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Abstract— The uncertainty principles of the 1-D fractional
Fourier transform and the 1-D linear canonical transform have
been derived. We extend the previous works and discuss the
uncertainty principle for the two-dimensional affine generalized
Fourier transform (2-D AGFFT). We find that derived uncer-
tainty principle of the 2-D AGFFT can also be used for deter-
mining the uncertainty principles of many 2-D operations, such
as the 2-D fractional Fourier transform, the 2-D linear canonical
transform, and the 2-D Fresnel transform. These uncertainty
principles are useful for time-frequency analysis and signal
analysis. Moreover, we find that the rotation and the chirp mul-
tiplication of the 2-D Gaussian function can satisfy the lower
bound of the uncertainty principle of the 2-D AGFFT.

L INTRODUCTION

The well-known Heisenberg uncertainty principle states
that, if X(w) is the 1-D Fourier transform (FT) of x(¢)

FT:  X(w)=FT[x(1)]= ﬁ [ xee o dr 0
and the 2™ moments of time and frequency are

Al = j:zz @[ de/ [ |xf at, )

A =[" @ X () do/ [ |X (@) do, 3)

when J.jo |x(t)[" dt =1, the following inequality is satisfied [1]

APA2 > % . )
Then, in [2], the uncertainty principle was generalized into the
case of the 1-D fractional Fourier transform (FRFT) [3]:

. . pcota © ) .2 cota
FRFT: X, (u)= 1’1—]2%tae/u 2 .[7 a2 x(t)dt .

(5)
If
A =" X ) du ) [ 1X, 0| d (6)
then
.2
AA% > s1n4 a @)

Recently, the uncertainty principle was generalized into the
case of the 1-D linear canonical transform (LCT) [4][5]. If

cod w Mt 2@
LCT: X(a’b,c’d)(u)= ’ﬂ%el be_we 5 sz(t)dt , (8)

then
2
ANz ©)
where
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A =["w | X ey Qo) ! J.:O|X(a’b,‘,’d)(u)|2 du.  (10)

The uncertainty principle of the 1-D case has been dis-
cussed a lot. In this paper, we extend the previous works and
derive the uncertainty principle for the two dimensional affine
generalized fractional Fourier transform (2-D AGFFT). The
derived uncertainty principle is shown in Theorem 2. As
Heisenberg’s uncertainty principle, the derived uncertainty
principle will be useful in signal processing applications, such
as time-frequency analysis, signal synthesis, communication,
sampling theory, and filter design.

Moreover, since many 2-D operations are the special cases
of the 2-D AGFFT (such as the 2-D FRFT and the 2-D Fres-
nel transform), we can use the derived uncertainty principle to
find the uncertainty principles for these operations.

1L TWwO-DIMENSIONAL AFFINE GENERALIZED
FRACTIONAL FOURIER TRANSFORM

The two-dimensional affine generalized fractional Fourier
transform (2-D AGFFT) is defined as [6][7]

Gumenm ()= [ Kypom (vx.3) g(x.p)-dudy, (1)

where

A :|:all 012:| B :|:b11 b12:| .C :|:c11 CIZ:| ) D:|:d11 d12:|
ay Ay b, by Gy Oy dy dy,
(12)
represents the 16 parameters of 2-D AGFFT, and

2
l«uz +hy »u-v+/(3«v“)

K 1 eZdejt(B)(k

e

eW/B)((*bzz“*blz")f\”r(bzl“*bl1V)}")

2 2
PIX +py X y+pyy )

, o (13)
where ky = d\1bn — diaby, ko =2(=dibia + dipbn),
ky =—dybia + dnbi,  p1=anbn—anbun,
P2=2anbyn—anbn), ps=-anby +anb. (14)
Moreover, the following constraints should be satisfied [6][7]:
A'™C=C"A, B'™D=D'B, A™D-C'B=I. (15
The 2-D AGFFT is useful for filter design, signal analysis,
data compression, communication, optics, and image process-
ing [6]. It is a generalization of many 2-D operations. For
example, the 2-D FT is a special case of the AGFFT where
bu=bn=1, ci=cnp=-1, an=an=ay=an=0,
bu=by=cn=cn=dy=dn=dy=dp=0. (16)
The 2-D fractional Fourier transform (2-D FRFT) [3] is:

il
e2dB)
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_JI—jeota)(1- jcot ) Jrwanion

2-D FRFT: G, ,(u,v) 2z

Jl j —j(uxcsca+vy cscﬂ) 2 (x,y)dxdy . (17)
It is a special case of the 2-D AGFFT where

