diagonal matrix
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whose elements are the: largest eigenvalues o€. The The sifting algorithm is applied to calculate the IMF compo-

columns ofU,, are the corresponding eigenvectors. nents based on a criterion by limiting the size of the standard
Once the estimates fok and & converge to stable values,deviation (SD) computed from the two consecutive sifting
we can finally compute the score matrix using results as
T om 1 a1 . T 2
Q= {AT\I' 1A} Ao ®3) sD=3Y" (hq—1(t) = he())” | ©)
ar hZ_ (1)

From the above result, the new transformation data can be

obtained by employing = Qx. in which a typical value for SD can be set between 0.2 and
The rotation procedure in JADE uses matride@) for- 0.3 for the sifting procedure.

mulated by a fourth-order cumulant tensor of the outputs with Based on the sifting procedure for one channel of the MEG

an arbitrary matrixM as data, we finally obtain
K L u
FM) = Z Z Cum(z;, 25, 2k, 21) Mk, 4) yk(t) = Z ci(t) +ru(t). (7)
k=11=1 =1
where Cum() denotes a standard cumulant ang is the N Ed. (7),¢;(t)(i =1,--- ,u) represents; IMF components,

(1, k)-th element of matriXM. The correct rotation matrix W andr., represents a residual component which can be either
can be obtained by diagonalizing the matBXM); namely, @ mean trend or a constant. Since each IMF component has
WF (M)W approaches to a diagonal matrix. After the IC/ Specific frequency, it is easily to discard high frequency

approach, the decomposed independent Componemgin such as 50 Hz electrical pOWer interference after raw data
can be obtained from a linear transformation as decomposition. The rest desirable components are combined

to a new signaly, (¢).
y(t) = Waz(1), (5) o
C. Source localization

whereW € R"*" is also termed as the admixing matrix. .
g After applied the ICA approach and EMD method, the level

B. Empirical mode decomposition of noise has been reduced, and the independent component
The EMD method as a time-frequency analysis tool fdtave been extracted from the observed data. To visualize the

nonlinear and nonstationary signals has been proposedinfprmation of dipoles, the combined new signal is projected
[4]. EMD is a fully data driven technique with which anyinto the sensor space.
complicated data set can be decomposed into a finite and ofted Ne virtual observation signals coming from the sigyfelt)
small number of Intrinsic Mode Functions (IMF). obtained as

An IMF component as a narrow band signal is a function oAW1t ot . mT
defined having the same numbers of zero-crossing and ex- (1) =AW [0y (®)--- 0] ®
trema, and also having symmetric envelopes defined by tAe an example, the map &f (¢) corresponds to the ‘measured’
local maxima and minima respectively. map (see, for example, Fig. 1).

The procedure to obtain the IMF components from an

observed signal is called sifting [4] and it consists of the I1l. EXPERIMENTAL RESULTS

following steps: A. AEFs experiment
1) Identification of the extrema of an observed signal The AEFs data were recorded by using an Omega-64
waveformuyy(t). (CTF Systems Inc., Canada) whole-cortex MEG system at

2) Generation of the waveform envelopes by a cubic splitlee National Institute of Bioscience and Human Technology,
line through connecting local maxima as the uppérsukuba, Japan. The sensor (SQUID: superconducting quan-
envelope and local minima as the lower envelope. tum interface device) arrays consist of 64 channels. The AEFs

3) Computation of the local meatv;(¢) by averaging the experiment was performed on a normal male adult in whom

upper and lower envelopes. both ears were stimulated by a 1 kHz tone. Data of 630 trials
4) Subtraction of the mean from the data for a primitivevere recorded in 379.008 s. Each single-trial was carried out
value of IMF component a8, (t) = yx(t) — avyi(t). in 0.6016 s and the stimulus was given at 0.2 s. The sampling
5) Repetition step 1)-4) times, until h,(t) is an IMF rate was 312.5 Hz and the number of samples was 188 for
componenth,_i(t) — avg(t) = hq(t). each trial. In the experiment, the model sphere was set-at
6) Designation the first IMF component as(t) = hy(t) -0.38 cm;y =0cm,z=5.35cmand =7.3 cm. Wherer, y, 2
from the data, so that the residue component;i{$) = is the coordinate in a three-dimensional coordinate system. As
yr(t) — c1(t). an example, Fig. 2 is the 341th single-trial data.

