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Abstract—In this paper, we propose a new multiple-camera There are a number of difficult issues associated with a multi-
people tracking system that is equipped with the following camera surveillance system. These issues include: fusion of
functions: (1) can handle long-term occlusions, complete ocClu- yata extracted from multiple cameras, illumination difference

sions, and unpredictable motions; (2) can detect arbitrary sized t diff t] fi | ¢ bl t
foreground objects; (3) can detect objects with much faster speed. &t dlff€rent focations, camera placement probiem, €tc.

The main contribution of our method is twofold: 1) An M- In recent years, homography mapping [14], [15] has been
to-one relationship with only point homography matching for applied to the problem of multiple-camera-based video surveil-
occlusion detection can achieve efficiency; 2) A view-hopping Jance. This technique can be used to match the corresponding
technique based on object motion probability (OMP) is proposed  ,ints among different camera views. Hu et al. [1] proposed a
to automatically select an appropriate observation view for L . . .
tracking a human subject. principal axis-based correspondence_checklng among multlple
cameras. For the same human subject detected by different
|. INTRODUCTION cameras, the correspondences are matched based on homog-
Tracking multiple people using multi-camera is a chakaphy mapping. However, people tracking in each view is
lenging issue in recent years. When a suspicious humgtill based on Kalman filtering. Under the circumstances, the
subject walks in an environment monitored by a multi-camermreliable motion prediction process would degrade the per-
surveillance system, the cooperation among different camefasnance of a developed system. Fleuret et al. [2] proposed to
becomes very important. According to the literature [1], [2]ise a probabilistic occupancy map which is built by fusing the
[3], multi-camera tracking techniques have shifted from thextracted data from multiple cameras to perform homography
monocular approaches [4], [5], [6], [7], [8], [9] toward themapping. For each decided position, the average human height
multi-camera approaches [1], [2], [3]. The tracking approachaad width (a rectangle) are given. This rectangle is used to
using monocular camera aim to track people by a singlepresent a person’s foreground area. Hence, a person who is
camera. Most of the existing systems adopted blob-based [jich shorter (a child) than the average height would still be
[5], [6] and color-based [7], [8], [9] approaches to performassigned with the default size. This kind of inflexible design
tracking. A set of features extracted from a human subjdst inappropriate to the occlusion case. Khan and Shah [3]
is updated sequentially in both above mentioned approache®posed a multiple occluding people tracking method by
However, the major drawback of the above systems is tHatalizing on multiple scene planes. A planar homography
when a human subject is occluded, there is no way to keepcupancy constraint and the foreground likelihood informa-
updating the changes across time. Under these circumstanties, extracted from different views are combined to tackle the
once a human subject is suddenly occluded and then oeclusion problem. Nevertheless, fusion of information from
appears in the field of view, the tracking system may not lifferent views and multiple planes (10-20 planes) would be
able to catch him/her due to a significant change of posery time consuming and it is not tolerable for a real-time
shape, or illumination condition. Some approaches have besmveillance system.
proposed for solving the occlusion problem. For example,In this paper, we propose a new multiple-camera people
Kalman filtering [10], [11] and particle filtering [12], [13] aretracking system providing the following functions: (1) can
proposed to predict motions when occlusion occurs. Howevdeal with objects with occlusions for a long-term, complete
no matter Kalman filtering or particle filtering is applied, theycclusions from other objects, and objects with faster motions;
can only deal with a short-term occlusion problem due @) can detect foreground objects with arbitrary sizes; (3) can
their prediction-based nature. To handle a long-term occlusiefiiciently detect objects. Our method has two main contri-
problem, some other approaches need to be proposed. Ambuations: 1) An occlusion detection function based on an M-
different potential solutions, utilizing multiple cameras to worko-one relationship with only point homography matching can
together as a team is one of the best solutions to this probleanhieve high computational efficiency; 2) An object motion
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window (previousk frames and subsequehtframes). The
frame differencel/! at timet can be calculated as:

F.» Foreground Multi-Camerag Occlusion MOP based View

K Detection [™] Projection Detection [ HO?I'?;r::iiigople . 1 i ok
S Iy =11 — Q_k(zi:t—kji+2i:t+1]i) ; 1)
wherei is the frame index. In other words, based on Eg. (1),
_ _ ' the difference imagdy can be generated according to the
Fig. 1. Proposed People Tracking System Architecture. difference computed from the current frame to the mean of all
2k frames in the search window at tinie

probability (OMP) based metric is proposed to automatically pulti-camera Projection

select an appropriate observation view in our view-hoppingI q he h hy 1141 11 h
mechanism. The rest of the paper is organized as follows. " OUr Propose system, the homography [14], [15] tech-

