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Abstract—Computer-assisted language learning (CALL) is a
form of computer-based assisted learning used in teaching to
facilitate the language learning process. One major aspect of
CALL for spoken language learning is the automatic assessment
of pronunciation quality. It greatly relies on speech recognition
technology to provide gradings for the pronunciation quality of
the given input speech. This paper introduces a phone verification
approach which allows the detection of mispronunciations at
phone level. The detection thresholds can be determined based
on the equal error rate (EER) metric using a database containing
only native speech. In addition this approach also allows aggrega-
tion of assessment scores at sentence and speaker levels by com-
puting the average phone rejection rates. This paper compares
three different methods of generating goodness of pronunciation
confidence scores. In addition, this paper also examines both
unsupervised versus supervised adaptation techniques to improve
the verification performance. Experimental results are reported
based on the EER metric.

I. INTRODUCTION

Computer-assisted language learning (CALL) is a form of
computer-based assisted learning used in teaching to facilitate
the language learning process. The primary focus of a CALL
system is to provide audio and visual interactivity between the
learner and computer to enchance the learning experience. The
learning materials presented by a CALL system are typically
in the form of texts, images, audio and videos. During the
learning process, the learner may interact with the computer
via keyboard and pointer inputs. In order to assess the spoken
skills of the learner, a CALL system needs to be able to
perform automatic pronunciation quality assessment through
speech input.

The earlier work done on automatic pronunciation assess-
ment is based on generating machine scores at the sentence
or speaker level [5]. The performance of these systems were
evaluated based on the correlation with the scores annonated
by human experts. More recently, Witt and Young [7] in-
troduced a phone level Goodness of Pronunciation (GoP)
to detect mispronunciations. According to the paper, phone
level posterior (confidence) scores are generated and compared
against a threshold to detect mispronunciations. In that paper,
test sets were ‘artificially’ created by replacing some of
the phones in the dictionary with similar sounding phones.
Therefore, the locations of mispronunciation can be identified
and the detection performance can be evaluated.

This paper proposes a phone verification approach to auto-
matic pronunciation assessment. This system prompts the user
to speak a sentence. The system then generates phone-level
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Fig. 1. System architecture of a typical pronunciation assessment system

confidence scores which are used to verify the identity of the
phone. Instead of arbitrarily replacing some of the phones to
‘simulate’ pronunciation errors, a complete verification analy-
sis can be performed by verifying each phone against all the
phone models in the system. Typically, the performance of a
verification system is evaluated based on the Equal Error Rate
(EER) metric, the average false acceptance and false rejection
error rates at the operating point where these errors are equal.
The EER metric not only measures the performance of the
verification system to determine its effectiveness in automatic
pronunciation assessment, it also allows the optimum decision
threshold to be computed. Given the decision threshold, the
verification system provides a phone-level binary feedback to
the user indicating whether the phones have been pronounced
correctly (accepted) or incorrectly (rejected). This binary feed-
back can be provided immediately after the user speaks a
sentence. In addition, aggregated scores can also be obtained
by computing the average phone rejection rates at the sentence
or speaker levels.

The remaining of this paper is organised as follows. Sec-
tion II gives a brief description of the proposed phone veri-
fication based pronunciation quality assessment system. Sec-
tion III describes different goodness of pronunciation scores
for phone verification. This is followed by the discussion
of acoustic model training paradigm and feature normalisa-
tion techniques in Section ?? to improve phone verification
performance. Finally, experimental results are presented in
Section V.

II. SYSTEM DESCRIPTION

This paper proposes a phone verification approach to auto-
matic pronunciation quality assessment. This system generates
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confidence scores at the phone level and makes a decision to
accept or reject the pronunciations. The system architecture is
illustrated in Figure 1. This system takes in an input speech
and the corresponding orthographic transcription to produce
output scores at the phone level. This approach can be viewed
as an extension to the system introduced in [7]. The system can
be divided into two major parts: confidence score generation
and phone verification.

