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Abstract — In this paper, we propose a word boundary unconstraint 

Viterbi algorithm for robust speech recognition against endpoint 

detection error on isolated word task domain. In general, one-

keyword spotting framework is used to achieve robust recognition by 

absorbing non-speech events with acoustic filler models. One 

drawback of such an approach is that there is little improvement or it 

can even hurt performance if unexpected non-speech events occur, 

whose spectral characteristics are not trained into acoustic filler 

models. However, it is unrealistic to prepare acoustic filler models 

considering all kinds of non-speech events especially occurring in 

mobile environment. Therefore, we propose another approach where 

non-speech events are absorbed implicitly by relaxing endpoints 

constraint of Viterbi algorithm. The experimental results show that 

the algorithm reduces the word error rate from 80.2% to 10.6% for 

inaccurately endpoint-detected utterances while consuming a little 

more computation. 

 

Index Terms — Keyword-spotting, acoustic filler model, 

Viterbi decoding 

 

I. INTRODUCTION 

Even though current state-of-the-art speech recognition is large 

vocabulary continuous speech recognition (LVCSR) system which 

can recognize hundreds of thousands of words spoken naturally, 

isolated word recognition is still used in many commercial areas, 

especially in mobile environments. For example, name dialing in a 

cellular phone or command-and-control system in a car. In order for 

speech recognition to survive in those commercial areas, most of all, 

it must work robust irrespective of surrounding noise conditions. So, 

a lot of approaches have been proposed to deal with noise robustness 

problem. Among them, in this paper, we focus on robust recognition 

on endpoint detection errors. Endpoint detection is a frontend process 

to segment a portion which is assumed to be speech from an input 

signal. In isolated word recognition, the accuracy level of endpoint 

detection highly affects the total recognition performance. Therefore, 

various methods have been proposed to achieve robust recognition 

against endpoint detection error, and these approaches can be broadly 

classified into one of two categories: one in pre-processing stage and 

the other in decoding stage. The methods in pre-processing stage try 

to segment word boundaries as accurately as possible for variations in 

the surrounding environment by using noise adaptation techniques 

and/or statistically different information between speech and the non-

speech signal [1][2]. While, the methods in decoding stage make use 

of one-keyword spotting framework to absorb non-speech events 

with acoustic filler models [3][4]. In ideal, acoustic filler models are 

trained to capture characteristics of every type of non-speech events 

that can occur in real situation. However, it is hard to prepare filler 

models that consider all types of non-speech events, and this 

mismatch between acoustic fillers and actual non-speech events may 

degrade the recognition performance. Therefore, in this paper, we 

propose another approach which does not use any of explicit acoustic 

filler models but performs the same function of one-keyword spotting 

by introducing a word boundary unconstrained Viterbi algorithm.  

The remainder of this paper is organized as follows: In Section II, we 

give a brief overview of one-keyword spotting. In Section III, we 

explain the idea of word boundary unconstrained search. In Section 

IV, we present a word boundary unconstraint Viterbi algorithm. In 

the last Section, we present recognition experiments performed on 

simulated endpoint detection error conditions. 

II. ONE-KEYWORD SPOTTING 

One-keyword spotting is a process to find an optimal word Ŵ  for an 

input observation X , which satisfies the following condition: 
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where 𝑃(𝑋1
𝜏−1|𝑁𝑆)  and 𝑃(𝑋𝑡+1

𝑇 |𝑁𝑆)  denote the conditional 

probabilities that the acoustic filler model 𝑁𝑆  produces partial 

observations for 𝑋1
𝜏−1  and 𝑋𝑡+1

𝑇  individually and 𝑃(𝑋𝜏
𝑡|𝑊)  denotes 

the conditional probability that a word model produces the 

observations starting from time 𝜏 and ending at time 𝑡. In general, 

one-keyword spotting is configured as depicted in Fig. 1 
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Fig. 1: A typical finite state network for one-keyword spotting. 

