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Abstract—An approach to estimate brain responses to emo-
tional or generally affective stimuli is presented. Functional elec-
troencephalography (fEEG) and functional near-infrared spec-
troscopy (fNIRS) signals are first preprocessed to remove muscle
and peripheral body activity physiological noise with utilization
of an extension of empirical mode decomposition (EMD) spec-
tral clustering approach, which utilizes simultaneously recorded
biosignals as references. The so preprocessed signals are further
analyzed with quick signal change detection based on dynamical
systems recurrence analysis technique. As a result we obtain
clear signature estimates of subjects cognition state changes from
fEEG and fNIRS in response to the presented emotional/affective
stimuli.

I. I NTRODUCTION

The notion of brain affective or emotional empathy re-
sponses utilization in brain-computer interfaces creates a very
interesting alternative to contemporary human-computer inter-
facing technologies. A new and growing in interest paradigm
of emotional stimuli utilizing affective human brain regions
responses is presented together with a new signal processing
approach in time-frequency domain. Estimation of emotional
responses from electrophysiological and cortical blood oxy-
genation signals has recently gained attention among the
designers of brain computer/machine interfaces (BCI/BMI).
Several results on the estimation of basic emotional responses
generated while watching short videos with dynamic emo-
tional contents; listening to emotionally charged speech or
music will is discussed together with novel multichannel fEEG
and fNIRS analysis approaches to discover representative
components of the emotional responses. Already established
neuroscience tools such as functional electroencephalography
(fEEG) and functional near infrared spectroscopy (fNIRS)
correlate conscious and affective experiences with electromag-
netic field activity and oxygenation changes mostly in frontal
cortical areas of the brain. Also peripheral body measurements
such as skin conductance, heart-rate, breath rythm and pulse
variability, as well facial muscle and eye-movement signals
also correlate to emotional arousal [1], [2]. These physio-
logical measures provide an objective way to explore the
realm of perception, experience, mind and emotional processes
visualize in real-time from human subjects exposed to emo-

tional stimuli. Recent advances in brain-computer/machine-
interfacing (BCI/BMI) reveal also a need to search for new
and more challenging paradigms which would allow more
natural interaction of humans and machines with utilization
of so revealed new communication channels [3].

There are recognized two general classes of BMI paradigms,
those which are related to external environment stimuli and
utilizing stimuli-driven/interactive brain responses and the
other which are completely independent from environmental
stimulation and relay only on internal (passive or imaginary)
brain activity managed by the users will. The second class
of imaginary paradigms is usually more difficult for the
non-trained subjects since they require learned brain activity
patterns to be captured by non-invasive brain activity methods
such us fEEG and fNIRS. In this paper we focus on the first
class of dependent and stimuli driven affective (emotional)
paradigms. The aim of the presented research is to seek
for new paradigms and mostly neurophysiological responses
from human brain which could be utilized for BCI/BMI.
Presented results show that peripheral electrophysiological and
physiological in general signals can be utilized as references to
remove noise, while proposed quick signal detection approach
can identify human cognitive pattern changes in fEEG and
fNIRS.

II. M ETHODS

For experiments presented in the paper a combined fEEG,
fNIRS and peripheral electrophysiological signals recording
was conducted at the Advanced Signal Processing Laboratory
of the RIKEN Brain Science Institute, Wakoshi, Japan using
two synchronized g.USBamp biosignal data acquisition sys-
tems with 16 fEEG electrodes placed over frontal, temporal
and parietal lobes; two channels of vertical and horizontal
EOG; a single EKG channel; and pulse. Additionally two
frontal fNIRS channels were recorded synchronously with
NIRO-200 cerebral oxygenation recorder. An example of such
multimodal recording is shown in Figure 1. The subjects were
given audio-only and video-only presentations of affective
displays from the emotional utterances corpus [4] as portrayed
by five British English professional actors. Both the video
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Fig. 1. Multimodal bio-signals recorded from subject’s bodysurface. The top
panel presents stimulus onset and offset times. The second from the top panel
presents 16 fEEG channels plotted together, while next two panels depict
EKG and pulse oximetry time series. Two following panels labeled vEOG
and hEOG visualize vertical and horizontal eye movements respectively. The
two bottom panels depict left and right frontal cortices fNIRS recordings.
All measures presented in this figure were recorded synchronously with
g.USBamp and NIRO-200 devices connected to a single workstation running
Matlab.

and audio presentations portrayed affective expressions of six
basic emotions. The video-only presentations involved short
(2-5 seconds long) movies; the audio-only involved short (2-
5 seconds long) sentences. After attaching the monitoring
electrodes, the subjects were instructed to look at a white cross
mark on the computer screen and to try not to blink or move
in order to minimize muscular noise. The main goal of the
experiment was a search for interactive responses captured
within neurophysiological and peripheral electrophysiological
signals carrying very short emotional empathy signatures. A
concept of empathy is characterized as a capability to share
ones feelings and understand another’s emotion and feelings
and it was shown previously by the authors that empathy
response could be recognized and classified from the fEEG
responses only [2].