The proposed system architecture is highlighted in Sec. a!que plays the role of matching correspondence between

Next, the proposed techniques are described in Sec. [ferent views. For a detected human subject, the positions

Subsequently, the experimental results are demonstrated® 'rpis/her feet represent where his/her location is in the scene.
Sec. IV. Finally, conclusions are drawn in Sec. V The correspondence of a same human subject in different

views can be calculated by a homography transformation. A

Il. PROPOSEDSYSTEM ARCHITECTURE 3 x 3 homography matrix can be expressed as follows:
Fig. 1 shows the proposed system architecture. The left- hi1 hiz his
most part is the input of the people tracking system. In our H = |ha1 hoa hos|. (2)
implementation, we used three video camcoders to capture h31  hsa  hss

video data. We tried to synchronize the three input camcord?_rs the detected foot point in a view bg — [f,.f,], and
- TrJ Yyl

and then analyzed the videos frame by frame. The first step.o(JTI : o . o
our proposed people tracking system is foreground detectigﬁ. corresponding point in another view g = [f;.f,]. The

We used a simplified Gaussian Mixture Model (GMM) [16]correspond|ng foot point can be calculated frgrand / as:
(K = 1) for background modeling. This model can achieve T T
more effective background reconstruction results than adaptive [(fp) 731 = H[(fp)" ;1] 3)

GMM. Next, we used the foreground objects detected in ORgywever, the ground plane and corresponding points of land-
view to match the corresponding objects in other views. Thfarks should be provided by user at the initial state.
homography technique [14], [15] was adopted to calculate

the correspondences among different views. For the occlusien Occlusion Detection: Multiple Points to One Region Rela-
problem, we propose a multiple-points-to-one-region (M-tdionship (M-to-One)

one) relation to deal with it. When an occlusion event is \when a human subject is detected in the field of view of a
detected, our system will respond with a hopping action. Tharyeillance camera, his/her foot touching the ground should
is, to hop from an occluded view to other (non-occludeghe at the bottom of the line segment that links the head and
views. A strategy based on object motion probability (OMRhat foot. This is because we assume a human subject should
is proposed to select an appropriate view to hop. The detaiigintain his/her body vertical when walking. On the other
about how view-hopping is implemented will be discussed Wand, it is reasonable to assume the center of a walking human
the next section. subject is the intersection of the above mentioned vertical
line segment and the line segment linking the two hands
of the human subject. The upper right part of Fig. 2 shows
A. Foreground Detection how human subjects are detected by our method. The regions

. . bounded by blue boxes are the detected human subjects. The
GMM [1], [3] has been extensively applied to perforn}ed, blue, and green squares at the bottom indicate the IDs of

background modeling and foreground detection in the past f%‘f‘l‘ferent people. From the detection results shown in the upper

years. However, for r_eal world apphcauons, a GMM may nOrﬁght of Fig. 2 , it is obvious that the detected foot locations
be suitable for real-time extraction of the foreground ObjeC(Iﬁe quite close to the real locations

due to its costly re-computation on the GMM distributions. In Supposdtf is a foreground object detected at timeThere

a multi-camera tracking system, a near real-time requirement yyo descriptors used to represent a detected human subject.

is necessary. Most of the time, the system should notify tbﬁ]ey are, the foot positiof, = [/, f,], and the object region
administrator the runaway direction of a suspicious hum%lR respectively. The definition 61)7?3’ is as follows:
subject in seconds. As a result, a simplified GMM-based ' '

background modeling scheme is proposed in this work.
Let I; be an image frame acquired from one of the multipleOR = {Itf(:z:, y) = Ii(z,y) : B, >x > B;, By >y > By.}
cameras at time, and & be one half length of the search (4)

IIl. PROPOSEDPEOPLE TRACKING SYSTEM
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DDD :object regions of the same
human subject in different views
B :homography transformed foot points from another view
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Fig. 2. Occlusion detection: upper part: no occlusion (redase person), Fig. 3. View-hopping example: The targeted object is hoppethfiiew 1

lower part: occlusion event (green and blue persons). Red, green, and Bfu& iew 2 due to an occlusion event.

