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Abstract—This paper present a novel content-based image
authentication framework which embeds the semi-fragile image
feature into the host image based on wavelet transform. In this
framework, two features of a target image from the low
frequency domain to generate two watermarks: Zernike
moments for classifying of the intentional content modification
and Sobel edge features for indicating the modified location. In
particular, we design a systematic method for automatic order
selection of Zernike moments and in order to tell if the
processing on the image is malicious or not. We also propose a
weighted Euclidean distance by a reconstruction process. An
important advantage of our approach is that it can tolerate
compression and noise to a certain extent while rejecting
common attack of the image like rotation. Experimental results
show that the framework can locate the malicious tampering for
the resolution of a 8x8 block. Also, it is robust to content
preserved processing, such as JPEG compression Q≧30 and
Gaussian noise variance ≦20.

1. INTRODUCTION

With the rapid progress of multimedia technologies, any
people can perfectly modify digital image using widely
available editing software. The authentication of digital image
content is necessary in real world. However, the
authentication of images and multimedia content in general
differs from the traditional problems of authentication in
cryptography. Digital watermarking is an approach by adding
a signal to a digital content to ensure the authenticity. It has
become a very active research field and been widely accepted
as a promising technique for multimedia security.

According to embedding purposes, watermarks can have
two types: robust and fragile watermarks. Robust watermarks
are designed to withstand arbitrarily malicious attacks, such
as image scaling bending, cropping, and lossy compression.
They are usually used for copyright protection to declare the
rightful ownership. On the contrary, for the purpose of image
authentication, fragile watermarks are adopted and designed
to detect any unauthorized modification. However, in most
multimedia applications, minor data modifications are
acceptable as long as the content is authentic. The semi-
fragile watermark is developed and used in content

authentication. Semi-fragile watermarking has the
characteristics of both robust and fragile watermarking. It can
tolerate some normal signal processing such as JPEG
compression, filtering etc, at the same time it can inspect
whether original image is tampered and decide the tampered
area.

A typical approach of semi-fragile watermarking based
authentication of an image can be stated as below:
Step 1: The image feature is extracted from the original image.
Step 2: Quantized the image feature.
Step 3: The quantized feature is embedded as a message into
the image.
During authenticity verification, the message is detected using
the watermarking detector, and the image feature is extracted
from the watermarked image. A typical authenticity
verification is based on the comparison between a preset
threshold and the distance of the extracted features and the
detected watermark.

There are many existing private schemes for semi-fragile
watermarking. Some of the previous techniques [1] [2]
focused on detecting whether an image was tampered with or
not. However, they did not clearly specify how and where the
image was changed. Zhou et.al in [3] propose a semi-fragile
watermark scheme which extracts a signature from the
original image and inserts this signature into the discrete
wavelet transform coefficients. However, the signature itself
is not robust to the normal image processing. The false alarm
rate is high and the robustness to JPEG is Q=60. [4] based on
an important property of JPEG compression and present a
semi-fragile watermarking scheme which tolerates JPEG
compression to a pre-determined lowest quality factor, and
rejects all other malicious manipulations, either in spatial
domain or in transform domain. However, it needs to pre-
determine quality factor and to extend applicability of the
proposed scheme to JPEG2000 standard. Kang and Park in [5]
propose a semi-fragile watermarking algorithm using JND
(just Noticeable Differences). It improved the performance of
Delp’s method [6], which is a representative semi-fragile
watermarking. The algorithm can tell only the attack is
malicious or non-malicious, but it cannot tell the position of
the malicious processing.
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In this paper, we propose a content-based semi-fragile
watermarking algorithm in DWT domain. It generates two
watermarks by extracting the image features from the low
frequency domain: Zernike moments and Sobel edge for
determining the intentional content modification and
indicating the modified location.