The multimodal fEEG, fNIRS, EOG, EKG and pulse sig-
nals (see Figure 1) have to be first preconditioned due to
their different sampling frequencies and dynamics. In order
to obtain common coherent interactive responses carrying
empathy responses an approach as in [5] is utilized, which
first decomposes all signals with utilization of empirical mode
decomposition (EMD) and later it clusters the similar compo-
nents in Huang-Hilbert spectral domain. This method allows to
identify those components within each channel which expose

spectral patterns similar across all data channels as well
synchronized with onsets and offsets of the stimuli as shown
in the top panel of Figure 1.

The preprocessed multimodal neurophysiological and pe-
ripheral electrophysiological signals carrying only components
exposing synchrony with the emotional stimuli presented to
the subjects can be now analyzed for signatures allowing
detection of modality changes as further discussed in quick
signal change detection section.

A. Multimodal signals preprocessing with EMD

EMD utilizes empirical knowledge of oscillations intrinsic
to a signal in order to represent them as a superposition of
components, calledintrinsic mode functions (IMF), with well
defined instantaneous frequencies. To obtain an IMF from
a single channel EEG, it is necessary to remove firs local
riding waves (abrupt changes in time frequency representation)
and asymmetries, which are estimated from local envelopes
of minima and maxima of the waveform. The technique of
finding IMFs corresponds thus to the separation of band
limited semi-orthogonal components from recorded EEG. It
also corresponds to eliminating riding-waves from the signal,
which ensures that the instantaneous frequency will have no
fluctuations caused by an asymmetric wave form. In each
cycle, the IMF is defined by zero crossings and involves only
one mode of oscillation, thus not allowing complex riding
waves. Notice that an IMF is not limited to be a narrow-
band signal, as it would be in the classic Fourier or wavelets
decompositions. In fact, an IMF can be both amplitude and
frequency modulated simultaneously, as well as non-stationary
or non-linear.

The EMD decomposes a signal in hand into a number of
IMFs [6] (oscillatory modes); which satisfy the following two
conditions:
(i) the number of extrema and the number of zero crossings

are either equal or differ at most by one;
(ii) at any point, the mean value of the envelope defined by

the local maxima and the envelope defined by the local
minima is zero.

Since IMF represents an oscillatory mode within a signal;
its periods, which are defined by zero crossings, correspond
to the onlyone mode of oscillation. Both the amplitude and
frequency of this oscillation may vary over time, in other
words, the oscillation is not necessarily stationary nor narrow-
band.

The process of extracting an IMF from a signalx(t) is
called “the sifting process” [6] and consists of the following
steps:
(i) determine the local maxima and minima ofx(t);
(ii) generate the upper and lower signal envelope by con-

necting those local maxima and minima respectively by
an interpolation method (e.g., linear, spline, piece-wise
spline [6], [7]) (in this paper the linear method was
chosen);

(iii) determine the local meanm1(t), by averaging the upper
and lower signal envelope;
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(iv) subtract the local mean from the data:h1(t) = x(t) −
m1(t).

Ideally, h1(t) satisfies the criterion of an IMF, however,
typically this procedure needs to be repeated until the first IMF
is extracted. In order to obtain the second IMF we applied the
sifting process to the residualε1(t) = x(t)−IMF1(t), obtained
by subtracting the first IMF fromx(t); the third IMF is in turn
extracted from the residueε2(t) and so on. The decomposition
is complete when two consecutive sifting results are similar;
the empirical mode decomposition of the signalx(t) may be
written as:

x(t) =
n

∑

k=1

IMFk(t) + εn(t), (1)

where n is the number of extracted IMFs, and the final
residueεn(t) is either the mean trend or a constant. Note that
the IMFs are not guaranteed to be mutually orthogonal, but
often are close to orthogonal; it is also noteworthy that IMFs
are adaptive, that is, two independent realizations of a signal
with the same statistics may have a different number of IMFs.

B. Spectral clustering of time-frequency components

In order to compare all IMFs extracted from the analyzed
multimodal channels we propose to cast them separately
to Hilbert spectra domain in order to capture the detailed
content (intrinsic frequency tracks) carried by all of them.
The amplitude and phase ridge traces of all IMFs (note that
adaptive nature of EMD may result in different numbers of
IMFs in each channel) are combined together and correlated.

From the IMFs the corresponding time–frequency represen-
tations can be produced by applying the Hilbert transform to
each component [6], time-frequency representation:

R(t) =

n
∑

k=1

IMFk(t) exp

(

i
∫

ωk(t)dt

)

, (2)

ωj denotes an instantaneous frequency. The Hilbert trans-
form allows us to observe the variable amplitude and the
instantaneous frequency in a form of very sharp and local-
ized functions of frequency and time (in contrast to Fourier
expansion, for example, where frequencies and amplitudes
are fixed for their bases). Such an approach is very suit-
able for the analysis of non-stationary signals and model-
ing of common/sychronized activities within certain chan-
nels. In the presented approach fEEG and fNIRS signals
were cleaned/denoised with utilization references from vEOG,
hEOG, EKG and pulseoximetry signals (see Figure 1 for
reference).

