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Abstract— A statistical model-based voice activity detection 

(VAD) is a robust algorithm in noisy condition to detect speech 

region from input signal by speech and non-speech statistical 

model such as complex Gaussian probability density function 

(PDF). The decision rule used in this VAD is based on Bayes’ 

rule and considers likelihood ratios (LRs) in whole frequency 

region. In this VAD, however, the Bayes’ rule may cause a 

decision error. With the statistical model, we analyze why this 

problem happens and show how we can decrease the decision 

error by using the LRs at selected frequency bins having 

relatively high spectral power in each frame. The performance of 

this VAD is evaluated by receiver operating characteristic (ROC) 

curves and summarized in a table, and the results from proposed 

methods show better performances than those of typical 

statistical model-based VAD. 

I. INTRODUCTION 

The purpose of voice activity detection (VAD) is to 

discriminate speech and silence region from input signal in 

various noisy conditions. Nowadays, VAD system is used in 

many fields such as speech recognition, speaker recognition, 

speech coding, and speech enhancement as a preprocessor 

because VAD helps to increase the performance of these 

systems and save computation time efficiently. 

In these days, a popular algorithm for VAD has been the 

statistical model-based method using complex Gaussian 

probability density function proposed by Sohn et al. [1]. To 

enhance the performance of this VAD, many additional 

methods, which consider smoothed decision rule [2], noise 

adaptation [3], decision rules in sequential frame [4], and 

various statistical models [5], have been proposed.  

The statistical model-based VAD can make a decision by 

arithmetic average of log likelihood ratios (LLRs) in whole 

frequency region. As simply mentioned above, additional 

methods for this VAD tried to improve the performance but 

not to analyze decision rule itself. However, this decision rule 

holds a possibility which can cause errors with several 

assumptions and estimations used to constitute a statistical 

model. This unconsidered problem can debase the accuracy of 

the VAD system. 

In this paper, we first introduce the conventional statistical 

model-based VAD and present why the Bayes’ rule with 

statistical model and average of LLRs at every frequency bin 

can make inaccurate decision and how we can reduce the 

effects of this decision rule by selecting specific LLRs 

according to spectral powers of frequency bins. Next, based 

on our analysis, we propose two modified decision rules using 

selected LLRs only at relatively high-power frequency bins in 

each frame. Finally, we show that the proposed decision rule 

enhances performance of the statistical model-based VAD 

and point our further work. 

II. STATISTICAL MODEL-BASED VAD 

The statistical model-based VAD starts from two 

hypotheses 𝐻0  and 𝐻1  which assume that there exists only 

noise or noisy speech, respectively. The assumptions are 

described as 

 

H0: 𝒀(𝒏) = 𝑵(𝒏) 

H1: 𝒀(𝒏) = 𝑺(𝒏) + 𝑵(𝒏) 

 

where 𝒀 𝒏 =  𝑌0 𝑛 , 𝑌1 𝑛 , … , 𝑌𝑀−1 𝑛  , 𝑵 𝒏 = [𝑁0 𝑛 , 
𝑁1(𝑛), … , 𝑁𝑀−1(𝑛)]  and 𝑺(𝒏) = [𝑆0(𝑛), 𝑆1(𝑛), … , 𝑆𝑀−1(𝑛)] 
represent M dimensional discrete Fourier transform (DFT) 

coefficient vectors of input signal, noise, and clean speech, 

respectively at nth frame. In the VAD, three assumptions are 

used: 

1) Clean speech and noise are uncorrelated. 

2) All DFT coefficients are independent. 

3) The likelihood of 𝑌𝑘 𝑛 conditioned on each 

hypothesis can be modeled by zero-mean complex 

Gaussian pdf. 

By those assumptions, the likelihoods of 𝒀(𝒏) are given by 

 

𝑝 𝒀 𝒏  𝐻0 =  
1

𝜋𝜆𝑁,𝑘

𝑀−1

𝑘=0

𝑒𝑥 𝑝  −
|𝑌𝑘 𝑛 |2

𝜆𝑁,𝑘

           (1) 

𝑝 𝒀 𝒏  𝐻1 =  
1

𝜋 𝜆𝑁,𝑘 + 𝜆𝑆,𝑘 
                                 

𝑀−1

𝑘=0

 

𝑒𝑥 𝑝  −
|𝑌𝑘 𝑛 |2

𝜆𝑁,𝑘 + 𝜆𝑆,𝑘

           (2) 

