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Abstract—The function estimation in RKHS (Reproducing essentially certain Tikhonov type regularizations (Sese §)
Kernel Hilbert Space) from finite noisy samples is a typical i- in a different scenario), but not necessarily designeddase
conditioned inverse problem, which has been discussed mayn  qyisting techniques developed recently for finite dimenaio
based on infinite dimensional operator theoretic analysisln this . .
paper, we present equivalent finite dimensional reformulabns inverse problems, e.g., rEd_uced rank techniques [5]'_[@]' [
of the problem. Thanks to our reformulations, we can apply and L-curve method [8] which has been used extensively as
robust estimation techniques, e.g. the reduced-rank techques an effective tuning of Tikhonov type regularization paraene
and L-curve method for suitable Tikhonov type regularization, In this paper, we first remark that the optimal reconstrurctio
developed orlglna.lly for finite dimensional ill-conditioned inverse operator can be expressed equivalently in terms of finite
problems. Numerical examples show that the proposed estima dimensional matrix, from which we present an equivalent
tions using finite dimensional techniques achieve quite rakst ’ . U . A
performances in this seemingly infinite dimensional appliation. ~ finite dimensional matrix expression of the squared bias and

the variance achieved by any optimal reconstruction operat
. INTRODUCTION These reformulations tell us that if the samples are taken

The problem of estimating an unknown function with usso as for the kernels specified at corresponding samples to
of only finite noisy samples has been a central issue in appliee linearly independent, theptimal reconstruction operator
mathematical sciences and technologies, e.g. best apmexiproduces the unique unbiased estimator and does not have any
tion theory, machine learning, pattern recognition, sigaral chance to suppress further its variance caused esseriiially
image processing and communication systems. Many practioaise even in worst case scenario such that the Gram matrix
extensions of the so-calleghannon’s sampling theorem have is ill-conditioned. Unfortunately, such ways of samplinavk
been discussed on the stage of the RKHS (Reproducing Keratien been found in the most practical scenario where finite
Hilbert Space)[1] defined as the vector space of all bangamples are taken equidistantly but their interval is senall
limited functions. This setting is mathematically conwti than Nyquist rate for the band-limited type RKHS.
because the information on the function value at any spdcifie Fortunately, thanks to our finite dimensional reformuliasio
sampling point can be incorporated simply as a linear etyualdf the original inverse problem, even if the Gram matrix ks il
constraint in the space. Among many such studies, a milest@monditioned, we can apply many robust estimation techrsique
is found in the theory obptimal reconstruction operator [2], developed originally for finite dimensional ill-conditied in-
where the general solution for a certain operator optiriinat verse problems. We propose to apply a pair of promising
problem is completely solved in more general scenarios. téfichniques of which the effectiveness has been confirmed in
we restrict the discussion in [2] to a simpler scenario, thextensive applications. One is a reduced-rank estimabfn [
theory tells us valuable information for our problem. Fof6], [7] and the other is a well-knowr.-curve method [8]
example, an elegant operator theoretic analysis in [2] shofer suitable Tikhonov type regularization. Numerical exdes
that the optimal reconstruction operators offer not onlg ttshow that the proposed estimations using finite dimensional
best approximatiorf* of f among all possible approximationstechniques achieve quite robust performances in this segyni
through all linear operators in noise free situation bub algnfinite dimensional application.
pﬁers the best Iinear unbiased eaimat.e (BLUE) of f* even Il. PRELIMINARIES
if the samples are influenced by noise (See also [3]). On the _ .
other hand, the problem of estimating an unknown functidh Reproducing Kernel Hilbert Space
from finite noisy samples is obviously a typical constrained Let " be a real Hilbert space of a class of real valued
linear inverse problems for which the BLUE often becomdynctions defined orD C R". If there is a functionk :
sensitive against noise due to certain ill-conditionecurest P x D — R such that
of the problems. So far theptimal reconstruction operator 1) vx e D, K(-,x) € Hk
and its several extensions have been discussed througiteinfin 2) Vx € D,Vf € Hy, f(%) = (f(-), K(-,%)) .
dimensional operator theoretic analysis. Although sonré vawhere (-, -),,  stands for the inner product of tik , the
ations, e.g. [3], of the optimal reconstruction operatopkay Hilbert spaceH is called aReproducing Kernel Hilbert
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Space (RKHS) with its Reproducing Kernel K (See [1] for onto the range subspad@(A*) of the adjoint operatord*

mathematical properties of the RKHS). of the sampling operatod. An elegant operator theoretic
Example 1: (Band-limited type reproducing kernel [9])  analysis in [2] shows that the subspaR€A*) is the largest
The closed subspace one among all possible range spaces achieved by any linear