 

where the filler models are configured to self loop for absorbing 

arbitrary sequences of non-keyword segments including non-speech 

signal. In HMM-based approach, each sub-word model is trained 

with a HMM 𝜆 = {𝜋, 𝐴, 𝐵}, and keyword models are constructed by 

concatenating sub-word HMMs according to their pronunciations. In 

decoding stage, Viterbi algorithm is performed to find the optimal 

state sequence that maximizes a posterior probability for a given 

HMM and an input observation 𝑋 by defining a variable  𝛿𝑡(𝑖) [5]. 
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The optimal state likelihood is then calculated by the Viterbi 

algorithm as follows: 
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In one-keyword spotting, the conditional probabilities which observe 

the non-speech segments are defined in terms of 𝑃(𝑋1
𝜏−1|𝑁𝑆) and 

𝑃(𝑋𝑡+1
𝑇 |𝑁𝑆). In this paper, we describe a method to estimate these 

probabilities implicitly using the word boundary unconstrained 

search strategy. 

 

III. WORD BOUNDARY UNCONSTRAINT SEARCH 

The fundamental idea of the word boundary unconstraint search is 

as follows: we make assumption that correct word boundaries exist 

with a predefined margin for the automatically marked boundaries 

by endpoint detection, and then explore the search space 

exhaustively by varying the word boundaries. Fig. 2 illustrates an 

example of the word boundary unconstrained search. 
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Fig. 2: An example of word boundary unconstrained search for a 

segmented utterance containing non-speech events. 

 

Assuming that the start boundary margin is 6 frames and the end 

boundary margin is 8 frames, there are 48 pairs of word boundaries 

and then we have to run 48 times of Viterbi decoding to find an 

optimal state sequence. Even though this exhaustive search process 

works well for adverse endpoint detection conditions, in real 

applications, it is unpractical due to the huge computational needs 

and frame-asynchronous characteristics. So, we present a modified 

algorithm, which explores the word boundary unconstrained search 

space efficiently in frame-synchronous manner.  

 

A. Start Point Unconstraint 

As depicted in Fig. 3, there is the same number of partial hypothesis 

which arrives to state 𝑖 at time 𝑡 started from time 𝜏 as the number of 

start boundary margin. Each hypothesis can be expressed in terms of 

the variable introduced in time-conditioned approach [6][7]. 
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where 𝛿𝜏
𝑡(𝑖)  denotes conditional probability that a given HMM 𝜆 

produces the partial acoustic observations 𝑋𝜏
𝑡  which starts from time 

𝜏 and ends at time 𝑡. In a maximum approximation point of view, 

there is only one hypothesis arriving to state 𝑖 at time 𝑡. Hence, (2) 

can be expressed in terms of 𝛿𝜏
𝑡(𝑖) if 𝛿𝜏

𝑡(𝑖) is properly normalized 

with respect to time. 
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where 𝛿 𝜏
𝑡(𝑖) is normalized likelihood as if it started from time 

𝜏 = 1 by normalization weight 𝜙1
𝜏 . 
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Fig. 3: Partial hypotheses arriving to state i at time t  starting from 

different start points 

 

Since the Viterbi decoding is the process to find the optimal state 

sequence, it is reasonable to make assumption that newly starting 

hypothesis with state 𝑖 from time 𝜏 has been made transition from the 

state with the maximum likelihood at the previous time 𝜏 − 1 and we 

can define the normalization weight 𝜙1
𝜏  as follows. 
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where 𝐷𝑏 denotes the start boundary margin and 𝜙1
𝜏  means the 

maximum likelihood at time 𝜏 − 1 . Since most speech recognizer 

uses beam pruning technique to kill unlikely hypotheses compared to 

the most probable hypothesis, the normalization weight 𝜙1
𝜏  can be 

obtained without more computational load and the normalization can 

be performed in time-synchronous fashion. 

 

B. End Point Unconstraint 

As can be seen in Fig. 4, there are also many terminating hypotheses 

representing different length of acoustic observations as a result of 

endpoint unconstraint. 
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Fig. 4: Terminal hypotheses arriving to state i at time t . 

 

So, we have to normalize the likelihood score as if it terminated at the 

final time 𝑇 with normalization weight 𝜙𝑡
𝑇  as follows: 
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where 𝑖𝑤  denotes the terminal state of the word 𝑊, this normalization 

concept is identical to that of start point unconstraint case. 

IV. WORD BOUNDARY UNCONSTRAINT VITERBI  

We have modified the initialization and termination steps of the 

Viterbi algorithm to accomplish unconstrained word boundary search. 