squares in the right view: foot points of each person. The squares in the left

view: corresponding foot points from the right view to the left view according ] - ] ]

to homography. an occlusion event can also be verified by checking the region
OR. Therefore, the M-to-one relation can be utilized to detect

. . an occlusion event by fusing the information grabbed from

Here B, and B; represent the right and left bounds in thernan cameras y 9 9

x-direction, andB; and B, are the top and bottom bounds in y )

the y-direction. The rectangular boxes formed by these bourls View Hopping-based People Tracking

Tt o SP05e et a camerss smulaneously andseparatly
plor. . ) 9 ptor ¢ g rﬁounted in a video surveillance system to monitor a same
to easily identify an occlusion event. Unlike conventiona

. 4 . Scene. In the scene, it is allowed to have multiple human
occlusion detection based on single camera, we propose

: . . ; S %jects moving or standing still in it. For a targeted human
detect an occlu§|on event by fusing th? mformauoh grabb bject, the corresponding object regions in different views are
from different views. In our approach, if an occlusion even&efined as{ORl ORZ.... ORN} as shown by the solid
Eﬁgaggfd’oitr?te f;ﬁi‘; t pi?]f(l)tl?hne i‘;?ﬁgp(;[g.re\é;'"redei(t)i(:t_rr;grj th‘:?’r_éctangles with different colors in the most upper part of Fig.

poin g ) glon. PPEY The rectangles with dashed lines in the same rows represent
left part of Fig. 2 indicates an occlusion event is happenlqﬁ video frames captured from different views at the same
because the blue and the green squares that belong to two di?—

ferent human subjects fall into a same object region Howevmrne' The small red squares bounded in object regions are
) J glon. e homograpy transformed foot points which are transformed

from the view observed by another camera (upper-right of F'ﬁ%m other views. These red spots are used to determine

izhg:e two corresponding human subjects do not occlude CdMether there is an occlusion event occurring. From the

system administrator’s point of view, at a certain time instant,

In what follows, we shall describe how to use the hg- .
. . e/she can only focus on several of the views from Me
mography transform to judge whether an occlusion event |

. : dBmeras. Therefore, we propose a view-hopping strategery to
happening or not. Leffpl and fp2 b(_a two f.OOt p_omts detected automatically select an appropriate view for the administrator
by one camera. Their corresponding points viewed by anothr

camera can be computed by the homoaranhy transfafims 0 monitor. Using Fig. 3 as an example, assume at tintieere
follows: P y graphy 83 is no occlusion event detected in bothew 1 and View 2.

In other words, the one-to-one relations are detected in both

of these views. Therefore, we can randomly select one of the
[(F0)7 1] = H[(f1)": 1], and[(f}2)"51] = H[(fp2)";1].  object regions for the administrator to monitor. SuppBgew
(5) 1 israndomly chosen. The object regionlifiew 1 is shown

If both £, and f,, fall into the same regiorQR, i.e., at the left of the upper row in Fig. 3. However, when the time
proceeds té+ 1, there is an occlusion event occurreditew
fl’j1 € OR, and fl’j2 € OR, (6) 1, because there are three foot points detected. Howkver

) . 2 still has only one foot point detected in the object region
an occlusion event can be detected. It is reasonable to eXt?échond rowView 2 in Fig. 3). That means the system has

the relation from the case of two-points-to-one-region (2-t95 aycute an automatic view hopping froMiew 1 to View

one) to that of muItiple-.poiqts-to-one-region (.I\/I-to-lone). F0% {6 avoid the occlusion case. Therefore, the targeted object
the case ofM points falling into the same region smultaneTOtJrl has to be hopped t¥iew 2, i.e

ously, i.e.,

fr1 €OR, fi, €OR, - fi € OR, (7)  TOu1 ={OR?: f}y, f}o, fls € OR" ; 3!f) € OR?}, (8)

p
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where f};, f,», and f,; are the homography transformeo
foot points derived from another view, and the object regic=="
OR? only contains one homography transformed foot poir™
f»- When Eq. (8) holds, a view-hopping action is triggered.‘

It is reasonable to extend the relation from the case of thr|
points toM points. By integrating Eq. (7) and Eg. (8), we ca :-g -
derive: —

() (b)

TO; = {OR” s fpo o foar € ORY AN € OR”},
(9) Fig. 4. The movement of a human subject (left one) from a faatlon to a
wherew andv are the view indices amony cameras. EQ. near location: (a) walking at distance, (b) walking at a near location.
(9) represents when an occlusion event occurred inutiie
view but there is no occlusion identified in theth view, the
observation view should be hopped to iwh view.