A. Confidence Score Generation

The first part of the score generation process is to perform
a Viterbi forced aligment to obtain the phone segmentation,
S = {si, ei}, where si and ei denote the start and end time of
the ith phone segment respectively. The likelihood of the ith
phone (denoted by mi) given the segment boundaries ({si, ei})
may be computed as

p(Oi|mi) =
∑
Qi

p(Oi, Qi|mi) ≈ max
Qi

p(Oi, Q|mi) (1)

where Oi = {osi , . . . , oei} and Qi = {qsi , . . . , qei} are
the observation and state sequences for the ith segment. By
assuming that the likelihood of the best path dominates, the
summation operator in the above equation can be replaced
by the max operator. This is the classic Viterbi likelihood
approximation. The raw likelihood score produced by forced
alignment needs to be normalised as confidence measures
before they can be used for pronunciation verification. This
confidence measure is also referred to as the Goodness of
Pronunciation (GoP) [7]. Three types of GoP scores will be
described in Section III.

B. Pronunciation Verification

By convention, the system output scores are produced such
that a higher score indicates a higher confidence that the
speech waveform aligned to a segment matches the corre-
sponding phone. Therefore, a decision threshold can be applied
to the confidence scores, above which the pronunciation is
verified as being correct, and vice versa. The performance of
a verification system is typically evaluated using the Equal
Error Rate (EER) metric. EER is the average false acceptance
and false rejection rates at the operating point where these
errors are equal. EER provides a performance measure of a
system under optimum operating condition.

In order to compute the EER for phone verification in
our case, the reference phone sequence that the learner was
supposed to utter is used to align the learner’s speech to
obtain the phone segmentation as described in Section II.
Given the phone segmentation, the likelihood of a given model
m generating the speech in a given phone segment can be
computed using the Viterbi algorithm. Hence, if there were M
phones in the system, there will be M scores for each phone
segment; one of which is the true score while the remaining
M − 1 are false scores. By collecting all the true and false
scores, the EER can be computed as described above. There
are two ways of computing the overall EER of the system:

• Pooled EER: This approach pools all the true and false
scores from all the phone segments and compute the EER
based on a global decision threshold.

• Average EER: This approach computes the EER for each
reference phone and then compute the overall EER by
taking the average. This effectively applies a different
decision threshold to different phones.

As presented in Section V, the average EER gives consistently
better verification performance indicating that a different ver-
ification threshold should be applied to each type of sound.

In addition to evaluating the performance of a phone veri-
fication system, the EER computation also gives the optimum
decision thresholds to be applied in the actual verification
task. This provides a binary feedback at the phone level to
the learner to indicate phone segments which the learner has
or has not pronounced correctly. Moreover, it is also possible
to provide an overall assessment score at the sentence and/or
speaker level after the user has completed a learning lesson.
The average phone rejection error rates can be aggregated to
provide an overview of the error statistics. This allows the
weakness of the user in pronouncing certain phones to be
identified.

III. GOODNESS OF PRONUNCIATION

This paper examines three different methods of generating
the GoP scores. These methods will be described in the
following sub-sections.

A. Variable Segmentation Phone Posteriors

This method computes the phone posterior probability as:

P (Qi|Oi) =
p(Oi, Qi)∑
Q p(Oi, Q)

≈ p(Oi, Qi)
p(Oi, Q∗i )

(2)

where Qi and Q∗i correspond to the state sequence obtained by
performing Viterbi forced alignment and phone-loop decoding
respectively. The approximation in the above equation is made
based on the assumption that the likelihood of the best state
sequence dominates summation of the denominator. Since the
segmentations of the two state sequences may be different, the
denominator can be computed as

P (Oi, Q
∗
i ) =

∑
q

wqiP (Oq|q) (3)

where Oq denotes the observation which are aligned to state
q and wqi is the proportion of Oq which aligns with Oi. This
method is similar to the Goodness of Pronunciation (GoP)
scores as proposed in [7] except that the average likelihood is
computed at the state level instead of phone level.