(x cota+y cot B)

a 1:d1 1—C0s &, b] 1= —Cj 1:Si1’10!, 022:d22:COSﬁ, b22: —6'22:Si1'1ﬂ,
a=ap=bp=by=cpn=cy=dip,=dy=0 (18)
The 2-D linear canonical transform (LCT) is defined as
d o d 5
) 1 ](%u +EV )
2-DLCT: G\ uupoattsv)= e
(a,b,c.d,a by, |>dl)( ) 27 —bbl
w po I 3) e )
j_wj_w 2 2 g(x,y)dxdy . (19)
It is a special case of the 2-D AGFFT where
an=a, anp=a,, by =b, b»=b, ci1=c, cyp=ci, du=d, dyp=4d,,
a=ap=bp=by=cpn=cy=dip=dy=0 (20

The 2-D Fresnel transform is:

G (u,v)——l—j wej/tz[(" o) | g(x,y)dxdy . (21)

(z,2)

It describes the light propagation in the free space. If the con-

stant phase is ignored, the 2-D Fresnel transform can be

viewed as the special case of the AGFFT where
an=an=dn=dn =1, by=by= 12127,

an= a1~ b13= by1= c11= c15= 1= c= di7= d= 0.

(22)
(23)

III. UNCERTAINTY PRINCIPLE OF THE 2-D AGFFT

As the 1-D case, in this paper, we always suppose that the
signal g(x, y) is normalized

[" |gCey)f dxdy=1. (24)

We will try to find the lower bound of A2 )Ai . » where
A =7 (4 57y dxdy, (25)
Af{)v =Ii(u2 +\12)|G(A’B)C’D)(u,v)|2 dudv . (26)

and G p.cp)(u, v) is the 2-D AGFFT (defined in (11)-(15)) of
g(x, y). The formula of the 2-D AGFFT is very complicated.
It has 16 parameters. We should use some ways to simplify
the derivation of the uncertainty principle.

[Lemma 1] First, note that, if

P+ pyxyepsy?)

): ezdei(s)(

g (x,y g(x.y), @7)
(ki thy vk )

H(u,v) =g ® G(A,B,C,D) (”»V) > (28)
then, since |go(x, »)| = g(x, ) and [H(u, v)| = |Gia et V),
Aiy = .[:(xz + yz)|g0(x,y)|2 dxdy , 29)
Af,v =I:O(u2 -|—1)2)|H(u,v)|2 dudv . (30)

Note that

L (bt v+ (byu—byv)y)
WMLL &o(xy)dsdy

€2y

415

[Lemma 2] Moreover, the rotation operation does not affect
the 2™ order moment. That is, if

g (x,y)=go(xcos+ ysin®,—xsin + ycosb),
H,(u,v)=H (ucosg+vsing,—using+vcosg),
then

[ (2 +5" )& dedy = (x*+3%) gy dxdy, (34)

.[:(uz + \/2)|I-Il(u,v)|2 dudv = J.:(uz + v2)|H(u,v)|2 dudv . (35)
Substituting (32) and (33) into (31), we obtain

e

(32)
(33)

J((nu+ ) x+(3u+1749) ) (x,y)dxdy ,

(36)
where 71, 15, 773, and 74 can be calculated from:
bzz _blz
m 1| |cos@ —sind | det(B) det(B) | cosg sing 37)
o m,| |sin@ cosd | b, b, | -sing cosg|

det(B) det(B)

Note that, if 77, and 773 are zero, the relation between H;(u, v)
and g;(x, y) in (36) will be simplified into the 2-D scaled FT.
The uncertainty principle of the 2-D scaled FT is easier to
find. To make 77, = 73 =0, fand ¢ should satisfy

b22 _b12
det(B) det(B) | | cos¢ sinf |7 O | cosg -sing
—by, b, | —sin@ cos@ | 0 7, || sing cos¢
det(B) det(B)

(38)
b, +by, = (771_] +77;])COS(¢_9) b, b, :(771_] - _])COS(¢+9) >

by +by = (17, =13, )sin(¢+ ), b, — bzl—(774 +1 Dsin(p—6) .
(39)