By replacing these two steps with the modified ones and inducing the 

recursion step as follows, we can obtain the modified Viterbi 

algorithm. 
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where 𝐷𝑏  and 𝐷𝑒  denote word boundary margins within which we 

assume that correct word boundaries exist.  As can be seen in (8), the 

conventional Viterbi algorithm can be converted to the proposed 

Viterbi algorithm with minor modifications in the initialization and 

termination steps. 

V.  EXPERIMENTS AND RESULTS 

 

A. Korean PBW Test Domain 

The proposed Viterbi algorithm is tested on a phonetically balanced 

word (PBW) domain, which is an isolated word recognition domain 

composed of a training corpus with 90400 utterances (400 males, 400 

females), a vocabulary of 1130 words and 2260 test utterances. 

Speech signal is sampled at 16kHz, and the frame length is 20ms 

with 10ms shift. Each speech frame is parameterized as a 26-

dimensional feature vector containing 12 MFCCs, C0 energy and 

their delta feature. We trained tied-state triphone models of 1860 

states in which each state was represented by a Gaussian mixture 

model (GMM) comprised of 12 Gaussian components. 

 

B. Test Set Preparation 

For evaluation, we prepare two sets of test utterances from the 2260 

utterances. One is a clean test set for simulating correctly endpoint 

detected cases, and the other is a corrupted test set for simulating 

incorrectly endpoint detected cases. The clean test set is prepared by 

segmenting speech portions from the 2260 utterances manually but 

the corrupted test set is prepared by concatenating noise and speech 

artificially. 

To generate corrupted test set considering various noise conditions, 

we prepared 10 kinds of noises such as, a horn, general babble, car, 

motor cycle, barking, a baby crying, a door closing, an electric fan, 

phone ring, and water. We call the first five noises as “outdoor” class 

noise and rest of them as “indoor” class noise, and two acoustic filler 

models are trained with noises in that class. Corrupted set is prepared 

with 𝑒𝑝𝑑(𝑡,𝑛𝑏 , 𝑑𝑏 , 𝑝𝑏 , 𝑛𝑒 , 𝑑𝑒 ,𝑝𝑏 , 𝑠) function defined as follows: 

 

𝑒𝑝𝑑 𝑡, 𝑛𝑏 , 𝑑𝑏 , 𝑝𝑏 , 𝑛𝑒 , 𝑑𝑒 ,𝑝𝑏 , 𝑠 = 

𝑛𝑏 𝑡 ∙ 𝑅𝐸𝐶𝑇 𝑡, 𝑑𝑏 + 𝑤 𝑡 ∙ 𝑅𝐸𝐶𝑇 𝑡, 𝑑𝑏 ,𝑝𝑏 + 

𝑠 𝑡 ∙ 𝑅𝐸𝐶𝑇 𝑡,𝑑𝑏 + 𝑝𝑏 , 𝑇 +                                                           (9) 

𝑤 𝑡 ∙ 𝑅𝐸𝐶𝑇 𝑡, 𝑑𝑏 + 𝑝𝑏 + 𝑇, 𝑝𝑒 + 

𝑛𝑒 𝑡 ∙ 𝑅𝐸𝐶𝑇 𝑡,𝑑𝑏 + 𝑝𝑏 + 𝑇 + 𝑝𝑒 , 𝑑𝑒  

𝑤ℎ𝑒𝑟𝑒, 𝑅𝐸𝐶𝑇 𝑡, 𝑠, 𝑑 =  
1, 𝑠 ≤ 𝑡 ≤ 𝑠 + 𝑑
0,             𝑜𝑡ℎ𝑒𝑟𝑠

  

 

where 𝑛𝑏(𝑡) and 𝑛𝑒(𝑡) represent one of 10 noise signals, 𝑑𝑏  and 𝑑𝑒  

are durations of individual noise signals, 𝑝𝑏  and 𝑝𝑒  are pause 

durations, 𝑤(𝑡)  is white Gaussian noise with zero mean and unit 

variance, and 𝑠(𝑡)  denotes an correctly segmented utterance. We 

allowed noise signals to last from 0ms to 2000 ms and the pause 

silence from 0ms to 1000ms with uniform probability. Fig. 5 depicts 

the meaning of 𝑒𝑝𝑑(𝑡, 𝑛𝑏 , 𝑑𝑏 , 𝑝𝑏 ,𝑛𝑒 , 𝑑𝑒 , 𝑝𝑏 , 𝑠) function. 
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Fig. 5: An example of an inaccurately endpoint-detected utterance. 

