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Abstract—In this paper, we propose a reversible
steganography scheme for 3D mesh models. The scheme first
find a subset of vertices for data embedding, followed by
encoding the prediction residues of these vertices and the secret
bit string by arithmetic coding method. The mantissa part of
these vertices is then substituted by the coded arithmetic real
numbers. This scheme embeds the secret information into
multiple layers such that it is high confidential and capacity
flexible. In this scheme, the maximum distortion on the stego
model is controlled by the setting of a real value thus it can be
controlled to be imperceptible. Experimental results show the
efficiency of this scheme.

Key words: steganography, data-hiding, watermarking, 3D
authentication.

I. INTRODUCTION

Steganography, or known as data hiding, is the art of hiding a
secret message (payload) in another (cover media), and
converting the cover media into stego media without
attracting attention of any malicious third party. Data hiding
algorithms try to efficiently maximize the size of payload
while introducing as little distortion as possible. Many data
hiding techniques have been developed on images [1, 2],
audios and videos. Relatively fewer researchers work on 3D
models. However, with the growth of 3D models created and
transmitted in the Internet, data hiding on 3D models receives
an increasing interest.

Most existing 3D data hiding schemes introduce
irreversible changes to the cover model. For some artistic or
technical models, it is sometimes very important not to make
any modification on the original mesh models. Hence there is
a need to develop reversible steganography schemes which
have the ability of recovering the original model in the data
extraction phase. However, there has been little attention paid
to the reversible data hiding techniques for 3D models. Our
main goal here is to present a reversible steganography
scheme for 3D mesh models.

II. RELATEDWORKS

Data hiding and watermarking techniques for still images
have been widely studied and investigated in recent years. On

the other hand, data hiding and watermarking for 3D models
get relatively less notice. Initially, Ohbuchi et al. [3, 4, 5]
proposed a large variety of techniques for embedding data in
3D polygonal models. Benedens and Busch [6, 7] embedded
private watermarks by altering 3D object normal distribution.
Their watermarking systems achieved robustness against
randomization of vertices, mesh altering (re-meshing), and
polygon simplification operations. Praun et al. [8] proposed a
sophisticated robust mesh watermarking scheme to resist
common mesh attacks such as translation, rotation, scaling,
cropping, smoothing, simplification, and re-sampling
operations. These above researches all concentrated on the 3D
watermarking techniques.

In the field of 3D data hiding, Cayre and Macq [9]
proposed a 3D data hiding scheme based on a substitution
procedure in the spatial domain. The key idea is to consider a
triangle as a two-state geometrical object, depending on what
bit value is to be hidden. Their scheme is robust against
translation, rotation, and scaling operations. Wang and Cheng
[10] presented a multilevel embedding procedure for
expanding the hiding capacity. They propose three embedding
levels called sliding, extending, and rotating to embed data
based on slightly shifting the vertex position. This method can
provide about three times the capacity of that in [9]. Recently,
Chao et al [11] presented a very high-capacity and low-
distortion 3D steganography scheme. Their steganography
approach is based on a multilayered embedding scheme to
hide secret messages in the vertices of 3D polygon models.
By their scheme, the distortion is very small on the stego
model as the number of hiding layers ranges from 7 to 13
layers. The above 3D steganography schemes are not
reversible.

III. THE PROPOSED METHOD

Given a 3D mesh model, our goal is to hide information in
this model by slightly modifying the model and make it
possible for the receiver to retrieve the hidden information
and to rebuild the original model. For a given mesh model M
(V, C), where V is the vertex set and C is the connectivity
relationship on M, we embed a set of secret bit-string S =
(0100101…) by inducing a small displacement on a subset of
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V. A vertex v is noted as v(x1, x2, x3) and v(x1, x2, x3) before
and after embedding, respectively. The basic embedding idea
is stated as follows:
i. Find a subset of V for embedding. Let E represents this

subset.
ii. Calculate the prediction residues of vertices in E.