- 12 operatorX : RY — Hp, i.e, R(XA) C R(A*) = R(XoptA),
Hie = {f € L*(=00,00) | henceX,:(y) = Pr(a-)(f) is the best approximation of

/.oo Ft)eitdt = 0, Vo ¢ [Q,Q]} among all possible approximations through all linear opeea
s in noise free situation.

of the Hilbert space.?(—c0,oc) is an RKHS with its repro- |||, A RoBUST FUNCTION ESTIMATION ViA FINITE
ducing kernel DIMENSIONAL REFORMULATION
Kz, #) = sin Q(z - x), (2,4 €R). ) A. Limitation of Optimal Reconstruction Operator
m(x — 1) Note that the function estimation problem touched in the

Any function f € Hyge is said to be band-limited with previous section allows us to use only finite information
bandwidthQ) because its Fourier transform ¢fis vanished to determine a point in the infinite dimensional spdtg .
outside the interval]—, 2]. The RKHSH « has been the This simple observation suggests that we can reformulate th
main stage of the Shannon’s sampling theorem and its magstimation problem in terms of finite dimensional vectorcgpa
extensions. A simplest as well as most typical set of sampl&S.

is equidistant point sampling at higher than Nyquist rate,i  We start our discussion with the following simple observa-

tion:
xk:zlJr(k—l)é (kGN),

AY) = =8 K( - K .
where0 < § < «/Q. In this case, the corresponding Gram R(A) = M= span(K (-, x1), -+, K, x0)) C Hie

matrix G = [K“(x;,x;)] € R*" is positive definite but which is confirmed simply by
becomes very ill-conditioned for largebecause its singular

14
valiesor > 2 > - > o> 0) folow C0) = G = (A(). e = D f(x) = 3 ol fo K ()b
7ire , wherep andy do not change significantly. i=1 ;

i=1
¢
B. An Optimal Reconstruction Operator as a Function Esti- _ K( — (f A*
mation from Noisy Samples <f’ ; K (@) y (f; A" () me
Given finite nolsy samplesxs,gs) [ ¢ =1, , £} C R™x (Vf € Hie, Yo = (au, .., n)' € RY).

R observed as
From this observation, we see that the optimal linear oper-

y = (yey) = (), fx0)) A0 (2) ator X,,; : R — Hy in the previous section satisfies
A(f) = (f(x1),..., f(x0)" andn = (ny,...,n,)(3) ,
where f is the unknown function to be estimated, is a XoptA(f) = Pm(f) = ZﬂiK('vxi) €M,
zero-mean additive noise and the operatorHx — R’ is a i=1
linear operator called theampling operator defined as in (3). for someg := (Br,...,B:)" € RY, where the orthogonal pro-

Our goal is to give a good estimate of the functifre Hx  jection theorem in Hilbert space ensures the unique existen
from the noisy sample dat@(x;, ;) | i = 1,---,¢}. This of p, (f) as the best approximation gf in M hence the
problem has been studied extensively as a valuable prhctiggistence of such 8 (Note: the uniqueness ¢f is guaranteed
extension of so called th&hannon's sampling theorem. A only when{K (-, x;)}_, are linearly independent). Moreover,
milestone along this direction is found in the theoryopfimal  py ysing the well-known factt = R(A*)L = N(A), we

reconstruction operator [2], where the general solution for acan also observe that the model (2) is reduced to
certain operator optimization problem is explicitly prete

in more general scenarios. If we restrict the discussion in ¥ = A(f) +n=A(Pu(f)+ Py (f)) +n
[2] to a special caseH; = Hy = Hx and A, = I (see ¢
[2] for the definitions of Hy, H» and A;), the theory is = APu()+n=> BAK(x)) +n
applicable to our problem, i.e., function estimation in REKH i=1

with use of noisy finite samples. In this setting, Theorem 1 ¢ .

in [2] guarantees the existence of an optimal linear operato = Zﬂi (K(x1,%:), .., K(xe,%3)) + 0, (4)
Xopt : R — Hy that not only achieves(, ;4 = Pr(a-) i=1

but also guarantees th&,,.(y) is the best linear unbiasedwhich suggests thay does not contain any effective infor-
estimate (called also the minimum variance unbiased lineaation for the componer®, . (f). The componenP, . (f)
estimate) of f* := Pr4-)(f) (See also [3] on this inter- can be estimated only with some additional a priori knowéedg
pretation), wherePr4-) denotes the orthogonal projectioron f not through simple sampling at; (i = 1,2,...,/).
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B. Finite Dimensional Reformulation of An Optimal Recon-
struction Operator

Assume the standard  situation: R(A) =
{(F@),. f@) eR | ferk) = R
this case, any linear operatoX R —  Hg
satisfying XA = Pgs-) has its own range space
R(X) = R(XA) = R&PR(A*)) = R(A*) = M,

hence there exist® := (¢1,...,¢¢)" € RY such that

¢
X(y) = ZK( z) ¢ty (y € RY).