2. Related Works

The success of the semi-fragile watermark system is closely
related to how to extract the adequate image features. In this
way, the most important issue in the semi-fragile watermark is
the selection of appropriate embedded features that are
invariant to all kinds of common image processing. There are
different features such as (1) image moments features (2)
image edge features, and (3) transform domain features can be
used to identify the image content. They all have different
advantages and limitations. In this paper we choose the
moment invariants methods based on Zernike transform to
generate the primary image features and at the same time
extract the Sobel edge features as our secondary image
features to achieve localization capability.

Zernike [8] first introduced a set of complex polynomials
 nmV which form a complete orthogonal set over the unit

disk of 2 2 1x y  in polar coordinates. The form of the
polynomials is defined as:
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where n is positive integer or zero; m is integers subject to

constraints n m is even, and m n ; is the length of

the vector from the origin to the pixel ( , )x y ; is the angle
between the vector  and x axis in counterclockwise
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The Zernike moment of order n with repetition m for function
( , )p x y is defined as:
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To compute the Zernike moment of a digital image, we just
need to change the integrals with summations:
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Suppose we know all Zernike moments nmA of ( , )p x y up to

order N , we can reconstruct the image by:
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Zernike moments are less sensitive to noise and invariant to
linear transformations. They can be effectively used for image
reconstruction.

3. THE PROPOSED METHOD

3.1 Feature extraction
Feature extraction is the most important step in the

proposed watermarking scheme. In order to detect watermarks
without access to the original image, we look for feature
points that are perceptually significant and can thus resist
various types of common signal processing and geometric
distortions. We know the orthogonal moments based on
Zernike polynomials can extract a set of features in which
every feature can represent unique information about an
image. In terms of feature representation and sensitivity to
noise, Zernike moments have better performance compared to
the other moments. In addition, these moment functions are
defined in polar coordinates. Even though they are not
invariant with respect to scale and translation, these properties
can be achieved using the methods proposed by Khotanzad
[9] or Chong [10]. Zernike moment has been used as shape
descriptor in trademark and logo retrieval systems due to its
many desirable properties, such as robustness to noise or
small variance, and invariant characteristics. The image
features are in complex form and are represented by their
phase and magnitude.

In this paper, Zernike moment magnitudes (ZMMs) [11]
are used as a feature set, we firstly apply 3-level DWT to the
M N host image, get 10 subbands, LL3, HL3, LH3, HH3,
HL2, LH2, HH2, HL1, LH1, HH1. The low frequency subband,
LL3 subband is a lowpass approximation of the original image,
we select this subband to compute the ZMMs. Additionally,
we also adopt a Sobel edge detection on the LL3 component
to get 1 1

8 8
M N binary Sobel edge map WE, it has good

performance in differentiating malicious attack from non-
malicious attack and locating the malicious attacked area
correctly. We can use WE to help us know which part of the
image is maliciously attacked. Consequently, ZMMs and WE
are used as the embedded watermark .

3.2 Number of features selection & Weighting Mechanism
We know how to use Zernike moments to reconstruct the

original image. The difference between an image and its
reconstructed version from a finite set of its moments is a
good measure of the image representation ability of the
considered set of moments. The ease of image reconstruction
from Zernike moments makes it practical to base the feature
selection process on such a measure. The idea is that n, the
maximum order, is one which can generate a reconstructed
image which is similar to the original in the sense of a defined
threshold.
Let jI denote the image reconstructed by using Zernike

moments of order 0 through j extracted from the original
image I , and the Euclidean distance between the two
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images ( , )jE I I is employed to quantify this difference, that

is a simple measure of image representation ability

between jI and the original image I . If ( , )jE I I is small

enough, then it can be concluded that enough information is
extracted and no additional order of moments needs to be
computed, i.e., order=j. Here we can use a threshold αto
facilitate our judgment. Obviously, the smaller the αis, the
higher the needed order is. Based on different applications, by
presetting the α, the proposed scheme can embed ZMMs of
various orders. When a high level of robustness is specified,
we should need a smallerαthat it will embed more watermark
bits. Meanwhile, it also may affect the quality of watermarked
image degrade. In other words, with a larger α, fewer
watermark bits will be embedded and a higher fidelity of the
watermarked image will be achieved. However, this will
decrease the performance of semi-fragile feature, because of
less image information embedded.