Encode the prediction residues by arithmetic coding
scheme. The number of the encoded arithmetic values
should be less than the number of vertices in E.

iii. Encode the bit-string S by arithmetic coding scheme.
iv. For vertices in E, substitute a certain part of the

mantissa of the original vertex coordinates by the
encoded arithmetic values. Part of the vertices are
substituted by the prediction residue encoded values,
the others are substituted by the bit-string encoded
values.

v. Repeat steps i to iv several times for multi-layer
embedding. Output the embedded mesh model.

Figure 1 illustrates the idea of the embedding steps. In the
following, we describe the single layer embedding and
decoding scheme in detail. The multi-layer embedding and
decoding scheme can be achieved by repeating the single
layer procedures.

A. Finding a subset of vertices for embedding
For a model M, we first set all its vertices as fixed vertices,

then we traverse the whole model vertices starting from a
predefined vertex vs, for example, vertex v1. The number s is
saved as part of the key for decoding. A vertex surrounded by
all fixed vertices is added into E and set to be a non-fixed
vertex. Vertices in E are set for information embedding after a
whole vertex traverse is completed.

B. Prediction residues and bit-string encoding
For each vertex in E, we first calculate its prediction

coordinates vp by averaging the coordinates of its neighboring
vertices,
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where N(v) is the set of v’s neighboring vertices and )(vN is

the size of N(v). The prediction residues can be calculated by
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Figure 2 illustrates the concept of prediction residue.

Traditional arithmetic coding scheme [12] encodes datum
into a series of real numbers between 0 and 1. In the proposed
method, we encode the prediction residues into a series of real
numbers between 0 and Q, where Q is the predefined
maximum displacement on each coordinate. This
modification can be achieved by changing the initial coding
range from [0, 1) to [0, Q). This modification ensures that all
coded real numbers are less than the maximum distortion Q.
Another important issue is the precision level of the coded
real numbers. We have to constrain the coded real numbers
within a predefined precision level. Both the prediction
residues and the bit-string are encoded by the arithmetic
coding scheme to produce two sets of real numbers, P and B,
respectively, for embedding.

C. Mantissa substitution
For each vertex v(x1, x2, x3) in E, we substitute part of its

mantissa by the arithmetic coded real numbers,
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The vertices in E should provide enough space for
embedding all real numbers in P, that is, 3|E| > |P|. |E| times
by 3 since there are 3 coordinates in each vertex. The
substitution procedure first substitutes all real numbers in P,
and then real numbers in B for the rest vertices in |E|. For the
single layer embedding, the mesh model 'M now can be
output as a secret model. Figure 3 illustrates the concept of
mantissa substitution scheme.

Input a 3D model M(V, C)

Find a subset E of V for
embedding

Calculate the prediction
residues of vertices in E

Arithmetic encoding the
prediction residues

For vertices in E,
substitute a certain part of
the mantissa by the
encoded Arithmetic values

Output the stego mesh
model

Secret bit-string
S=(011001…)

Arithmetic
encoding S

Next layer
embedding?

Yes

No

Fig. 1 Overview of the embedding scheme

vp

prediction residue, pr

Fig. 2 The prediction residue v is the vertex for
embedding vp is predicted by v’s surrounding vertices.

v
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D. Decoding and the reversibility

For a secret model 'M , we first traverse the whole model
vertices starting from the predefined vertex vs to get the
embedding vertex set E. The rule is the same as described in
the embedding side. For each vertex v(x1, x2, x3) in E, we
can extract the embedded real numbers,
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where aj represents the elements of the decoded arithmetic
real number sets, P and B. Then we can decode the prediction
residues, pr, and the secret bit-string, S, from P and B,
respectively. The original coordinates of vertices in E can be
calculated by first applying (1) to get the predicted
coordinates vp, followed by adding the prediction residues
back,

prvv p 

Figure 4 provides an overview of the decoding scheme.

E. Multi-layer embedding
Since the proposed embedding scheme is reversible, the

embedding procedure can be repeated for several times. The
multi-layer embedding scheme can be described as following:

M1M0 + S1

M2M1 + S2

…

MnMn-1 + Sn

where M0 is the original model, Mi represents the output of the
nth-layer embedding, and Si represents the secret bit-string
embedded in each layer.