This fact shows clearly that any design problem for the operavhereU = (u,, - - -

C. Robust Function Estimation by Finite Dimensional Tech-
niques

In this subsections, we propose a pair of robust function
estimators by applying finite dimensional techniques [6], [
[7], [8] applicable to estimation ofi in (4) which is usually
ill-conditioned inverse problems.

Assume that the noise € R’ in (2) is a zero mean random
vector with its positive definite covariance mat#(nn’) =

02Q € R*!, Let the singular valj(Ljae) decomposition (SVD) of
ran

G:
G=UsV'= > ouv! ()
1=1
Jg) € RV = (v, -+ vy) € RS

tor X is equivalent to that for the matrik without loss of any are orthogonal matrices ard < R contains on its main

generality. Moreover, since the best possible approxomaif
f by linear operator under noise free situation is

Y4
Pum(f) = _Z@-K(-,mn,

our best achievable goal is the minimization of

Jmse(X) = F (X(y) - PM (f))2

14
= E|Y K(.x)dly— Pu(f)
=1

= Jse(®).

If we use the Gram matrig := [K (x;, ;)] € R“*¢, we have
alternative expression:

jmse(q)) = {((I)G - I)ﬁ}t G(@G - I)ﬁ
+ZZK($iij)¢fE(nnt)¢j7

diagonal the singular values; > oy > -+ > Opank(q) Of
G and 0’s elsewhere. We also assume that these pieces of
information are available to estimaftg

1) Reduced-Rank Techniques: In this simple scenario, we
propose to use, as a simplest example of MV-PURE estimator
[71,

;= V,VHGG)TIGIQT, (6)
where r < rank(G),V, = (vi,---,V,) and V =
(V1,---,v¢) is given by the SVDG := Q~'/2G = UxVY,
and approximatg3 by ®..(y). This estimator was proposed
in [6] as a direct generalization of Marquardt’s reduceakra
estimator [5]. Obviously,®, satisfiesrank(®,) < r and
can eliminate the influence of very small singular values
or+1, - ,0¢. We will present a simple criterion for selection
of r in Section IV (8).

2) L-curve method for Tikhonov regularization: A
Tikhonov type regularization of the optimal reconstruntap-
erator has been proposed for example in [3], which inheyentl

where the 1st term expresses the squared bias of the estinfdf@duces bias to make the operator to be more robust dgains

X (y) of Pp(f), and the 2nd term expresses its variance.
nally, we observe that the design of aptimal reconstruction

gioise. However the design of the regularization parameter i

[3] is not made based on well-known techniques é.gurve

operator [2] is reduced to the finite dimensional constrainedi€thod [8] which has been widely used mainly for finite

optimization problem (on the matrik):

minimize i, S0 K (@, @;)¢LE(nnt)g;
subject to  {(®G — I8} G(®G — 1)3 = 0.

Remark that under the most typical situation whéfés a

positive definite matrix (See Example 1), we have only one

dimensional inverse problems. We propose a Tikhonov type
regularization withL-curve method for the estimation Bf By
using the SVD ofG (5), Tikhonov's regularization estimator

®,, is derived as follows:
rank(G)

> vt
K2 L
oZ+a

i=1

P, =

()

choice® = G™! in order to satisfy the unbiasedness. In thighe parameten is determined by the algorithm shown in [10].

case, theoptimal reconstruction operator offers G—1y as the
estimate ofg, i.e.,

14 14
> OK(, z)el) Gy ~ Y K ®)Bi = Prlf),

=1 =1

wheree!” denotes the-th vector of the canonical basis of$in¢(*)

R
Unfortunately, as seen in the Example 1, the madrixs
often very ill-conditioned, hence theptimal reconstruction

operator determined with® = G~ in this case becomes veryby

sensitive against noise.