The above procedure not only decides the highest order
needed, but also provides a way to treat features each order
differently. Furthermore, we hope to understand how
important the ZMMs of different orders are on our semi-
fragile watermark scheme. We can get the important degree of
ZMMs by calculating its contribution and use it to weight the
corresponding features. The contribution of jth order moments
to the reconstruction process can be measured by computing

how much closer
jI is to original I compared to 1jI  .The

contribution of the jth order moments denoted by ( )D j , is
computed as

1( ) ( , ) ( , )j jD j E I I E I I  .

A large positive value of ( )D j indicates that the jth order
moments do capture a lot of important information about the
shape. On the other hand, a small positive or a
negative ( )D j is an indication that the corresponding moments
focus on unimportant aspects of the image under study.
Consequently, it distinctly weight the important degree of
ZMMs of various orders. Thus, we can introduce a weighting
mechanism based on their corresponding ( )D j s, Euclidean
distance is again employed to carry out this task. That is, after
the related order ZMMs have been extracted, we will multiply
different weights to these order ZMMs to compute a weight
Euclidean distance during authentication stage. Finally, we
obtain the distance as a judge factor to determine whether the
image was suffered by malicious attack. The weight of order j
is defined as:

( ) (min)
(max) (min)j

D j D
w

D D





, 1,2,...,j order

(max)D : The maximal D(j)
(min)D : The minimal D(j)

The formula scale the jw into range of [0, 1] first, and utilize

the value as order weight to compute the weighted Euclidean

distance. Note that if ( )D j is negative, jw is not set to zero,

and the weight of the zeroth order and first order moments are
set to 0.5 since there is no previous image for comparison.
These above processes will enhance the precision of the
formula because it doesn’t omit any available information.
We get the weighted Euclidean distance shown below:

2
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0
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Table 1 shows some statistics including
corresponding ( , )jE I I


, ( )D j , and jw for reconstructed

images in Fig.1 when threshold α=21000, as aforementioned
we know we can adjust α flexibly by a variety of different 
applications, here we can see the order is 11. Table 2 lists the
numbers of ZMMs from order 0 to order 11. Therefore, in this
case, we have to compute 42 ZMMs (normalized to [0, 1]) to
get the features of host image. From Wj value we can get the
weighted Euclidean distance, the distance of modulated image
will be a judge factor to decide whether this image is suffered
from malicious tampering or not.

Fig.1. The reconstructed image of letter D. From top left to
right, reconstructed image with up to third order moment
through to twelfth order moment.

Table1. Euclidean distance and its corresponding weight for
reconstructed images shown in Fig.1.

Table 2. List of zernike moments and their corresponding
number of features from order zero to order eleven.
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3.3 Feature quantization
Up to now, the discussion has centered on how to select