B. Fixed Segmentation Phone Posteriors

If the phone segmentation is known, the phone posterior
probability can be computed as:

p(mi|Oi) =
p(Oi|mi)P (mi)∑

m∈M p(Oi|, m)P (m)
(4)

where M denotes the set of all phone models in the system.
P (m) denotes the probability of the phone m. This is typically
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assumed to be a uniform distribution and can therefore be
eliminated from the above equation. To compute the fixed
segmentation phone posteriors, the phone segmentation can
be obtained by performing a Viterbi forced-alignment.

C. Approximated Fixed Segmentation Phone Posteriors

The phone-level posterior probability in equation 4 can also
be approximated by replacing the summation operator in the
denominator with a max operator. This approximation tends to
over-estimate the posterior probability which leads to slightly
inferior results as presented in Section V.

IV. CONSTRAINED MLLR (CMLLR) ADAPTATION

Speaker adaptation is an important technique extensively
used in speech recognition tasks to reduce variability due to
different speakers. This paper investigates the use of Con-
strained MLLR (CMLLR) [2] speaker adaptation technique
to improve phone verification performance. CMLLR speaker
adaptation can be performed in two different modes: 1)
supervised adaptation and 2) unsupervised adaptation. The
former uses the true phone labels to estimate the adaptation
parameters while the latter performs an initial unadapted phone
recognition to obtain the phone labels. For language learning,
the user’s speech may contain mispronunciations. Hence, it
is interesting to compare the performance of both adaptation
modes.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In this paper, the acoustic models used in the phone verifi-
cation systems are trained on the Wall Street Journal (WSJ0)
database recorded at Cambridge University [3]. It consists of
18.8 hours of training data collected from 92 different speak-
ers. All acoustic models are trained using the 39 dimensional
MFCC feature vectors, comprising 12 static coefficients, the
C0 coefficient plus the ∆ and ∆∆ differential parameters.
Monophone HMM models were trained with a 3-state left-to-
right topology and 32 Gaussian components per HMM state.
HMM models were trained using HTK [8] Utterance-based
cepstral mean normalisation was applied to reduce channel
effects. To evaluate the phone verification performance, the
evaluation data from the MC-WSJ-AV database [4] were used
as test sets. Only the data collected using the headset and
lapel were used to investigate the channel effects. Each set
consists of 5 speakers with a total of 0.7 hours of data from
286 utterances.

B. Phone Verification Performance

TABLE I
POOLED AND AVERAGE EER (%) OF 32-COMPONENT ML TRAINED

HMM MODELS ON THE headset TEST SET

GoP EER (%)
Score Pooled Average

VarSeg Posterior 8.39 8.04
Approx. FixSeg Posterior 6.02 5.93

FixSeg Posterior 5.92 5.79

This section compares the Pooled and Average EER per-
formance for phone verification. Table I compares the perfor-
mance of pooled versus average EER for phone verification
using different goodness of pronunciation confidence scores.
Clearly, using average EER leads to a consistent relative
EER reduction of approximately 2.6%. This shows that it is
useful to apply phone specific decision thresholds for phone
verification. By comparing the performance of using different
GoP scores, it was found that phone posteriors calculated
using a variable phone segmentation yielded the worst average
EER performance of 8.04%. By contrast, the fixed segmen-
tation posterior scores gave significantly lower average EER
performance with the approximated version being slightly
inferior. This is due to the max assumption when computing
the denominator term which leads to an over-estimate of the
confidence scores. For subsequent experiments, the verification
performance will be reported based on the average EER
computed using the exact fixed segmentation phone posteriors.

TABLE II
AVERAGE EER (%) OF 32-COMPONENT HMM MODELS ON THE headset

AND lapel TEST SETS.

Test Adaptation Average EER (%)
Set Mode ML MPE MMI

headset
none 5.79 5.59 5.21

unsup. 5.47 5.26 5.00
sup. 5.23 5.07 4.85

lapel
none 10.52 9.87 9.92

unsup. 9.88 8.98 9.04
sup. 8.82 7.87 8.21

Next, the effects of acoustic model training paradigms
and CMLLR adaptation using a global transformation were
investigated. This paper compares two discriminative training
methods: Maximum Mutual Information (MMMI) [1] and
Minimum Phone Error (MPE) [6]. The average EER results
are given in Table II. From this table, it was observed that the
EER performance on the lapel test set is almost twice as
high as those on the headset test set. Discriminative train-
ing methods consistently outperformed their ML counterpart.
MMI was found to yield better results than MPE on headset
set set. However, MPE was found to be better for the lapel
test set.

