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ABSTRACT

Precoding techniques with limited feedback information can
achieve satisfactory performance while the amount of feed-
back information is kept small. In this paper, we analyze the
theoretical performance of equal gain precoder and find that
its performance is at most 1.049 dB worse than the optimal
precoder no matter how the number of transmit antennas in-
creases. Moreover, we found that the equal gain precoder in
general can achieve comparable performance with the Grass-
mannian precoder in the same moderate feedback bits. Hence,
it has several advantages compared with the Grassmannian
precoder that we will explain later in the paper.

Index Terms— MIMO, precoding, beamforming, equal
gain precoding, Grassmannian beamforming

1. INTRODUCTION

MIMO techniques are widely used in current wireless com-
munication standards such as IEEE 802.11n and IEEE 802.16.
Among the MIMO skills, precoding/beamforming can pro-
vide full diversity order and additional precoding gain. Such
nice properties can greatly improve system performance.

The amount of feedback information plays an important
role in precoder designs. If complete channel formation is
known to the transmitter, the optimal performance can be
achieved [3]. However, such precoding scheme leads to a
large amount of feedback information. To overcome this,
research has been directed to the precoding schemes with
limited feedback recently. In [3], equal gain precoder with
different combining methods were shown to achieve full
diversity order of MIMO channels. In [4], Grassmannian
beamforming/precoding was proposed. This precoder was
shown to have good performance in practical communication
systems. The Grassmannian precoder first needs to construct
a codebook using Grassmannian packing theory. Then it
determines the best codeword using exhaustive search.

In this paper, we analyze the theoretical performance of
the equal gain precoder in MISO channel environments and
found several interesting results as follows:
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First, the BEP (bit error probability) performance gap be-
tween the equal gain precoder and the optimal precoder varies
from 0.5 dB to 1.049 dB as the number of transmit antennas
grows from 2 to infinity. This is a somewhat surprising result
since the equal gain precoder only needs the channel phase
information while its performance is worse than the optimal
precoder, which needs both magnitude and phase informa-
tion, by at most 1.049 dB no matter how the number of trans-
mit antennas increases. As the number of transmit antennas
increases, the required magnitude and phase information also
increases. In this case, using equal gain precoder can greatly
reduce the feedback overhead but at the same time, it also
maintains satisfactory performance.

Second, we found from simulation results that the equal
gain precoder can achieve comparable performance with the
Grassmannian precoder in the same moderate number of feed-
back bits. This result shows several advantages of the equal
gain precoder. 1) The computational complexity of the equal
gain precoder is lower than the Grassmannian precoder, since
in MISO channel environments the optimal solution for the
equal gain precoder can be obtained directly from the channel
information [3]. Hence there is no need to perform exhaus-
tive search to determine the codeword as Grassmannian does.
2) In the equal gain precoder, when the feedback bits are less
than two per transmit antenna, there is no need to perform
multiplications in the transmitter side since the codeword co-
efficients in this case are +1 or £j. On the other hand, the
Grassmannian precoder needs to perform complex multipli-
cations in the transmit side. 3) It may be difficult for the
Grassmannian precoder to construct the codebook for a large
number of transmit antennas [4] due to the large number of
combinations. On the other hand, since the equal gain pre-
coder has close form solution in the MISO case, it can be
easily extended to arbitrary number of transmit antennas.

Notations: Boldfaced lowercases and Boldfaced upper-
cases denote vectors and matrices, respectively. E{z} de-
notes the expectation of random variable . A* and A' de-
note the conjugate and transpose of A, respectively. A' is
the conjugate-transpose of A. R{x} denotes the real part of
variable x. o2 is the variance of random variable z.



2. SYSTEM MODEL

The block diagram of the equal gain precoder is shown in
Fig. 1. Let the number of transmit antennas be N;. At
the first stage, one transmit symbol (can be complex such
as QPSK and M-QAM) is sent to N, branches for precod-
ing. Each symbol in different branch is multiplied by a dif-
ferent phase rotation, i.e. €% /\/Ny, --- e/ /\/N;, where
dividing /IV; is to remain the same total transmit power. The
phase information is feeded back from the receiver side ac-
cording to the channel condition. In the analysis of this pa-
per, perfect phase information is assumed to obtain the perfor-
mance gap between the optimal and the equal gain precodes.
However, simulation result will show performance compari-
son with limited feedback. After the precoding, the symbol
vector, s = (s1 82 -+ sy, )?, to be transmitted is given by

1

s = P, (1)
VN
where p is a N; x 1 vector defined as
p= (ejel eJ02 .,,ejeNt)t. )

Then, s is transmitted to the channel.