Therefore,

S+ b, + by~ b, =[n 407" (40)
\/(bll_b22)2+(b21+b21)2 :|77f1_77;||- 4D

Thus, we can choose
7 =21 (J(by + ) + (b, -
n,=2/ (\/(bn +b22)2 + (b, _b21)2 _\/(bu _b22)2 +(b, +b21)2)

if (b1 +bn) + (bi=b2)* > (b1=bn)’ + (bithy)’  (42)
and

1 =2/ (b +by,)? + (B, — by, =By, —
1y =2/ (b +byy ) + (b, = by, ++/(By, —

b21)2 +\/(b11 _b22)2 +(b12 +b21)2)

bzz)2 +(b, + b21)2)
b))’ +(by +by)*)

if (b11+52)° + (b12=ba1)’ < (b11=b2)’ + (biatby ). (43)
Then, from (39),
¢: (l//l + V/Z)/Z; 0= (l//[ — 1//2)/2, (44)
where v, :C0S7 bill b22 — -1 blle +b231
_774 m —1,
v,=c¢C -1 by +by -1 by =by, (45)
n +n; '+
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If we choose 71, 12, 173, 11, ¢, and @ as (42) (or (43)) and (44),
1, = 13 = 0 and the relation between H,(u, v) and g(x, y) in
(36) becomes the 2-D scaled FT.

\j 771774J‘ J‘ e’ 7]|MX+7]4V)

H( (x,y)dxdy . (46)
[Theorem 1] For the 2-D scaled Fourier transform:
SF(f h A/ 6162 J'mj‘m —j(0y fitorhy) (X y)dxdy (47)
If Ax’y =_[_w X4y )|g(x,y)| dxdy ,
N = | [ (74 1)|Goe (1) dn (48),
then
A Ay 2oy 4o’ (49)

(Proof): Since G (f,h)=\0,0,G(0,f,0,h), where G(f, h) is

the FT of g(x, y), if we set f; = oyf and h; = oA, then dfdh =
dfidhi/|cy 05| and (47) becomes

N =3[ [ (P17 +aB ) G(Ah) dhdh . (50)
where p = 1/0y and ¢ = 1/03. Then since
(P17 +a’1)G(f .|
=(~|p|f +jlalh)G(f- (| p|.f — jla| )G (f.h) (51

1FT](-|pl/ + jlal) 6010 ] =Ulplg +la S s () (52
from Parseval’s Theorem of the 2-D FT:

[ ey axay =" [" |G(f.m)| dpan, (53)
if G(f, h) = FT[g(x, y)], (51) can be rewritten as
8 =] [ Ul 2 +|q|%]g(x,y)[—j|p|§ +|q|%]
g’ (x,y)dxdy . (54)
Furthermore, in (48),
(x> +3° g2 =(ix+r)g(xp)(~ix+y)g ®y) . (55

Therefore,

A2 A% =[G+ gy | [J|P|§+|Q| Lg(x,p)IF 5 (56)
Then, from Cauchy-Schwartz inequality,

Ll =[(7 g

e Flacenf 20l |7 g @) 172,
(58)

(57

(56) can be rewritten as:
Al AG >
2

1 R

5 <jxg,j|p|%g>+<yg,j|p|§g>+<jxg,lq|§g> +<yg,|q|§g>

é<jﬁgxg,jxg>+<jﬁgcg,yg>+<%gyg,jxg>+<0ﬁ§yg,yg>2~ (59

416

Note that (56) can also be expressed as

x ).

A2 A% =G = g )| 1L p) % - |‘I|%] g( (60)

From the similar process, we obtain

A A2
2
1/ o il 0 o) A1 0 o\ _ [ 0 0
2<ng,le| axg> <yg,1|p| axg> <ng,|q| ayg>+<yg,|q| ayg> +
2
1/ 4L o ive)_{ il L 1AL 5 0
2<]P ax(g.’,mg> <J\p\ axg,yg> <\q\ ayg,ng>+<\q\ ayg,yg> -
(61)
Adding (61) by (63) and using the fact that
o + o+ +[af’ > djarbterd]’ (62)
we obtain
A A2 > U e, oL g )+ (] p| L g, jxg ) +
4 ox Oox
2
<yg,|q|%g>+<lq|%g,yg> . (63)
Then,
<jxg,j|p|§g>+<j|p|a—ig,jxg>
=Iplfifix@[g(x,y)g*(x,y)]dxdy
=lol[” [xg x.y)g I Y (x y)dx}d
=—IPII_;I_m|g(x,y)| dxdy=—|p|- (64)
Similarly,
<yg,|q|ig> + <|q|ig,yg> =—|q|. (65)
oy oy
Therefore,
A A 2 (o]l =S or |+ o #

Lemmas 1 and 2 and Theorem 1 much simplify the deri-
vation of the uncertainty principle. From (29), (30), (34), (35),
(46), and (49),

AL 2+ P
Moreover, from (42) and (43)
|+ s’ =
max(\/(b” +by,) + (b, —by,)’ ,\/(b]l ~by,) +(b, +by,)’ ) . (67)
Thus, we obtain:

