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Abstract—We present a novel method to implement lifting While wavelet-based techniques would seem well suited
based wavelet transforms on general graphs. The detail and to provide efficient local analysis, a major obstacle to rthei
approximation coefficients computed from this graph transform application to graphs is that these, unlike images, are not

can be interpreted similarly to their counterparts in standard larly structured. F le di t let f
signal processing process. Our approach is based on partitioning regularly structured. For exampie, discrete wavelet tamns

all nodes in the graph into two sets, containing “even” and “odd” Use local filtering operations followed by downsampling. In
nodes, respectively. Then, as in standard lifting, nodes of one a graph, locality can be defined, e.g., by considering the

parity are used to predict/update those of the other. We discuss one-hop neighborhood of a node (the set of nodes directly
the even-odd assignment problem on the graph and provide ¢onnected to it), but there is no obvious way to downsam-
a solution that is well suited to construct the transform. As . . . .
an example we discuss how our transform could be used in a p!e in-a regular manner, since these neighborhoods vary in
denoising application. size and orientation. Recently there have been proposals to
create wavelet transforms for data on graphs. Crovella and
. INTRODUCTION Kolaczyk [2] proposed wavelet-like basis functiogis; for
In this paper our goal is to analyze graph structured dagsaphs which are localized w.r.t. a range of location/scale
using local invertible transforms. Graphs, particuladpéled indices, but their transform is not invertible in generalay
graphs arise naturally in data-mining, biology [1], netlwvorand Ramchandran [4] have proposed graph dependent basis
analysis [2],[3],[4] and social studies [5]. We are coneern functions for sensor network graphs. These basis functions
with graphs ranging from planar acyclic graphs such as trem® locally supported but their dual basis are not. Hence thi
to more general multi-dimensional non-acyclic graphs sagh method cannot be called a locally invertible transform.rShe
social networks, Internet etc. and Ortega [3] have applied wavelet lifting transforms on
Transform techniques for graph analysis can be broadly gganning trees for a wireless sensor network applicatiberev
divided into a) global methods, e.g., those using conceptsiovertibility is guaranteed for any tree, as long as nodethén
graph spectral theory, and b) local methods, which expldiee are partitioned into two sets (even and odd nodes) and
correlations in a local neighborhood. Global methods atke transform is structured by modifying even nodes based
often based on the Laplacian matrix, whose eigenvalues amd odd nodes (and vice versa). The starting point for our
eigenvectors contain global information about the shapgbef work is the observation that the idea in [3] can be extended
graph. Major applications of global methods include, grapgb arbitrary graphs, no longer constrained to be planar and
partitioning [5], simplification and graph based featur&@s acyclic, as long as suitable even/odd assignment algasitiom
tion [6],[7]. A comprehensive discussion of global methodthe graph can be identified. In Section Il we define these novel
can be found in [8] and [9]. While global methods are widellifting transforms. Our experiments in Section Il provide
used, they are highly sensitive to changes in graph stegturpromising preliminary results using these transforms on a
For example the Laplacian matrix may have very differesimple denoising task.
eigenvalues and eigenvectors, even when the corresponding
graphs have similar structure. In addition to uncoveringtiyo
global information, global methods do not scale well as the Wavelet transforms have been widely used as a signal
graph size increases, e.g., the time required to perform th®cessing tool for a sparse representation of signalselétav
eigenvalue decomposition can be significant. Thereforeethdased transforms split the sample space into an approximati
is a need for practical scalable algorithms that can cajtoife and a detail subspace. The approximation subspace contains
local and global patterns in the graph data and are robustatosmoother version of the original signal and the details
small changes in the graph structures. Local methods on tifethe signal are contained in the detail subspace. Crovella
other hand exploit local similarities in a graph. They are-diand Kolacyzk [2], apply a discretized wavelet like transfor
tributed and locally generated resulting in less compomali on graphs for anomaly detection. Regions around each node
complexity. Unlike global methods, changes in a local regicare segmented into disks such that a k-hop disk contains
of the graph only affect the coefficients in that region and dwdes which are exactly k-hop distant from the root node.
not alter the overall results. In spite of these advantagery, The wavelets centered at each node are assigned positive
limited work has been reported in this area. weights for even-hop disks and negative weights for odd-hop