the right order of Zernike moments and its corresponding
feature weights. Besides, feature vectors usually exist in a
very high dimensional space. Due to this high dimensionality,
it has enabled us to use so many bits to embed these feature
vectors as our watermark. Moreover, these bits will be
extracted to calculate the distance from the feature vectors of
the watermarked image, therefore we need to retain only finite
meaningful bits. In other words, when ZMMs are embedded
as watermark, they need to be quantized.
In our feature quantization work, we first normalized ZMMs
to a real number less than 1, and quantized to 16 bits. Table 3
shows the semi-fragile characteristics of the ZMMs of LL3
subband, where Q of JPEG compression represents
compression quality factor and the variance of Gaussian noise
denotes different strength of additive noise attack. In
additional, for simplicity, the difference of ZMMs of LL3
subband between the original image and the manipulated
image is defined by the square of Euclidean distance.
In the JPEG compression, because the image feature is
extracted from low-frequency, the robustness is required.
However, even though the damage which JPEG attacked is
slight, but we can see that the distances of ZMMs between
letter D and Lena caused by JPEG compression are quite
different, and we conjecture that Lena contains much
significant texture and than it has considerably higher quality
than simple logo figure such as letter D during JPEG
compression. In other words, the resistance against JPEG
compression closely related to the frequency distribution of
this image. Therefore, we will observe this part of noise attack,
and learn from the noise attack caused by the destruction and
image itself is not particularly relevant. More importantly, the
distances of Gaussian Noise attack (variance above 30) are
much higher than the other compression and noise attacks
without respect to Lena or letter D. We will be able to make
use of the distortion Gaussian noise attack caused (variance
above 30) to be the threshold to help us judge whether this
image of malicious tampering. That is to say, we can use this

difference to classify the manipulations as non-malicious or
malicious.

Table 3. The semi-fragile characteristics of ZMMs
of LL3 subband.

In our experiments and analysis, the goal is to find the
minimum of the most significant bits of each moment that are
enough to make correct decision. Our experiments show that
difference to classify the manipulations as non-malicious or
malicious usually is about 10-4. That is to say, we can use the
value to decide which bits are discard.

Table 4. The contributions of different bits of ZMMs
(normalized to 0~1, and quantized to 16 bits.).

From Table 4 we got the contributions of different bits of
ZMMs, and we found that when the bit is 9, the contributions
are -182 42 = 0.00016 . However, the contributions of the 10
bits are -20 -42 42 = 0.00004 < 10 . In conclusion, before
embedding ZMMs as watermark, we first quantize the ZMMs
to most significant 10 bits. The feature quantization process
will not change the performance of our scheme instead of
increasing its watermark payload. It will improve the
robustness and the quality of the watermarked image.

3.4 Watermark embedding
In order to protect the original image, our watermark
extraction process is designed in a blind-detection manner.
Blind detection means the original image is not required for
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watermark extraction. Among the existing blind
watermarking schemes, the quantization-based watermarking
approach is the simplest one that achieves the goal.
As proposed in [12], the authors embedded a binary
watermark in the wavelet transform domain. In this method,
the insertion was done by the even or odd quantization of
selected wavelet coefficients. In other words, a watermark
value is encoded by modulating a selected wavelet coefficient
into a quantized interval. The advantages of this approach are
clear and significant, from the observation that subtle
modifications in the wavelet domains do not change the
image significantly, while minor changes in the image alter
the coefficients locally, but noticeably. This characteristic is a
good premise for watermark invisibility and fragility.
Moreover, quantization-based watermarking is the simplest
protocol because it requires the least storage of information.
Embedding the watermarks ZMMs and WE in the middle
frequency components of wavelet decomposition HL2, LH2
contributes to both appropriated invisibility and robustness
synchronously.

The quantization-based watermarking approach divides a real
number axis in the wavelet domain into intervals with equal
size at each scale and assigns watermark symbols to each
interval periodically. As shown in Assume that x is a wavelet
coefficient, and Q is the size of a quantization interval, the
watermark symbol, which is either 0 or 1, is determined by a
quantization function Quan(x, Q), where

( , )
0 Q ( 1)Q 0 , 2 , 4 , ...

1 Q ( 1)Q 1 , 3 , 5 , ...{x Q
if t x t fo r t

if t x t for t
Q u an

     

     


Let w denote the target watermark value that is to be encoded
for a wavelet coefficient x. The watermark bit w is embedded
by modifying the wavelet coefficient x so that Quan(x, Q) is
equal to w. The coefficient is modified to the nearest 0 bin
(the double arrowhead) or 1 bin (the single arrowhead)
according to w, and the bins of 1 and 0 locate in the middle of
the quantization step Q. Specifically, the wavelet coefficient x
is updated to x* by
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where is the floor operator and x* is the expected updated

wavelet coefficient. When all watermark bits of ZMMs and
WE are separately embedded into HL2, LH2 subbands by
quantization-based method, IDWT using updated wavelet
coefficients is employed to produce the watermarked image.
Fig.2 shows an overview of our watermarking process.