To detection

e jON, —Jj0x,

Fig. 1. A block diagram of the equal gain precoder.

At the receive side, the received symbol r is given by
r=h's+n, 3

where h is a NV; x 1 channel vector consisting of channel
coefficient given by

h=(hyhy - hy,)", 4)

and n is a noise scalar. The receive symbol 7 is first multiplied
by the conjugate of the channel vector, i.e. h*. Then, it is
multiplied by the inverse phase rotation and form a scalar z.
The mathematical expression is given by

z=ph*r 5)

From Egs. (1), (3) and (5), the relationship between x and z
are given by

1
_ Rt Hh*
z= h*h'px + p'h*n, 6
mp pxr+p (6)
vy
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where p'h*n is the noise after decoding, and + is a gain ef-
fect (including diversity gain and precoding gain) due to the
precoding. Note that it can be easily shown thaty is real. Then
the symbol z is ready for detection.

3. PERFORMANCE ANALYSIS

In this section, let us analyze the performance of the equal
gain precoder. From (6), for a given channel realization
(channel is deterministic), the instantaneous SNR of the
equal gain precoder can be shown to be

2
Yy o

SNR = —-=, 7

EG N, o2 @)

From (7), for a given channel realization and aﬁ / afL, the in-

stantaneous SNR is determined by . It can be shown that
is upper bounded as

Ny Ny N
v Y P H2RIY S ikl ®)
i=1 i=1 j>i

To minimize the average bit error probability, we need to
maximize the average SNR (see [1] and [4]). From (7) and
(8), the average SNR can be upper bounded by

En {SNRpc}
102 (& LS
< ﬁg% ZEh{|hi|2}+ZZEh{|h:hj|}
f P i=1 j#i
2
= T @ () + (N - DB (BB, ©

From (9), if both Ey, {|h;|?} and Ey, {|h}h;|} are known,
the average SNR for equal gain precoding is known. With-
out losing the generality, let us assume that both the real
part and the imaginary part of h; have unit variance. In this
case, By {|h;|?} = o7 = 2. Next, let us see how to obtain
En {|h}h;|} in the following lemmas and theorem.

Lemma 1: Assume that h; is complex Gaussian with zero
mean and unit variance in both the real part and the imagi-
nary part. The probability density function (PDF) of |h}h;| is
given by

fr(@) = 5 (Ko(2) + Ka(x)) — Ki(2), (10)
where K, (x) is the modified Bessel function of the second
kind.

Proof: For h; being complex Gaussian with zero mean
and unit variance in both the real part and the imaginary part,
the cumulative distribution function (CDF) of |h}h,| can be
shown to be (see [6])

Fp(z) =1—- 2Ky (). (11)



According to [7], we have the following equality for the
derivative of the modified Bessel function of the second kind
K, (x):

0K, (x 1
835 ) =-3 (Ky—1(x) + Kyq1(2)) - (12)
From (11) and (12), and using the fact that fj,(z) = 814:9;;(90),
we can obtain the PDF in (10).
AAN

Lemma 2: Assume that h; is complex Gaussian with zero
mean and unit variance in both the real part and the imaginary
part. The mean of the random variable |h}h;| can be calcu-
lated as

En {|h:h;|} = 1.5708. (13)

Proof: According to [8], we have the following equal-
ity for the integration of the modified Bessel function of the
second kind, K, (z):

/ $a_1KV(m)d$:2a_2F (a_y>r<a+y> )
0 2 2

(14)
where I'(z) is the gamma function. From Lemma 1, the ex-

pectation value of |h}h;| can be expressed as

/00 z fn(x)dx

— 00

En {|hjh;]} =

2

co .2 00
/ x—Ko(x)da:—&—/ x—Kg(x)dx
0o 2 o 2

- / x K (z)dz,
0

s)

where we have used the fact that K, (z) = 0, for z < 0. From
(14), we can rewrite Ey, {|h}h;|} as

[(3/2)T(3/2) + T(1/2)T(5/2) — T(1/2)T'(3/2) = 1.5708.