®

E. Object Motion Probability (OMP) for View Hopping

In a multi-camera environment, a human subject may be
occluded by other people in the view of one camera, but he/she ®
may not be occluded in other camera views. Because a front oM OMin  UnitOMin Normalized
view contains the most information of a human subject, we y direction 'y direction  OM in
hope our developed system can automatically hop to that view. y direction
In general if a person walks from far to near in the field of
view of a camera, its corresponding y-axis component in a Big. 5. The relationship among OM, OM in y-direction, unit OMyi direction,

. nd NOM in y direction.

D image plane should be from top to bottom, as shown by the

red arrow in Fig. 4 (a). In other words, the object motion [17]

in y-direction can be used to judge whether a human subjechi®tions that have larger magnitudes can be accepted as valid
approaching (can see his/her front) or leaving (can see his/bgject motions.

back) the camera. Therefore, we shall make use of the objeckMotivated by the concept of probability updating for appear-
motion to judge whether a walking human subject is in frorince model [18], the approaching/leaving probability of object
view or not. motion for a human subject can be updated by checking the

As shown in Fig. 4 (a) and Fig. 4 (b), the left human subjeebrresponding object motion, i.e.,
is walking in a constant speed. The object motion in the far

!ocatlon (red segment in Fig. 4 (a)) is mgch smaller t_han that OMPa, | A+(1=N),  If NOM,,>Thyon:
in the near location (red segment in Fig. 4 (b)). Since theoMP.,(NOM,,)= OMP. A otherwise
movement of a human subject in the distance may result in e " (11)

a smaller object motion in comparison with an object motiogng
happens nearby, the object motion has to be normalized based

on its distance to the viewer. Therefore, we have .
OMP;,_, A(1-)), if NOM,, <-Thyowm;

OMP,,(NOM,,)= { .
Too(fy) = foo 1 (fy) OMP,_, A, otherwise,

; (10) (12)
max (fpf (fy)’fpffl(fy)) where NOM,, is the y-direction object motion of a corre-
where NOM,, is the normalized object motion in y-directionsponding human subject at timg A is an update factor,
detected at time, and f,, (f,) is the foot point position in set to 0.95 [18], and Thyoa is a threshold for a valid
y-direction at timet. For the convenience of representatiomormalized object motion. For the convenience of represen-
we use NOM as the abbreviation afOM,,. Fig. 5 shows tation, we useapproaching OMP to represenOM F,,, and
the relationship of the items in Eqg. (10). The black arrokeaving OMP to representOM P;,. In our experiments, the
shows the original object motion. The y direction projectioapproaching/leaving OMPsfor a human subject are initially
is illustrated as the blue arrow (the numerator in Eq. (10)8et to0.5 because he/she has equal probability of approaching
The denominator in Eq. (10) is represented by the unit objemt leaving a camera without any prior knowledge.
motion, as shown by the red segment in Fig. 5. As a result,An example of updatingapproaching/leaving OMPs is
the NOM can be obtained as shown by the red arrow in Fighown in Fig. 6. At first, the foreground objects can be detected
5. Note that the NOM is calculated for the correspondinfgom all three views. The labels with different colors represent
human subject in the same view. Since the computation different human subjects, as shown in Fig. 6 (a). Next, the
foot points can be easily affected by noises, we only considaoposed occlusion detection algorithm is used to detect the
those significant object motions. That is, only for those objeotclusion region. In this examplé/iew3 in Fig. 6 (a) was

NOM,, =
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Viewl View2 Viewl View2

\Occlusion
@
Approaching OMPLeaving OMP

OMP) Waighted OMP . )
C#1as \¥ / p Weighted Viewl View2 Views

_ a6 - /A proaching OMP
&= & )
- - Weighted
k) 8 Leaving OMP
a2 * 02

0 i

1.2 3 128
camara numbear camara numbsar
(b) (© (d)

. . . . Fig. 7. Test Videos: (a) Two-camera scenario, (b) Three-canseenario:
Fig. 6. OMP example: (a) detected foreground objects in three views (B)cynis Court.