Fig.2. Overview of the watermark embedding process

Fig.3. Overview of the authentication process.

3.5 Watermark retrieval
The framework of the watermark retrieval process is almost
the same as that of the watermark embedding process, except
that the order and weight of ZMMs decision is discarded. The
selected order and corresponding weight of Zernike moments,
threshold, and the quantization step Q are conveyed to the
watermark detector as side information. First, take a three-
level wavelet decomposition on M N watermarked image I.
Next, the coefficients in the two subbands HL, LH of the 2th
level are ready to be extracted as ZMMs watermark and Sobel
edge watermark. The quantization process of all the wavelet
coefficients in HL2 and LH2 is recalculated and the watermark
bit is extracted by *( , )w Quan x Q .

3.6 Authenticity verification & Localization capability
To authenticate the received image, the extracted watermarks

MW and EW are compared with the generated image

features MW and EW , respectively. If all the extracted image
features match the original ones, the image is claimed
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authentic; otherwise, it may be tampered. An authentication
decision is made after the weighted Euclidean distance
comparison by moment feature with a received threshold, and
the purpose of the edge feature comparison is help us localize
the tampered areas. In order to achieve the capability of
localizing tampered regions, many existing watermarking
schemes embed the watermark in a block-based way. The
image is divided into blocks and the watermark information is
embedded into every block. The block content authentication
is done by verifying whether the watermark can be
successfully extracted from the block. In our block-based
methods, the content of the image is monitored by the edge
features embedded in the wavelet domain. Thanks to the
spatial-frequency localization of the wavelet transform, every
position is verified by the edge watermark bit embedded in
the corresponding wavelet coefficient. Therefore, we will
achieve the capability of localizing tampered regions. The
authentication matrix DE is defined to estimate the difference

between EW and
EW by

E E ED W W  . Based on the fact
that the tampering commonly occurs in a continuous area of
the image in the practical applications, only the region with
the high density of the unverified coefficients should be the
actual manipulation. In consequence, we define those isolated
unverified coefficients as noise dots. Other continuous
unverified coefficients, which are mapped back to adjacent
positions, are identified as the actually tampered ones. An
illustration of the authentication process is given in Figure 3.

4. EXPERIMENTAL RESULTS
In the final section, the power of the proposed semi-fragile
watermarking scheme is experimentally tested and the results
are reported. Furthermore, the performance of the method is
compared to the other popular algorithms.
4.1 The order and weight of ZMMs decision
The proposed scheme is tested with a variety of images, but
here we only give the results of using the gray image Lena
and Baboon (256×256) for example. We choose the judge
factor for image authentication is 2, and quantization step
Q=6 in the watermark embedding. First, Table 5 and Table 6
show the D(i) and its corresponding weights for Lena and
Baboon. Again note that the weights of zeroth order and first
order moments are set to 0.5 since there is no previous order.
The information can help us embed watermark and it will be
transmitted to the receiver.

4.2 Quality of watermarked image
In the proposed authentication scheme, the image distortion is
caused by the wavelet coefficients modification in the
watermark embedding process. The quality metric is based on
PSNR (Peak Signal to Noise Ratio). The PSNR of the
watermarked image with different Q is plotted in Figure 4.
Obviously, the quantization step Q used in watermark
embedding will affect how much the quality of the
watermarked image degrades. A larger quantization step will
incur more modification to the wavelet coefficients,
consequently resulting in more degradation of the
watermarked image. However, it better ensure the correctness

of watermark. The original and watermarked images are
shown in Fig.5. Fig.5 (a) is the original images, the rest are
the watermarked images with quantization step Q =6, 8, 12.
We can see that the quality degradation is acceptable.