In the decoding stage, we can get all secret bit-strings and
the original model by reversing the encoding procedures:

MnMn-1 + Sn

Mn-1Mn-2 + Sn-1

…

M1M0 + S1

F. Constraints and limitations
One important issue in the embedding stage is that the

vertices in E should provide enough space for embedding all
elements in P. In other words, we need to be sure that 3|E| >
|P|. |E| times by 3 since there are 3 coordinates in each vertex.
Since the number of vertices in E is fixed, we need to reduce
the number of elements produced by arithmetic coding. From
the nature of arithmetic coding, a large setting of Q will
reduce the number of the coded elements. However,
according to (3), a large setting of Q will increase the
distortion of the stego model. If it is not achievable to make
3|E| > |P| under a certain setting of Q, another possible
solution is to increase the precision degree of the embedding
vertices for the stego model. For example, a vertex with
coordinates (0.1234, 0.3456, 0.5678) in the original model
may become (0.123623, 0.345246, 0.567431) in the stego
model after embedding. In this example, Q is set to 0.001.

To avoid the precision level keeps increasing on some
certain vertices; the selection of embedding vertices of the
latter layers should eliminate the vertices that have been
selected by the former layers till all vertices reaching the same
precision level.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We evaluated the proposed watermarking scheme on a set
of 3D models. Table 1 shows a list of models and settings
used in our experiments. Figure 5 illustrates the influence of
the setting of Q. Fig. 5(a) shows an original Venus model.
The Venus model has 8268 vertices and 16532 faces. 2328
vertices are chosen for embedding datum in the first layer. Fig.
5(b) shows the same view of the stego model with setting of
Q = 0.001. This stego model is visually identical to the
original model. Fig. 5(c) shows the same view of the stego

Receive a 3D model M’(V’, C’)

Find a embedding subset E
from V’

Extract the mantissa from
vertices in E

Arithmetic encoding to get
prediction residues and
secret bit-string

Recover the model of
former layer

Output the original model

S= S1+S2+…

Have decoded
all layers?

Yes

No

secret bit-string
Siprediction

residues

Fig. 4 Overview of the decoding scheme

Fig. 3 The mantissa substitution scheme

arithmetic coded real number

original mantissa

xx'
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0
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model with setting of Q = 0.005. We may see the rigid surface
on this stego model. Fig. 5(d) shows an original Bunny model.
The Bunny model has 35947 vertices and 69451 faces. 9705
vertices are chosen for embedding datum in the first layer. Fig.
5(e) shows the same view of the stego model with setting of Q
= 0.0001. This stego model is visually identical to the original
model. Fig. 5(f) shows the same view of the stego model with
setting of Q = 0.0005. Again, we may see the rigid surface on
this stego model.

We have proposed a reversible steganography scheme for
3D models. This scheme embeds the secret information into
multiple layers such that it is high confidential and capacity
flexible. In this scheme, the maximum distortion on the stego
model is controlled by the setting of Q, thus it can be
controlled to be imperceptible. One disadvantage of this
scheme is that it has to increase the precision level
requirement for the stego model. We should pay more effort
on this part for the future research.

(a) (b)

(c) (d)

(e) (f)
Fig. 5 The influence of the setting of Q. (a) The original

Venus model. (b) Q = 0.001. (c) Q = 0.005. (d) The
original Bunny model. (e) Q = 0.0001. (f) Q = 0.0005.

TABLE 1
THE MODELS AND SETTINGS USED IN OUR EXPERIMENTS.

Model Vertex # Face #
Vertices for

embedding in
the first layer

Q setting
Original
precision
level

Stego
precision

level
Beethoven 2655 5028 768 0.001 10-6 10-8

Bunny 35947 69451 9705 0.0001 10-6 10-9

Fan disk 11984 23964 3355 0.0001 10-6 10-9

Horse 19851 39698 5459 0.001 10-6 10-8

Pulley 25482 50964 7136 0.0001 10-6 10-9

Venus 8268 16532 2328 0.001 10-6 10-8
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