 

The experiment was performed by varying word boundary margins 

𝐷𝑏  and 𝐷𝑒  as below. 

 

𝐷𝑏 = 𝑇 ∙ 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑚𝑎𝑟𝑔𝑖𝑛 𝑟𝑎𝑡𝑖𝑜                                    
𝐷𝑒 = 𝑇 ∙ (1 − 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑚𝑎𝑟𝑔𝑖𝑛 𝑟𝑎𝑡𝑖𝑜)              (10) 

 

 

where 𝑇 is the total number of frames.  

 

C. Baseline Performance 

We took experiments to see the baseline performances on various 

conditions: performance of isolated word recognition system for 

correctly and incorrectly endpoint detected utterances, performance 

degradation of one-keyword spotting for unexpected noises cases [3], 
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and performance of one-keyword spotting for expected noises cases. 

Table 1 shows word error rates (WERs) for these cases. 

 

TABLE I 

WORD ERROR RATES  FOR BASELINE CONDITIONS 

Baseline system Test set WER (%) 

ISO Clean 2.13 

ISO Corrupted 84.4 

KWS with “outdoor filler” Corrupted 52.4 

KWS with “indoor filler” Corrupted 48.8 

KWS with “out & in fillers” Corrupted 7.2 

ISO: Isolated recognition, KWS : keyword spotting 

 

In Table 1, the 1st and 2nd rows show that inaccurate endpoint 

detection seriously degrades recognition performance, the 3rd and 4th 

rows show that unexpected noise events also degrades recognition 

performance and the 5th row shows that it improves performance to 

use matched filler models. 

Fig. 6 shows the results of the word boundary unconstrained search 

for the corrupted test set as well as the clean test set. It reduces the 

WER of the corrupted set considerably but it does not hurt accuracy 

of the clean set. The WER is reduced from 80.2% to 10.6% when 

extending the word boundary margins by 30% for both sides. It is 

comparable to that of the one-keyword system which uses matched 

filler models. 
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Fig. 6: Recognition performance of the proposed Viterbi algorithm 

 

Fig. 7 shows the computational complexity of the proposed algorithm 

in real-time factor, which is defined as the division of the total 

recognition time by the total time of the speech utterances on an 

embedded device with a fixed-point processor running at 400MHz. 
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Fig. 7: Computational complexity of the proposed Viterbi algorithm. 

 

The proposed algorithm takes computation time nearly proportional 

to the word boundary margin. This computational load is relatively 

low in comparison with the exhaustive search using the conventional 

Viterbi algorithm. If we perform the conventional Viterbi algorithm 

iteratively for all assumed endpoints of a given word boundary 

margin, it will take time proportional to the square of the number of 

word boundary margin frames. 

VI.  CONCLUSION 

In this paper, we describe word boundary unconstrained search as an 

alternative approach for one-keyword spotting to compensate for 

endpoint detection error on isolated word recognition. The modified 

Viterbi algorithm achieved a considerable reduction of the WER 

(from 80.2% to 10.6%) in a variety of simulated endpoint detection 

error cases without any explicit acoustic filler models. This result is 

comparable to that of the one-keyword spotting system with the 

explicit filler models corresponding to non-speech signals. We 

introduced two weights to normalize the different hypotheses 

probabilities representing different lengths of speech segments. From 

a keyword spotting point of view, they find the conditional 

probabilities producing the non-speech signals and thus they can be 

regarded as implicit filler model probabilities. Most of all, the 

proposed algorithm does not require any prior knowledge of non-

speech signals, while the conventional keyword-spotting recognizers 

give poor recognition performance without all kinds of non-speech 

signals enough to model the acoustic filler accurately. In addition, the 

proposed algorithm can be implemented easily with minor 

modifications for the initialization and termination steps of the 

conventional Viterbi algorithm. 
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