7) Repetition step 1)-6): times, the residue component The result of taking an average across 630 trials is shown in
contains information about longer periods which will bé&ig. 1(a). Applying the source localization routine for fitting
further resifted to find additional IMF components, bythe two dipoles, we obtain the averaged map shown in Fig.
ru(t) = yk(t) — Yo cilt). 1(b). In this example, the latency was set at 96 ms. This is
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Fig. 1. Result for averaged AEFs data. (a) Result of taking an average acros
630 trials. (b) Dipole estimation for averaged data.

a typical result for an averaged AEFs analysis in which the
two dipoles appearing in the left and right temporal regions
of the head. It should be noted that the amplitude information
appear in the color scale bar (the maximum evoked respon
is 331 fT) only represents the strength of averaged respon<
across 630 trials.

Beyond the behavior and location of the evoked response
in averaged data, we search for the information regarding tt
activity strength related to a stimulation trial and the dynamic*
of each evoked response. In this paper, we present the rest
obtained by applying the proposed technique to decompo
the average single-trial AEFs data.

(@)

B. AEFs data analysis

Various average single-trial data sets have been analyz
by using the proposed algorithms described in Section |
As an example, we show some results for the behaviors of
decomposed the 341th single-trial data in Figs. 3 and 4. The
result shown in Fig. 3(a) is derived by using the ICA approac
In this result, one independent component{l@ay be related
to the N100 evoked responses since it has a pick point
around 0.1 s. I€ may be ana-wave component since its
frequency is about 10 Hz and no pick point appears at 0.1
IC; and IG as the additive interference can be discarded.

With the prior knowledge about AEFs, we know higf
frequency interference such as 50 Hz electrical power is stro
in the AEF data. Furthermore, for removing that kind oy,
noise contains in the independent componen, I@e used [
the EMD method. Four IMF components (see~ec,) and a
residue component (seg) iwere obtained shown in Fig. 3(b).
In this case, ¢ is regarded as electrical interference becau:
of it being with high frequency. In addition, the residua
component § is useless. Three IMF components (ec,) as
useful components are synthesized to a new signal (gee !
It is clear that the combined signal with a lower level noise.
To determine the location and activity strength of neuronal

sources, we project the signal ito the sensor space byrig 4. (a) Result of projecting
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Fig. 2. 341th single-trial AEFs data (STI: stimulus given at 0.2s).
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using Eq. (8). The virtually observed signals with a smootthe left temporal source).

distribution on the nearby sensors are obtained in Fig. 4(a).
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ig. 3. Results for the 341th single-trial data by the ICA approach and EMD
thod. (a) Independent components. (b) IMF components and residue.
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Fig. 5. 530th single-trial AEFs data (STI: stimulus given at 0.2s).
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Then applying the standard patio-temporal dipole fitting
routine to estimate the data (Fig. 4(a)), the result is obtained
in Fig. 4(b). In this result, the map indicates that the magnetic
field distribution for the combined,as in the left side of the
temporal cortex. The ‘Measured’ map is derived from the com-
bined component. The middle ‘Theoretical’ map is computed
by moving a single dipole, and the bottom ‘Difference’ map
denotes the estimation error between the ‘Measured’ and the
‘theoretical’ maps. In this case, we can note that the maximum
amplitude is 670 fT.

Next, we show another example of applying the proposed
technique to the 530th trial data in Figs. 6-7. In the Fig. 7(b),
the map indicates that the magnetic field distribution for the
combined ¢ (see Fig. 6(b)) in the right side of the temporal
cortex. In this case, we can note that the maximum amplitude
is 203 fT. Comparing the results obtained by the proposed data
analysis technique with the averaged results, we can conclude
that the data analysis technique works efficiently even in a
poor condition such as only using one single-trial observed
data with a high level noise.

IV. CONCLUSIONS

In this paper, we proposed a technique based on the EMD
method with the ICA approach and the source localization
technique for analyzing the average single-trial AEFs data.
We demonstrated several examples for analyzing the single-
trial MEG data with AEFs experiment.

Through the analysis of unaveraged single-trial AEFs data
by using our proposed technique, it is shown that the N100
evoked responses were extracted. These results were similar to
the result by taking an average across 630 trials. We found also
that the maximum amplitude is difference in each single-trial.
The proposed algorithms are efficient for high level additive
noise and high frequency noise. In further works, we will
analyze other unaveraged single-trial AEFs data.

Fig. 6. Results for the 530th single-trial data by the ICA approach and EMD

method. (a) Independent components. (b) IMF components and residue.
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Fig. 7. (a) Result of projectingcto the sensor space. (b) Source localization

(the right temporal source).
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