target object (bounded by green rectangle in (a) )dB)Ps in three views,
and (d) the weighte@®MPs in three views.

identified as an occlusion event. Therefore, we have to chec =8
the OMP status ofViewl and View2. Let's use the human * =+
subject bounded by the green rectangle as an example. l "
Viewl, the targeted human subject was detected with a highe ﬁ)
approaching OMP and a lowereaving OMP (the left most @
blue bar and brown bar, respectively). On the other hand, Occlusion
the approaching OMP in View?2 is much smaller than the

leaving OMP. Since the targeted human subject is occluded

in Views, the best view to hop to idiewl in this case.

The selection of the best view is determined by computing

the weightedOMPs under different conditions, i.e.,

SELLEInk

_
i
=

Vi = argmax {W"-OMPF;}, (13) _ . o
v Fig. 8. Trajectories calculated from the two-camera sequie@) trajectories
of three human subjects detectedView1, with occlusions in red circles, (b)
trajectories of homography mapping froriew?2 to View1, with occlusions
1, approaching OMPs> The:; in red circles, and (c) trajectories of three human subjects detect€dein?2.
W?v = <¢0.5, leaving/approaching OMPs< The¢; (14)
0, disappeared or occluded;

subjects walking in the two-camera surveillance system. The
where W is the weight for thev-th view, andOM PY = trajectories ofiiewl andView?2 in Fig. 7 (a) are shown, re-
{approaching OMP, leaving OMP}. When theOMPs fitthe ~ spectively in Fig. 8 (a) and Fig. 8 (c). The detected foot points
situations described in Eg. (14), its corresponding welght of View2 can be transformed via homographyitgewl, as
would be generated. Under these circumstances, the distrilnglicated in Fig. 8 (b). By comparing the detected trajectories
tion probability among different views can be calculated (e.§fig. 8 (a) ) and the homography transformed trajectories
Fig. 6 (d)). Finally, an appropriate view can be determined i¥ig. 8 (b) ), we can verify that the results are quite close
exhaustively searching the view with the maximum weightdd each other, showing that the correspondence established
approaching/leaving OMPsas expressed by Eq. (13). from different views by homography transformation are quite
accurate.

The tracking results of a real-world case are shown in Fig.

To test the effectiveness of the proposed method, we usdThe columns represent the video frames captured from
two scenarios to capture videos at two distinct time spots different views, and the rows represent the frames captured
a same day. Fig. 7 shows some snapshots of two scenaraisdifferent time instants. For different human subjects, we
the two-camera scenario is adopted to verity whether the hesed rectangles with different colors to represent them. For
mography transformation can be appropriately used to perfoexample, in Fig. 9 (c), the human subjects bounded by red
occlusion detection, and the three-camera scenario is usedettangles in three views are identical. This indicates that the
check whether the proposed scheme can be applied to regiplied homography transformation can help match the corre-
world problems. Fig. 8 shows the trajectories of three humapondence. On the other haridiewl in Fig. 9 (c), View2

IV. EXPERIMENTAL RESULTS

377



Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

Viewl View2 View3 Targeted OMP Weighted
Object OMP
OMP Waghted OMP
C#2 08 0.8 cul
E 0.6 %1 0.8
a @ 4 @ 0.4
@ : :
0.2 0.2
a
1 2 3 1 2 3
camea number camer numbsr
OMP Waighted OMP
C#2 038 0.8
E‘ 0.8 %1 0.8
(b) @ 04 @ 04
2 :
0.2 0.2
Fig. 9. Video test sequence Tennis Court, the frames in the first, second, a "
and third columns are fromViewl, View2, and View3, respectively. The 1 2 3 1 2 3
rows show different time instants at (a) frame num&@5s0 (b) frame number cam&n::nhsl c;ﬂﬂgd;ﬂugm
3150, and (c) frame numbes250. C#2 o8 08
- - ‘ - - - = 0.8 = 0.6
in Fig. 9 (a), andView3 in Fig. 9 (b) all contained detected © 2 o 2 0s
occlusion events. This outcome shows that our proposed M-to- g - g i
one occlusion detection mechanism could successfully detect '
the occlusion regions in frames. As to the best view selection O e o D
issue, the results are shown in Figs. 10-11. In these figures, the camera fiumber camera namber