 

where 𝜆𝑁,𝑘  and 𝜆𝑆,𝑘  denote the variance of noise and clean 

speech. With these likelihoods, the decision rule by LLRs in 

entire frequency region can be constituted by 
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𝛬𝑘 𝑛 = 𝑙𝑛  
𝑝 𝑌𝑘 𝑛  𝐻1 

𝑝 𝑌𝑘 𝑛  𝐻0 
 =

𝛾𝑘𝜉𝑘

1 + 𝜉𝑘

− 𝑙𝑛[ 1 + 𝜉𝑘 ]      (3) 

𝜙 𝑛 =
1

𝑀
 𝛬𝑘 𝑛   ≷𝐻0   

𝐻1 𝜂                          4 

𝑀−1

𝑘=0

 

 

where 𝜉𝑘  is 𝜆𝑆,𝑘/𝜆𝑁,𝑘  denoting a priori signal to noise ratio 

(SNR) and 𝛾𝑘  is |𝑌𝑘 𝑛 |2/𝜆𝑁,𝑘  denoting a posteriori SNR.  

When the result is greater than a threshold value 𝜂, we are 

allowed to determine that the signal in current frame includes 

speech signal.  

III. ANALYSIS OF BAYES DECISION RULE 

Unlike (1) and (2), there is no fixed information about the 

variance of noise and clean speech. Thus, we have difficulty 

to constitute the decision rule using a priori and a posteriori 

SNR and the well-known method to estimate a priori SNR 𝜉 𝑘  

is the decision-directed (DD) method [6] which is given by 

 

𝜉 𝑘 𝑛 = 𝛼
|𝑆 𝑘 𝑛 − 1 |2

𝜆 𝑁,𝑘(𝑛 − 1)
+  1 −  𝛼 𝑀𝐴𝑋 𝛾 𝑘(𝑛) − 1,0   (5) 

 

where |𝑆 𝑘(𝑛)|2 is an estimate for clean speech by minimum 

mean square error short-time spectral amplitude (MMSE-

STSA) estimator, 𝛼 is a smoothing parameter, 𝜆 𝑁,𝑘(𝑛) is the 

estimated value by the noise estimation process in [7], and 

𝛾 𝑘(𝑛) = |𝑌𝑘 𝑛 |2/𝜆 𝑁,𝑘(𝑛). 

The complex Gaussian models of input signal which are  

𝑝 𝒀 𝒏  𝐻0  and 𝑝 𝒀 𝒏  𝐻1  show that the variance of 

𝑝 𝒀 𝒏  𝐻1  is always greater than or equal to the variance of 

𝑝 𝒀 𝒏  𝐻0 . In addition, the decision rule assumes that 𝜙 𝑛  

is higher when speech is present than absent. In practice, 

however, 𝑝 𝒀 𝒏  𝐻1  cannot always greater than 𝑝 𝒀 𝒏  𝐻0  

even when there is a speech in input signal. So to speak, 

increased variance does not guarantee increased value of LLR. 

As shown in Fig. 1, even if there is a speech at a specific 

frequency bin, LLR is not always greater than 0 because the 

inaccuracy of noise estimate does not allow |𝑌𝑘 𝑛 |2  to be 

always greater than σth . 

As described in [7], the variance of noise in current frame 

is estimated in previous frame without any information about 

current frame by assuming that noises are almost stationary. 

However, because of imperfect estimation of noise variance, 

𝛾 𝑘(𝑛) is often less than 1, so the LLRs at those frequency bins 

can possibly decrease the accuracy of decision rule in current 

frame. 

IV. SELECTION OF FREQUENCY BINS PARTICIPATING IN 

DECISION RULE 

In practice, the decision rule of VAD considers the LLRs at 

every frequency bin, but not all of them contribute to make a 

correct decision. Therefore, we should select the frequency 

bins having reliable LLR for correct decision. To find the 

frequency bins, we first need to analyze 𝜉 𝑘 𝑛  and 𝛾 𝑘(𝑛). 

𝜉 𝑘(𝑛) and 𝛾 𝑘(𝑛) are represented in terms of not only noise 

variance but also speech variance and spectral power of input 

signal. Thus, it can be said that the higher |𝑆 𝑘(𝑛)|2  and 

|𝑌𝑘 𝑛 |2  are, the less 𝜉 𝑘(𝑛)  and 𝛾 𝑘 𝑛  are affected by 

inaccuracy of noise estimation because the difference between 

actual and estimated values can make influences on those 

SNRs greater as the value of numerator becomes smaller. 