IV. NUMERICAL EXAMPLES

In this section, we present numerical examples for the
RKHS with its kernel K27 (x, %) = % in Example

1. The unknown function to be estimated is given fifx) =
= ST Noisy samples are given equidistantly as

(wiys = f@) +mi) @ = =10+ i ((=0,....0-1)}
where n; is white Gaussian noise of which the covariance

matrix is o21,. The accuracy of the estimaﬁe is measured

Hf_meax = |f($)_f($)|

max
z€[—10,10]
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Averaged over 100 realizations of noise.

1000

10

17 =10 = {/10|f(x)—f($)|2dx}1/2

We compared the performances of the function estimators i}
based on finite dimensional estimation techniques ok

R’ in llI-A. Fig.1, Fi i i i : BLUE
. Fig.1, Fig.2 and Fig.3 depict the experimental _&
result. 'Reduced-Rank’ denotes the Reduced-Rank Estimato™ |
(6), where rank- is chosen by following rule: J\ L-curve
JoZ & 102 -
zaurgmax,_(M < 0.8) (8) A Reduced-Rank-opt

U% + .+ 05
' L-curve’ uses the Tikhonov’s regularization method (7) with
its regularization parameter designed byurve method [10]. . . . . . . . . .
'BLUE’ denotes the function estimated through BLUE for coo R R s s

B € R’. Fig.1 and Fig.2 demonstrate the effectiveness of the Number of sampled points

proposed techniques for a pair of criteria in particulari&wge

number of samples are used. We also demonstrate the pbtefiita3.o> = 0.01. 'Reduced-Rank-opt’ uses Reduced-Rank Estimator, where
of the Reduced-Rank technique in Fig.3 by showing the iddfk 'S chosen optimally among all possible ranks.
performance achievable with globally optimal rank.

----------------

Averaged over 100 realizations of noise. ACKNOWLEDGMENT
o - o, The authors would like to express their deep gratitude to
SS Prof.K. Sakaniwa of the Tokyo Institute of Technology for

helpful discussions.

=
1)
3

BLUE REFERENCES

[1] N. Aronszajn, “Theory of Reproducing Kernelslransactions of the
American Mathematical Society vol.68, pp. 337-404, 1950.

[2] H.Ogawa, and A.Hirabayashi, “Sampling Theorem with i@®pim

L-curve Noise SuppressionSampling Theory in Sgnal and Image Processing
vol.6, No.2, pp. 167-184,May 2007.

[3] A.Tanaka, M. Sugiyama, H.Imai, M. Kudo, and M. Miyakostodel
Selection Using a Class of Kernels with an Invariant Métridoint
IAPR International Workshops on Syntactical and Sructural Pattern
Recognition and Statistical Pattern Recognition Hong Kong,China, Aug.

010 10 20 30 40 50 60 70 1;0 9;0 100 [4] éogG d H O P t ) P . t Flt fm'ag d S |

. .Oja, and H. Ogawa, “Parametric Projection Filter e and Signal
Number of sampled points Restoration”| EEE Trans. on Acoustics, Speech and Signal Processing
ASSP-34 pp.1643-1653, 1986.

[5] D. W. Marquardt, “Generalized inverses, ridge regmssbiased linear
estimation, and nonlinear estimationfechnometrics, vol.12, pp.591-
612, 1970.

[6] J.S. Chipman, “Linear restrictions, rank reductiond &msed estimation
in linear regression,Linear Algebra Appl., vol.289, pp.55-74, 1999.

[7] T.Piotrowski, and I. Yamada, “MV-PURE Estimator: Minirm-Variance
Pseudo-Unbiased Reduced-Rank Estimator: for Linearlys€aimed lI-
Conditioned Inverse ProblemdEEE Trans. on Sgnal Process, vol.56,

BLUE pp.3408-3423, Aug. 2008.

oF 1 [8] P.C.Hansen, “Analysis of Discrete lll-Posed ProblemsMeans of the

L-Curve” SAM Rev, vol.34,Issue4,pp.561-580,Dec. 1992.

D. Slepian, “Prolate spheroidal wave functions, Fouraalysis and

uncertainty-V:the discrete cas®ell Syst. Tech.J vol.57 pp.1371-1430,

1978.

[10] P.C.Hansen, Regularization Tools Version3.1 (for MLAB Ver-

sion 6.0.) [Online]. Available: http://www2.imm.dtu.gi¢h/Regutools/
Software.zip

=
1S5}

Reduced-Ran

1F = Fllmax

Fig. 1.0 = 0.01

Averaged over 100 realizations of noise.

al H
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