targeted human subject is shown in the left of each row. In Fig.
10, the targeted human subject are viewed from camera 2. Thigs 10. Experiment # 1 of best view selection. From left tditighe targeted

is because the weight roaching OMPs were the largest human subjectoMPs (blue bars:approaching OMPs; brown bars:leaving
9 expp 9 9 OMPs), and weightedMPs. From top to bottom, frame grabbed at different

atall .three time instants. In Fig. 11_v the targeted human SUbjﬁﬁ:\E instants: (a) frame numb8050 (b) frame numbeB150, and (c) frame
are viewed from camera 1 at the first two instants because theber3250.
weightedapproaching OMPs were bigger than that of other

views. However, the view was forced to hop to camera 2 due

to occlusions. In Fig. 11 (c), only camera 2 was associated

with the values of weighte®MPs. Camera 1 and Camera 3y} w, py, M. Hu, X. Zhou, T. Tan, J. Lou, and S. Maybank, “Principal Axis-
did not have any weighte@MPs value, it means the targeted = Based Correspondence between Multiple Cameras for People Tracking,”
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of that camera. Under these circumstances, we are forceqzioF. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multicamera People

hop to Camera 2, though it is only a back view. Tracking with a Probablistic Occupancy MapEEE Trans. Patt. Analy.
Mach. Intell., Vol. 30, No. 2, pp. 267-282, Feb. 2008.
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Targeted OMP Weighted
Object OMP
OMP Waighted OMP
C#10s8 0.8
0.6 0.6
g 0.4 ‘E 0.4
* oz * oz
a a
1 2 3 1 2 3
camana numbar camana numbar
OMP ‘Waightad OMP
C#1 048 0.8
LIk Lk}
o 0.4 @ 04
(b) 8 8
* oz * 02
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OMP Waighted OMP
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0.8 04
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camara number camara numbar

Fig. 11. Experiment # 2 of best view selection. From left tdtighe targeted
human subjectOMPs (blue bars:approaching OMPs brown bars:leaving
OMPs), and weightedDMPs. From top to bottom, frame grabbed at different
time instants: (a) frame numb8650 (b) frame numbeB150, and (c) frame
number3250.

[11] J. Black, T. Ellis, and P. Rosin, “Multi-view Image Surveillance and
Tracking,” Proc. IEEE Workshop on Motion and Video Computing, pp.
169-174, 2002.

[12] J. Giebel, D. Gavrila, and C. Schnorr, “A Baysian Framework for Multi-
cue 3D Object Tracking,Lecture Notes in Computer Science (Proc.
European Conf. Computer Vision),, Vol. 3024, pp. 241-252, 2004.

[13] K. Smith, d. Gatica-Perez, and J.-M Odobez, “Using Particles to Track
Varying Numbers of Interacting PeopleProc. IEEE Conf. Computer
Vision and Pattern Recognition, Vol. 1, pp. 962-969, 2005.

[14] K.J. Bradshow, L.D. Reid, and D.W. Murray, “The Active Recovery of
3D Motion Trajectories and Tieir Use in PredictionEEE Trans. Patt.
Analy. Mach. Intell., Vol. 19, No. 3, pp. 219-234, Mar. 1997.

[15] L. Lee, R. Romano, and G. Stein, “Monitoring Activities from Multiple
Video Streams: Estabilishing a Common Coordinate Frah&#EE Trans.
Patt. Analy. Mach. Intell., Vol. 22, No. 8, pp. 758-767, Aug. 2000.

[16] C. Stauffer and W. Grimson, “Learinig Patterns of Activity Using Real
Time Tracking,” |[EEE Trans. Patt. Analy. Mach. Intell., Vol. 22, No. 8,
pp. 747-767, 2000.

[17] W. Hu, T. Tan, L. Wang, and S. Maybank, “A Survey on Visual
Surveillance of Object Motion and BehaviordEEE Transactions on
Systems, Man and Cybernetics, Part C (Applications and Reviews), Vol.

34, No. 3, pp. 334-352, 2004.

[18] A. Senior, “Tracking People with Probabilistic Appearance Models,”
Proc. IEEE Performance Evaluation of Tracking and Surveillance, pp.
48-55, 2002.

379



	pg373: 373
	pg374: 374
	pg375: 375
	pg376: 376
	pg377: 377
	pg378: 378
	pg379: 379