[Theorem 2] Uncertainty Principle of the 2-D AGFFT:

(66)

If Azx,y and AZM are the 2™ order moments of g(x, y) and
the 2-D AGFFT of g(x, y), as in (25) and (26), respectively,
then

A2 A2 >

X,y Tu,

lmax((bll +by,)" + (b, —by) (b, —

i by,) + (b, +b,,)). (68)
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IV. THE RELATED PRINCIPLES

[Remark 1] More generally, if G, ; . , @) and Gapcp)
(u, v) are the 2-D AGFFTs of g(x, y) with parameters {A;, By,
C,, Dy} and {A, B, C, D}, respectively, and

© 2
2 2 2
Aul.v. ='f_w(u1 +v; )|G(A1,B,,C],D])(u’v)| dudv ,

AL, = J.:U(uz + vz)|G(A,B‘C‘D)(u,v)|2 dudv , (69)
then
Az Az }‘max((%l""bz) +(q, - q21)23
(@1 =) +(an +42)"). (70)
P A B|[A, BT
Where{ Q}:{ }{ ! 1} , Q={qn qlz}- (71)
R S C DJC D, q 49»

This can be proven from the fact that G p.c.p)(#, v) is the 2-D
AGFFT of G ,(u,v) with parameters {P, Q, R, S}.

(4,,8,,C\,D

[Theorem 3] It is known that, for the 1-D FT, the 1-D Gaus-
sian function can satisfy the lower bound of inequality of the
uncertainty principle [1]. For the 2-D AGFFT, the chirp
multiplication and rotation of the 2-D Gaussian will satisfy
the lower bound of inequality of the uncertainty principle. If

-J 2 - 2
N

e—%((xcos&—y sin 9)2 [m|+(xsin 6+ ycos 9)2 "74‘)

, (72)
where p1, p,, and p; are defined in (14), 77, and 7, are calcu-

lated from (42) or (43), and & is determined from (44), then
the 2-D AGFFT of g(x, y) is

1 ?:(m(kl"’erkz"“V*ks'Vz)
- e
G(A,B,C,D) (u,v) =4(-7)" € X

_%((u cos¢+vsin¢)2 m|+(~usin ¢+vcos¢)2 ‘74‘)

, (73)
where ¢is calculated from (44). Then,
—Aiv—(1/1/|771|+1/1/|774)/2 (74)
A)zc,yALZ,,v = imax((bn +b,, )2 +(b, - 21)2,
(by, _bzz)2 +(by, + b21)2) . (75)

Thus, the function in (74) satisfies the lower bound of ine-
quality of the uncertainty principle for the 2-D AGFFT.

V. SOME IMPORTANT SPECIAL CASES

Since the 2-D AGFFT is the generalization of many opera-

tions, we can use (68) to find the uncertainty principle of

these operations.

[Corollary 1] Uncertainty Principle of the 2-D FRFT:
From (68) and (18), if

Ai,v = .[jo (u2 +v7 )|Gmﬁ(u,v)|2 dudv (76)
where G, (u, v) is the 2-D FRFT of g(x, ), as in (7), then
AP A2 >L (77)

X,y u,v

(\sma|+\smﬁ|)
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Moreover, when

\/_e 2 x? cota+ps-y° cotﬁ)e (78)

=(Isina|+]|sin B \)2 /4 is satisfied.

( ‘csca‘-#} ‘cscﬂ‘)

the equahty that A7 A} =

[Corollary 2] Uncertainty Principle of the 2-D LCT:
From (68) and (20), if

Ai,v = J:w (u2 + V2)|G(a,b,c,d,a, h ,q,dl)(“’v)r dudv , (79)
then
AL 2 (b1 +151) (80)
More, the equality is satisfied when
o E el YTy
g(x,y)=Vr'e [” 2h ]e 2l ‘), 81

[Corollary 3] Uncertainty Principle of the 2-D Fresnel
Transform:
A2 A?

X,y u,y

S 1222
5

24 (82)

=A%z /4x* is satisfied when

o)

The equality that A2 AZ

X, u,v
— A/ ’le /12

VL

e Az (83)

CONCLUSIONS

In this paper, we derived the uncertainty principle of the 2-
D AGFFT (See Theorem 2.) We also showed that the lower
bound can be achieved by the 2-D Gaussian function with
rotation and chirp multiplication (See Theorem 3.) The un-
certainty principle of the 2-D AGFFT would be very useful in
time-frequency analysis, developing sampling theory in 2-D
case, filter design, signal synthesis, and optics.
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