Using the above procedure in a single channel mode,
the physiological signals from chosen modalities could be
decomposed separately, thus forming subsets of IMFs, from
which low frequency drifts and high frequency spikes can
be removed. To analyze multimodal signal sets recorded
synchronously in a single experiment we propose to decom-
pose all channels separately preventing possible information
leakage among the channels.

For this end, Hilbert domain amplitude and frequency
traces as “a distance measure” in order to capture spectral
similarity across the IMFs. Once the cross–correlation analysis
is performed for all Hilbert transformed IMFs from all ana-
lyzed channels, a hierarchical cluster analysis using a set of
dissimilarities for then objects to be clustered is performed [8]
(using “R” package [9]) for amplitude and frequency ridges
separately. Initially, each vector representing amplitude or
frequency ridges values is assigned to its own cluster and then
the algorithm proceeds iteratively, at each stage joining the two
most similar clusters. Such procedure continues until there is
just a single cluster. At each stage distances between clusters
are recomputed by the Lance–Williams dissimilarity update
formula with a single linkage clustering method. This method
is closely related to the minimal spanning tree concept and it
adopts a “friends of friends” strategy for clustering [8].

A result of such procedure in the frequency domain is the
sets of clusters are obtained. The first set is for distances
defines a relatively compact cluster of similar components
across the EEG channels. Those components are classified as
similar and originating from very strong EOG interference.
The respective IMF amplitude traces in phase and amplitude
domain are being discarded. Those remaining are further
analyzed for signal change onsets and offsets with statistical
tests described as follows. The details of the application can
be found in [10], [5].

C. Quick signal change detection with support of recurrence
approach applied to multimodal recordings

Quick detection methods allow for detecting of abrupt
changes in the behavior of observed time series [11], [12].
Quick detection refers to real-time detection of such changes
using a framework of optimal stopping theory. In case of
multimodal physiological signals it is very difficult to define
priors or search for quantities that would have to involve
averaging over the change-point distributions. To avoid such
problems the non-Bayesian quick detection methods are being
incorporated. To this end the analysis of EMD-preprocessed
multimodal physiological signals is presented in form of
recurrence plots [13], [9] as in Figures 2, 3, and 5.

The change in recording statistics between calibration sig-
nals (non-stimuli, background brain activity) and new data pre-
senting stimuli EEG is obvious to observe after the time point
60 in the figures (the original sampling of time series from
Figure 1 were unified to make different sampling frequencies
of fEEG and fNIRS compatible). The recurrence quantification
analysis is a part of fractal correlation dimension approaches
since the sets of parameters used are practically the same [11].

Figures 2, 3, and 5 confirm the hypothesis of possibility
to detect signal modality changes during affective stimuli
responses captured in multimodal recordings.

III. C ONCLUSIONS

The presented multimodal response patterns analysis ap-
proach (during the affective stimuli presentation compared to
the pre-stimulus) has shown a possibility to utilize data-driven
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Fig. 2. Recurrence plot ofC3 EEG electrode dynamics (pre-stimulus fEEG <

60 samples andstimulus fEEG > 60 samples). Graph created with [14].

preprocessing approach (EMD and Hunang-Hilbert spectral
analysis) in combination with statistical dynamics analysis of
fEEG and fNIRS signals. The remaining bio-signals (EKG,
EOG, pulse oximetry) were utilized as references to re-
move noise in preprocessing step thus not interfering with a
BCI/BMI approach based on brain-responses-only analysis.

We have shown that interactive empathy responses to affec-
tive/emotional stimuli in auditory and visual domains are good
candidates for the utilization in applications such as BCI/BMI
since it was possible to discriminate the response patterns from
neurophysiological signals (fEEG and fNIRS) together with
periphery electrophysiological ones (EKG, EOG, pulse) used
as noise removal references.

A framework to separate interfering muscle activity (EOG
in this paper) from multimodal physiological signals has been
also presented. This has been achieved by proposing a novel
decomposition technique, which allows a flexible sub-band
signal decomposition while preserving the nonlinear and non-
stationary features of the signals which is very crucial for
brain activity analysis. The so obtained components from each
multimodal channel processed separately have been further
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Fig. 3. Recurrence plot ofC4 EEG electrode dynamics (pre-stimulus fEEG <

60 samples andstimulus fEEG > 60 samples ). Graph created with [14].

transformed to the Hilbert domain and compared within am-
plitude and phase domains using the clustering technique in
order to identify those similar (spectrally correlated) across
channels.

The resulting reconstruction has allowed us to separate
common non-brain related interferences from underlying brain
activity in the data-driven signal processing approach without
information leakage between channels. The proposed approach
was tested in several experimental sessions in a multiple
subjects confirming the presented here results.

This is a step forward in EEG signal processing applications
which could be useful primarily for creating user friendly
brain-computer/machine-interfaces that would be less suscep-
tible to common interferences resulting from human body
activity.
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Fig. 4. Recurrence plot of fNIRS blood oxygenated hemoglobindynamics
for frontal right forehead (pre-stimulus fNIRS < 60 samples andstimulus
fNIRS > 60 samples). Graph created with [14].
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