Therefore, at low-power frequency bins, LLRs are more 

severely affected by inaccurate noise estimation. Thus, a 

possibility of error can be caused more likely at low-power 

frequency bins because |𝑌𝑘 𝑛 |2  at those bins can be often 

less than σth  and that is the reason why we have to choose 

high-power frequency bins as the members of decision rule. 

As shown in Fig. 2, in case of speech frame, there are two 

peaks of LLRs at high-power frequency region, and also it is 

noticeable that the LLR is close to zero at most low-power 

frequency region. However, in case of noise-only frame, 

LLRs are relatively high in low-power frequency range 

although this frame has only noise signal. To explain this 

situation, we need to simplify (3) as follows: 

 

𝛬𝑘 𝑛 =
𝛾𝑘𝜉𝑘

1 + 𝜉𝑘

− 𝑙𝑛[ 1 + 𝜉𝑘 ] ≈ 𝛾𝑘𝜉𝑘  , if 𝜉𝑘 ≪ 1.  (6) 

 

As shown in the third part of (6), LLRs are dominated only by 

𝛾𝑘𝜉𝑘  when current frame is in sequence of noise frames and 

 
(a) 

  
(b) 

Fig. 1 (a) Two complex Gaussian distributions having same 

zero-mean and different variances. (b) Log likelihood ratio of 

distribution of dashed line over distribution of solid line. Note 

that the x-axis denotes |Yk(n)| in both figures. 
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𝛾𝑘  is very closely related to |𝑌𝑘 𝑛 |2  rather than 𝜆𝑁,𝑘 . In 

practice, when 𝒀 𝒏  is noise-only signal and |𝑌𝑘 𝑛 − 1 |2  is 

very low, 𝜆 𝑁,𝑘(𝑛) is also estimated as low as |𝑌𝑘 𝑛 − 1 |2 is 

and changed smoothly. In nth frame, even if |𝑌𝑘 𝑛 |2  is 

increased slightly, it can cause high effect on 𝛾 𝑘(𝑛) and LLR. 

That is why LLRs in low-power frequency range can be 

higher than those in high-power frequency range. As you can 

also see in Fig.2, if we use (4) as a decision rule, we cannot 

discriminate this speech frame from input signal because it is 

apparent that the average of LLRs in whole frequency range is 

less than those of the noise frame. Thus, choosing the LLRs at 

high power frequency bins can be helpful to decrease the 

result of decision rule of noise-only frame and increase those 

of speech frame. 

With these properties, we propose two ways to select the 

frequency bins having reliable LLRs for decision rule 

according to spectral power. At first, we reorder the input 

signal vector in terms of power such as 𝒀𝑹(𝑛)  =
 [𝑌1(𝑛), 𝑌2(𝑛), … , 𝑌𝑀(𝑛)]  where |𝑌𝑟 𝑛 |2 ≥ |𝑌𝑠 𝑛 |2  when 

𝑟 > 𝑠  and also define LLR vector, 

𝜦 𝒏 = [𝛬1 𝑛 , 𝛬2 𝑛 , … , 𝛬𝑀 𝑛 ] where each element 𝛬𝑟 𝑛  

is related to 𝑌𝑟(𝑛). With these vectors, the modified decision 

rule is proposed by 

 

𝜙ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟  𝑛 =
1

𝐻
 𝛬𝑟 𝑛 

𝑀

𝑟=𝑀−𝐻+1

                  (7) 

 

where 𝐻 denotes the number of likelihood ratios selected by 

the power of frequency bins. In this decision rule, we only 

consider the LLRs related to high-power frequency bins. The 

second approach is to compare the bin-power with average 

power in each frame. With this consideration, the second 

modified decision rule is proposed by  

 

𝑌𝑎𝑣𝑔  𝑛 =
1

𝑀
 |𝑌𝑘 𝑛 |2

𝑀−1

𝑘=0

                            (8) 

𝜙𝑎𝑣𝑒𝑟𝑎𝑔𝑒 −𝑝𝑜𝑤𝑒𝑟  𝑛 =
1

𝑄
 𝐹[𝛬𝑟 𝑛 

𝑀

𝑟=1

, 𝑌𝑎𝑣𝑔 (𝑛)]      (9) 

 

where 𝐹 𝛬𝑟 𝑛 , 𝑌𝑎𝑣𝑔 (𝑛) = 𝛬𝑟 𝑛  if |𝑌𝑟 𝑛 |2 ≥ 𝑌𝑎𝑣𝑔 (𝑛), and 

𝐹 𝛬𝑟 𝑛 , 𝑌𝑎𝑣𝑔 (𝑛) = 0  otherwise, and 𝑄  is the number of 

frequency bins having a power greater than or equal to 

average power of each frame. 