AANA

Theorem: Assume that the channel coefficient h; is com-

plex Gaussian with zero mean. The average SNR gap of the

optimal precoder (unlimited feedback) and the equal gain pre-
coder (unlimited feedback) in a MISO channel is given by

Eh {SNROPT} . Nt

— . 16
En {SNRgrg}  0.7854N; + 0.2416 (16)

Proof: For the optimal precoder [3], the precoding vector
is the eigenvector corresponding to the maximum eigenvalue
of hh'. In the MISO case, this optimal precoder can be cho-
sen as ht. Its average SNR can be shown to be

2
g
En {SNRopr} = th—‘;’Eh {1hi*} . (17)

To have a fair comparison, we also assume that the channel
coefficients in the optimal precoder have unit variance in both

690

Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

the real and the imaginary parts, since we assume the same
condition for the equal gain precoder in Lemma 1 and Lemma
2 as well. Thus, Ey, {\hz|2} = 2. From (17), we have

2
g
En{SNRopr} = —22N;. (18)

n

For the equal gain precoder, from (9) and (13), we have

0.2
2 (Bn {|nif} + (Ve = DEn {|n}hy})

P

E{SNRgc}

IN

g

2
= é(Q + (N¢y — 1)1.5708). (19)
The equality holds when full phase information is known to
the transmitter. From (18) and (19), we obtain the result in
(16). Please note that since this is a fair comparison for the
two precoders, there is no need to constrain the variance of h;
in the theorem.
AAN

From the theorem, when Ny >> 1, the ratio approximates
1/0.7854 = 1.2732 = 1.049 (dB), which is a constant perfor-
mance gap between the optimal precoder and the equal gain
precoder. For small NV, the ratio is smaller than 1.049 (dB).
Taking N; = 2 for instance, the ratio is 1.1035 = 0.4278
(dB). This is an interesting result because it means that the
performance loss due to the use of phase alone (without mag-
nitude) is at most around 1 dB, despite the increase of the
transmit antennas. Since the representation for both magni-
tude and phase require much more bits and feedback effort
than that for phase alone, this theorem offers an important
strategy that when feedback capacity is limited, we may use
the equal gain precoding since its performance loss is at most
around 1 dB compared to the optimal precoder. Let us see the
following simulation examples to illustrate this point.

4. SIMULATION RESULT

The simulation is conducted using the following parameters:
The channel coefficients are i.i.d. complex Gaussian random
variables with zero mean and unit variance. One receive an-
tenna was used. The modulation level is 16-QAM. The SNR
in the simulation was defined as the ratio of average sym-
bol power in the transmitter to noise power. For description
convenience, we let b be the number of bits to represent the
phase of each transmit antenna (except the first antenna) for
the equal gain precoder [3]. Moreover, we let B be the num-
ber of total feedback bits for all antennas. Thus, we have the
relationship that B = (N, — 1)b for the equal gain precoder.
Example 1: Comparison of the optimal and the equal
gain precoders. Let us compare the performance between the
optimal and the equal gain precoders. To see the best perfor-
mance that these two precoders can achieve, we do not quan-
tize the precoding vectors p in this example. Fig. 2 shows the
bit error probability (BEP) performance of the optimal and



the equal gain precoders without quantization. We observe
that the optimal precoder outperforms the equal gain precoder
around 0.5 dB when N; = 2. When the number of trans-
mit antennas increases, the performance gap increases. How-
ever, the increasing speed soon decreases. For instance, when
N; = 8, the gap is around 0.9 dB and when N; > 16, the gap
is around 1 dB. This result shows that the performance gap
between the optimal and the equal gain precoders is around 1
dB, which corroborates the theoretical result in (16).
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Fig. 2. Performance comparison of the optimal precoder and
the equal gain precoder without quantization.

Example 2: Comparison of various precoders with
quantization effect. In this example, we compare the perfor-
mance of various precoders including the equal gain precoder,
the Grassmannian precoder [3] and the antenna selection pre-
coder [2]. The performance comparison is shown in Fig.
3. For fair comparison, total required bits are shown for all
precoders. To evaluate the performance improvement due to
precoding, we also include the 2 x 1 STBC performance as
shown in the solid-square curve. From the figure, we see that
the three precoders have the same diversity gain and hence
their slopes are the same. However, the Grassmannian and the
equal gain precoders can achieve a better performance than
the antenna selection precoder. Moreover, we see in this sim-
ulation case that with the same required total bits B, the equal
gain precoder can achieve comparable performance with the
Grassmannian precoder (less than 0.2 dB performance gap).

5. CONCLUSION

We analyzed the theoretical performance of the equal gain
precoder. We found that the performance gap between the

691

Fig. 3. Performance comparison for the space-time block
code (STBC), equal gain (EG) precoder, Grassmannian (GS)
precoder and antenna selection (AS) precoder.

optimal precoder and the equal gain precoder is only around
1 dB. Moreover, we showed that generally the equal gain pre-
coder can achieve comparable performance while lower com-
plexity when compared with the Grassmannian precoder.
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