4.3 The robustness performance of the semi-fragile
watermark

Next, we will test the authentication for incidental
distortion and content modification. The embedded ZMMs
watermark was extracted from a watermarked image, and the
weighted Euclidean distance were used to assure the
authentication of the received image. In the part of incidental
distortion, we consider using JPEG compression and Gaussian
noise as the possible distortion during image processing or
network transmission, additionally we hope the scheme can
be robust to rotation. In the content modification, four sets of
tests in Fig.6 were performed to assess the algorithm. Fig.6
(a) is to remove the mirror image of the watermarked image,
Fig.6 (b) adds a flower on her hat in Fig.6 (a), Fig.6 (c) and
Fig.6 (d) adds a tag on upper left and lower left corner.

Finally, the experimental results are shown in Table 7. It
shows the common processing image after JPEG compression
with a quality factor of 80 to 30, Gaussian noise with variance
of 3, 10, 30 and rotation image. The decision threshold was
set at 2. It can be seen that the proposed watermarking
algorithm is robust to common image processing. In other
words, JPEG30-100, medium noise and rotation attack can be
classified correctly as non-malicious processions, and the
other images that suffered content modification are
interpreted as a malicious attack. Fig.7 shows the location of
different content modification in the original image and the
authentication results show that localization capability can be
clearly achieved by our system.

4.4 Comparison
The proposed watermarking algorithm is compared with two
other semi-fragile watermarking with tampering localization
capability:
Algorithm 1: Image Authentication Using Content Based
Watermark [11]
Algorithm 2: Using two semi-fragile watermark for image
authentication [12]
The comparative results are list in Table 8. First, we observe
the experimental results of algorithm1. Because the embedded
image feature is also Zernike moment that it makes the
scheme can resist against rotation. However, the algorithm
only embed the most significant 4 bits of each moment as
watermark, and it will increase in the quality of the images
but decrease the robustness of JPEG compression and
Gaussian noise. Algorithm2 embedded edge feature and its
hash version, even though it has a good semi-fragile
capability, but it still need to make the watermark robust to
rotation. Also, the scheme embedded a few more watermark
bits that it degraded the quality of watermarked image.

It is obvious that the proposed watermarking algorithm has
better robustness performance of the semi-fragile watermark,

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009



and from PSNR values we know the watermark is almost
imperceptible. Besides, the unit of the detection is 8x8
compared with the algorithm 1 whose unit of detection 16x16
block. Our system can locate the malicious processing more
accurately .

5. CONCLUSION
We propose a content based watermarking scheme to detect

and localize tampered regions in images. It significantly
improves the robustness performance of the semi-fragile
watermarking that accepts JPEG compression, additive noise
and rotation attack on the watermarked image, while rejects
malicious manipulations such as adding and removing objects
in the watermarked image. Especially, the use of two
watermarks based on image content can locate the malicious
tamper locally and provides very good classification of
malicious and incidental tampering. Experimental results
show that this scheme has superior performance over the
existing authentication scheme, offer better classification of
intentional content modification and higher detection
resolution. Therefore, the proposed semi-fragile watermarking
algorithm is practicable for image authentication.
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Table5. Order information and its corresponding weights for
Lena256x256.

Table 6. Order information and its corresponding weights for
Baboon 256x256.

Fig.4. Image quality with different quantization step.
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Fig. 5. Demonstration of the invisibility for Lena. PSNRs of
(b), (c) and (d) are 41.92, 39.55 and 36.05 respectively.

Fig.6. The malicious attack (a)~(d) for Lena.

Table 7 . Robustness to non-malicious processing.

Fig.7. Locate the malicious attack in the image for Lena

Table 8 . Comparison with the other popular algorithms
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