Il. LIFTING TRANSFORM ONGRAPH
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disks. This transform can be applied to general graphs, hibbe number of coefficients equals number of original samples
is non-invertible in general, making this transform urasbi¢ s, ,(n € Uy = V) and completely describe them, making the
for certain applications such as compression and denoisiegtire process reversible.
Additionally these wavelet transforms use average datdl of a While any split will guarantee invertibility, we seek tech-
the nodes situated on the same disk around the root nodigues to split (i.e., to label or color) the graph that miizien
For large dataset the k-hop disk size can grow rapidly withe number of conflicts (i.e., the percentage of direct risgh
increasing k and resulting in loss of locality of the tramsfo in the graph that have same parity). This is then a bipartite
Our goal is to achieve invertibility with a local trans-subgraph problem, where the goal is to split a graph into
form. Shen and Ortega [3] design a unidirectional 2D liftingwo clusters (even/odd) so as to minimize the number of
transform along arbitrary trees in a wireless sensor nétwaremoved edges (only edges connecting nodes within a cluster
application. Given a tree graph, the authors split the nodee removed). The problem is NP-hard in general and for
into even and odd nodes based on their minimum hoppiag completely random even-odd assignment of nodes, the
distance from the root node (see the tree defined by soficbbability of an edge having same parity on both its ends is
lines in Figure 1 as an example). A lifting transform is thenoughly 50%. Hence with a random assignment alm66¥s
applied locally on the tree using these assignments. Siredges are not utilized in the transform. In the next sectien w
trees are acyclic planar graphs, the even-odd assignmenudes$cribe a greedy method to approximate good even-odd split
nodes is well-defined and no pair of directly connected nodes -,
is assigned identical (even/odd) parity. To apply this idda Even-Odd splitting of Graph
to arbitrary graphs (in general cyclic and non-planar) wWoul Assume an algorithm assigns a label (even/odd) to each
require selecting an even-odd assignment on these graptestex of a graplz = (V, E) of size N with adjacency matrix
Referring again to Figure 1 if we now consider a graph th&dj such that there are: odd labels andV —m = [ even
includes both solid and dashed lines (planar but cycliciit c labels. If we rearrange the vecterof vertices to gather even
be seen that nodes that are neighbors in the graph areamdl odd vertices at one place and rearrange the adjacency
longer guaranteed to have opposite parity (e.g., 4 is even anatrix accordingly, we have

connected to 3 and 5 which are both even as well). B Vodd - F Ty

Since a lifting-based transform uses information from even v = ( V° ) Adj = ( Kmxm me ) 1)
(resp. odd) nodes in order to predict (update) an odd (resp. even bame M
even) node, having neighboring nodes with same parity meaMRere voaq is am x 1 array andveven is al x 1 array.
that some local information cannot be used (e.g., we canridte submatrixF' of Adj is adjacency matrix of a subgraph
use information in all neighbors to predict information in gontaining odd nodes only. Similarlf. is a submatrix of
given node). a subgraph having even nodes only. These matrices contain

edges which have conflicts since they connect nodes of same
parity. The block matriced and K contain edges which do

@ : ©dd Nodes

Q e ees not have conflicts. A lifting transform based on this evetod
assignment utilizes only th@ and K matrices of adjacency
""""" matrix. F and L. matrices are considered non-existent. So any

quality criteria for the even-odd assignment should be dbase
on minimizing edge information present in matrid@sandL.

We propose one such criterion of minimizing the row sum of
adjacency matriceF' and L.

For this purpose we use an algorithm called conservative
Fig. 1. Even Odd Assignment in routing trees designed in [8}.@ashed lines fixed probability colorer (CFP) given in [10]. The CFP colore
show the edges not used by the transform though they arenwithio-range algorithm solves the corresponding problem of 2 colors lgrap

coloring problem (2-GCP) so as to minimize the conflicts.

Thus in order to apply a lifting-based transform to aithis algorithm is based on a simple greedy local heuristics
arbitrary graph we would like to split the nodés in the and gives competitive results as compared to other k-GCP
graph into even and odd sets. Using the notations of [Zlgorithms [10]. The algorithm is iterative and at eachatiem
starting fromj = 1, at each scalg of the transform the few randomly chosen nodes are activated. Each activateel nod
set of noded/;_; are first split into a set of 'even’ nodescounts the number of conflicting edges with its neighbors and
U; and 'odd’ nodesP; . The coefficients in odd nodeB; changes its parity based on the conflict. In a more conseevati
denotedi; ,,,(m € P;) are then predicted from the coefficientapproach, the parity change happens sequentially in each
in U; denoteds;_1.,(n € U;) by applying prediction step iteration. Formally the algorithm is presented in algariti.
of lifting. The coefficients in even set of nodé4 are then Figure 2(a) shows a sample even-odd assignment of Karate
updated tos; ,, usingd; ,,,. For next level of transform sét; Data [11] and Figure 2(b) shows the reduction of conflicts
is again split into the set&;,, and P;,; and similar steps with each iteration. The x-axis in Figure 2(b) is number of
of lifting are applied. Thus after any suéghdecompositions iterations. The value on y-axis is the fraction of confligtin
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edges. The convergence of solution has been discussedeighboring nodes to obtain detail coefficients.The evateao
then update their data by adding a weighted sum of detail

Algorithm 1 Even-Odd Assignment Algorithm values obtained in the previous step from their odd parity

1: Randomly assign initial label to each node neighboring nodes. This gives us a critically sampled itiivker

2: for k = (1:1:max ter) do transform. In some application when we want over-sampled

3:  Activate each node randomly with a fixed uniforndransforms on the graph, we swap the parity of even and odd
probability. nodes. In this case, each node has one detail coefficient and

4:  For each activated node choose a parity that minimizege update coefficient value. Original data values do noé hav
its conflict with neighboring nodes to be stored. The block diagram of an oversampled lifting

5. Inform the neighboring nodes, if the parity is changedransform is given in Figure 3.

6: end for
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Fig. 2. Even-Odd assignment on Zachary Karate Data [11] usimm-odd
algorithm 1. Fig. 3. Block diagram for an oversampled lifting transformdalifting
transform equations.