After performing CMLLR adaptation, the EER performance
consistently improved compared to the unadapted systems.
For unsupervised adaptation, the MMI system improved by
4.0% and 8.9% respectively on the headset and lapel test
sets respectively. With supervised adaptation, slightly better
improvements can be achieved. The relative improvements
over unadapted systems gave 6.9% and 17.2% respectively on
the two test sets. As expected, CMLLR adaptation gave much
larger improvements on the lapel test set due to channel
mismatch between the training and testing conditions. Even
after CMLLR adaptation, there is still a large gap in EER
performance between the headset and the lapel test sets.
This suggests that the sound quality captured using a lapel
microphone is inherently poorer.
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C. Score Aggregation Analyses

As previously mentioned in Section II-B, it is possible to
provide an overall assessment score at the sentence and/or
speaker level after the user has completed a learning les-
son. For this purpose, speech data were collected from five
graduate students with different country of origin. This paper
only performs a preliminary comparison of the aggregated
rejection rates at the speaker level. Table III shows the

TABLE III
COMPARISON OF THE AGGREGATED REJECTION RATES OF FOUR

DIFFERENT STUDENTS

Speaker
Country First Aggregated

of Language Rejection Rate (%)
Origin none unsup. sup.

A Singapore† English 3.53 3.29 2.75
B Indonesian English 5.21 4.32 3.38
C Germany German 5.67 6.35 4.39
D Singapore English 10.02 7.15 4.79
E China Mandarin 8.90 7.68 5.32

† Spent most of the time in an English-speaking country

overall rejection rates for each speaker. These aggregated
rejection rates were computed as the average aggregated re-
jection rates of each phone. Phone verification was performed
using the 32-component MMI trained acoustic models. A
global CMLLR transform was used for both supervised and
unsupervised adaptation for each speaker. The speakers are
ordered according the their fluency in spoken English. Without
adaptation, the system has detected the order of Speaker
D and E incorrectly. After adaptation, aggregated rejection
rates successfully predicts the order of fluency of the five
speakers. Note that the improvement after supervised adap-
tation is too optimistic that the rejection rates become similar
to those of the native speakers (c.f. Table II). It may have
corrected mispronunciations which is undesirable. Therefore,
we feel that the unsupervised adaptation results provides a
better assessment in this case. In addition, the breakdown

Fig. 2. Comparison of phone level aggregated rejection rates of four different
speakers
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of the phone level Rejection Error Ratios (RER) are shown

in Figure 2. RER is the ratio of the rejection rates of the
speaker divided by the rejection rates computed on a group of
native speakers. It represents the number of times a speaker
has made a pronunciation error compared to that made by
the native speakers on average. Since the rejection rates are
different for different phones, even when evaluated on native
speech, RER provides a better comparison of rejection errors
between different phones. Clearly, the rejection patterns differs
significantly between speakers. For example, speaker A only
made errors for six different phones, with ‘th’ having the
highest RER. On the other hand, speaker C has a relatively
higher rejection rate for ‘z’ and ‘v’ while speaker E has
difficulties pronouncing ‘s’ and ‘t’.

VI. CONCLUSIONS

This paper has presented a phone verification approach to
automatically assess the pronunciation quality at phone level
for spoken language learning. The performance of the assess-
ment system is evaluated using the equal error rate metric. The
system provides a binary feedback of acceptance or rejection
at the phone level. Aggregated rejection rates can also be
computed at the phone, sentence and speaker levels to provide
an overall assessment summary. In this paper, the following
techniques were found to yield lower EER: phone-dependent
decision thresholds, discriminative acoustic model training and
constrained MLLR speaker adaptation. The EER performance
of the best system were 4.85% and 7.87% on speech recorded
using headset and lapel microphones respectively. Preliminary
evaluation also revealed that the aggregated rejection rates
were able to predict the learner’s language competency level.
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