V. EXPERIMENTS AND RESULTS 

The proposed decision rules are evaluated by receiver 

operating characteristic (ROC) curves in Fig. 3 which show 

performances of VAD in terms of speech detection rate (SDR) 

and false-alarm rate (FAR) such that 

 

𝑆𝐷𝑅 =  
𝑁𝐶𝑆

𝑁𝑇𝑆

                                      (10) 

𝐹𝐴𝑅 =
𝑁𝐹𝑆

𝑁𝑇𝑁

                                      (11) 

 

where NCS, NTS, NFS, and NTN denote the number of correctly 

detected speech frames, total speech frames, falsely detected 

speech frames in silence frames, and total silence frames, 

respectively. Each curve is plotted as the threshold value 𝜂 is 

changed. 

The test data were composed of 60 s long speech data from 

IEEE sentence and noise data from AURORA database. The 

speech data were spoken by 3 male and 3 female speakers and 

sampled at 8 kHz. We used 20 ms frame size and shifted it 10 

ms as a decision unit. The test material was all hand-labeled 

and consisted of 67% of speech and 33% of silence frames. 

For the test, we also used three types of noises such as car 

noise, babble noise, and street noise. To evaluate proposed 

algorithms, we compared this algorithm with the VAD 

proposed by Sohn et al. [1], which also includes HMM-based 

hang-over scheme. 

In this experiment, we used 𝐻 = 10 for (7) which is the first 

proposed decision rule. As shown in Fig. 3, Pmax–10, Pavg, 

and Hangover denote the results from (7), (9), and HMM-

based hang-over scheme, respectively. The proposed methods 

show much better performances, especially for 𝐹𝐴𝑅 < 0.1. In 

 
(a) 

 
(b) 

Fig. 2   Examples of spectral shape in dB scale and log-likelihood 

ratio of (a) speech frame and (b) silence frame corrupted by 5dB car 

noise. 
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case of stationary noise such as car noise, the result from 

Pmax-10 shows the best performance. In case of less 

stationary noises such as babble and street noise, Pavg shows 

slightly better performance than Pmax-10. 

The overall evaluated performances according to types of 

noises and SNRs are summarized in Table I where PSDR and 

PFAR denote SDR and FAR in percentage. To compare the 

proposed methods with typical methods, we organized Table I 

with equal or slightly different PFAR in same noise condition. 

In Table I, Pmax-10 and Pavg show that the proposed 

methods can save much more speech frames on same PFAR  

than traditional algorithms can do. 

 

VI. CONCLUSIONS 

In this paper, we have proposed a new approach to the 

statistical model-based VAD through reliable spectral power 

and modified decision rules which can reduce the error rate 

caused by Bayes’ rule with complex Gaussian distribution. 

Our analysis showed how inaccurate noise estimation affects 

LLRs in low-power frequency range. By considering this 

influence, our modified decision rules have been proved 

better than typical statistical model-based VAD algorithms. 

Further work of this study is to find more accurate condition 

for the selection of frequency bins in each frame. 
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(a) 

 
(b) 

 
(c) 

Fig. 3   ROC curves for (a) car noise at 5dB, (b) babble noise at 

10dB, and (c) street noise at 15dB 

 

TABLE   I 

SUMMARY OF PERFORMANCE EVALUATION IN DIFFERENT NOISE 

CONDITIONS. 

 

 Sohn 
Sohn + 

Hang-over 
Pmax-10 Pavg 

SNR 

(dB) 
PSDR PFAR PSDR PFAR PSDR PFAR PSDR PFAR 

Car noise 

5 50.21 5.02 52.94 5.02 67.24 4.98 62.37 4.98 

10 64.84 5.02 65.62 5.02 80.10 4.98 78.89 5.09 

15 77.22 5.09 78.17 5.09 87.72 5.02 86.14 5.09 

Babble noise 

5 42.73 5.06 44.69 5.06 46.64 5.02 48.93 4.94 

10 59.31 5.02 59.91 5.02 65.55 5.02 65.61 4.98 

15 69.87 5.02 73.14 5.02 76.90 5.02 77.93 5.06 

Street noise 

5 44.11 9.92 43.59 10.0 52.86 10.1 52.67 10.0 

10 59.87 9.92 62.11 9.96 68.64 9.96 69.81 9.92 

15 75.58 9.96 76.22 10.0 82.49 9.96 83.44 9.96 
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