[10]. If the solution converges, it ensures in probabilibat
there are no nodes having more tHa&l% neighbors of same

parity. The algorithm can also be extended to weighted edge I1l. EXPERIMENTS AND RESULTS

graphs. We address a simple graph denoising application to demon-
) strate the advantages of our invertible graph transforrapfsr
B. Graph Transform design denoising mayb be applied as a preprocessing tool in amajyzi

Once we have a disjoint set of even-odd assignment of nodeal world graphs, e.g., protein interaction networks [12]
in the graph, we can perform a lifting wavelet transform, abhe toy graphs of our experiment are similarity graphs (see
given in Equation (2). [9], Section 2.2) withN uniformly sampled nodes from two

D!= Xoqa—JIp xXeven partially overlappi_ng G_aussian distribgtion_s. An (_adg‘gj} _
ST— X,,o. 1Ky xD? (2) between two vc_art|ces in the graph_ exists if the difference in
1 1 the corresponding sample values is less than some threshold
where matrixJ, is prediction matrix computed from matrix An example graph withV = 200 sample values is shown
J of Equation 1 by multiplying each row with predictionin Figure 4(a). Figures 4(b)-(f) show Voronoi tessellation
weights. SimilarlyK,, is update matrix, computed from matrixof the distribution field with.N = 1500 sampled points
K by multiplying each row with update weights. This transas Voronoi sites. For Figure 4(b) the value of each sample
form is invertible and the original values can be recovergd lis the mean of the distribution from which it is drawn. In
following inverse lifting steps given in Equation (3) Figure 4(c) sample values are the actual noisy values. The
Xeven= S'-KyxD? intensity of each cell reflects the value of corresponding
even (38) sample in the cell rescaled to the range betwi@eh|. Figure
4 (d),(e),(f) are the Voronoi tessellations of denoised @am
The prediction and update weights depend on the type Piis problem can be seen as a 2D version of denoising
application we choose. For the denoising example in thdtressf a general M-dimensional discrete data. While our results
section, we use prediction and update weights similar to thge preliminary they demonstrate promising performance as
ones designed in lifting transform given in [3]. The preidiot compared to simple, single-step methods operating on the
weight for rowi of matrixJ is p; = (i J(i,j)+1)! and the Laplacian matrix that have been proposed in the literature.
j=1 Wavelet denoising is done by transforming noisy data iné th
wavelet domain, applying thresholding in the wavelet domai
and inverse transforming the denoised wavelet coefficiénts
1))~L. Thus, in our implementation of lifting, flrst the data orthis work, the wavelet coefficients are prediction coeffitse
odd nodes are subtracted from a weighted sum of even paugtytained by applying the proposed lifting based transform

Xodd= D1 +Jp X Xeven

update weight for row of matrix K is u; = (2 (Z K(i,5)+
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on the graph. For thresholding we apply universal threshold
given by Donoho [13]thr = +/2log,(N) on the wavelet
coefficients normalized to the noise level [14]. We compare
our results to both short time and long time solutions of
the diffusion heat equation ([8], [15]) on the graphs . The
Voronoi tessellations of the field constructed from dendise
values of the samples are drawn in Figure 4(c)-(f). The plots
show that lifting transform based denoising results arseato

to original distribution in Figure 4(b) than diffusion base
methods. To quantitatively assess these results we use two
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Fig. 4. (a)Similarity graph with 200 sampled points from thederying 4l
distribution. The nodes in shaded region Aféu1, o2) and the nodes in white
region areN (u2,0?) (b)-(f) Voronoi Plots 5]
quality metrics: peak signal to noise ratio (PSNR) and sieshd 6]
deviation(STD) of samples. Results are in Figure 6 and 5. A%

can be seen in Figure 6, PSNR achieved in lifting is highen tha[7]
for diffusion based methods, with better results achievetd w g
the oversampled approach. Note that gains from oversag1p|ir[|
are only significant for relatively sparse graphs. In Figoikee  [9]
can observe reduction STD with respect to the original dig o
and, here too, we observe STD of oversampled transform to
be lower than STD in critically sampled case. "
V. CONCLUSIONS AND FUTURE WORK

We propose a lifting based wavelet transform which cgm)
be applied to arbitrary graphs. We define a very new way of
applying signal processing tools on graph based data wigth tﬁ3
transform. In future, we would want to improve our even-odd
assignment algorithms, and extend the idea to a multi-levé!
lifting transform.
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