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ABSTRACT 

 
We focus on space-time block code (STBC) OFDM system with 
four transmit antennas. A block diagonal (BD) non-orthogonal 
STBC is proposed for full-rate transmission of complex data. To 
estimate the channel response, a BD STBC matrix has to be 
nonsingular for all possible transmitted BD STBC data matrices. A 
diagonal weighting constant is proposed to assure the 
nonsingularity. A phase-direct technique can be used to further 
improve the subspace-based semi-blind channel estimation. From 
computer simulation the proposed channel estimation is shown to 
be effective and we can also see that a large weighting constant 
improves channel estimation at the cost of a degraded bit error rate.  
 

Index Terms — space-time code, OFDM, channel estimation 
 

1. INTRODUCTION 
 
Space-Time Block Code (STBC) Orthogonal Frequency Division 
Multiplexing (OFDM) has been popular in wireless 
communications for its advantages of transmit and time diversity 
to combat fading [1]. In case of four-transmit-antenna, non-
orthogonal STBC [3] can achieve full transmission rate for 
complex data symbol, such as QPSK. Similar to previously 
proposed two non-orthogonal STBC’s, a new block diagonal (BD) 
STBC is proposed and it can be shown to be the remaining one yet 
to be found.  

At its receiver end, channel estimation is necessary for decoding 
and equalization. In case of a complex QPSK STBC OFDM 
system, the STBC data matrix can possibly be singular. As a result, 
its matrix inverse does not exist and the channel estimation fails. 
To overcome this singularity issue, we propose to impose a 
diagonal weighting constant on the STBC matrix.  

A subspace-based semi-blind channel estimation has been 
proposed [4]. A phase-direct technique [5,6] can be employed to 
enhance its performance, but it only deals with  the case of two-
transmit-one-receive antenna and a real BPSK data. We will apply 
phase-direct channel estimation to the case of four-by-one antenna 
non-orthogonal STBC and QPSK data.  

This paper is organized as follows. After presenting the STBC 
system model in section 2, we propose a diagonally weighted 
block diagonal STBC and the phase-direct channel estimation in 
section 3. Section 4 derives the performance analysis from which 
we can see effects of the weighting constant on channel estimation 
error and bit error rate. Section 5 shows our simulation results. 
Finally, our conclusions are summarized in section 6. 

 
 
 

2. STBC MODEL 
 

Fig. 1 shows a complete STBC OFDM transceiver in time domain. 
A block precoder is needed to apply the subspace-based channel 
estimation [4]. IFFTW  and FFTW  denote Fourier transform 

matrices, while  and  means the cyclic prefix insertion 
and deletion.   
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Fig. 1. Four-transmit-antenna STBC OFDM transceiver model 
with block precoders 
 
For simplicity, a STBC transceiver system model in frequency 
domain is shown in Fig. 2. Suppose 4 transmit antennas are used. 

 denotes the STBC transmission matrix, made up by 4  symbol 
vectors 
S

1 2 3 4, , ,s s s s  and their conjugates. The channel frequency 

response vector and the AWGN are denoted by h  and n , 
respectively. 
First, The ST encoder takes OFDM symbols to compose the 
transmission matrix , which is then fed into the channel. The 
received data vector 

S
y  can be written in frequency domain as: 

*= +y S h n                                                       (3) 

which can be useful for channel estimation. Alternatively, we can 
express the complex conjugate of y  as 

' * '= +y H s n                                                    (4) 

H  is the channel state matrix in which  and their 

conjugates form its elements. In Eq. (4), we can recover 
1 2 3, , ,h h h h4

s  from 

y  by 
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 Fig. 2.  Basic STBC transceiver model in frequency domain 
 

1* '−=s H y
�

                                                             (6) 

For real data symbol, orthogonal STBC matrix can achieve full 
transmission rate. However, for complex data symbol, such as 
QPSK, only non-orthogonal STBC data matrix can maintain full 
transmission rate. There have been two non-orthogonal STBC 
schemes proposed previously [2,3]. Here, we propose a block-
diagonal complex non-orthogonal STBC matrix as 
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We note that  is of block diagonal form: *HS S
                                                      (8) 6 6
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*HS S  of the other two non-orthogonal STBC matrices are 
similar except for the locations of the nonzero off-diagonal 
elements that account for the non-orthogonality between columns 
of S. Eq. (8) shows that the two non-orthogonal pairs of S  are the 
1st and 2nd columns, the 3rd and 4th columns.  Since there are only 3 
possibilities of non-orthogonal pairs among 4 data columns, our 
proposed block diagonal form is indeed the only remaining non-
orthogonal STBC other than {(1st,3rd)(2nd,4th)} and 
{1st,4th},(2nd,3rd)} pairings proposed by [2] and [3], respectively. 
 

3. CHANNEL ESTIMATION FOR STBC OFDM 
 

Previously, phase direct (PD) for OFDM in [1] was incorporated 
with the subspace method [2] in [3] to enhance channel estimation. 
We will extend this PD technique to BD STBC OFDM and explain 
why diagonally weighted STBC is necessary for nonsingular 
channel estimation.  
 
3.1 Diagonally weighted STBC 
Consider the  subcarrier in Eq. (3),  thm

[ ] 1 *m m

−= mH S y                            (11) 

where mH  is the 4x1 channel frequency response vector at 

the  subcarrier, and  and thm mS my  are transmission matrices 

corresponding to all possible data and received data vector, 
respectively. 

We note that there exists a problem of  in Eq. (11). For some 

corresponding   of possible data in BD when BPSK or QPSK is 

used,   could be singular. In order to prevent   from being 
singular for all possible data, a diagonally weighted method is 
therefore proposed as follows:  
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We assume that the diagonal weighting constant  is a real 
positive number. When

k
1k ≠ , the matrix can be shown to be 

nonsingular for any possible symbol data.  

 
3.2 Phase Direct (PD) --- An improved method for Subspace 
Channel Estimation 
PD is to resolve channel phase ambiguity after getting channel 
power response. In conventional OFDM system, it is easy to obtain 
channel power response by simple computation. But in STBC 
OFDM it is quite different since channel power consists of several 
different data symbols. 

Fig. 3 shows a flowchart of channel power estimation. Suppose 
we have an initial channel estimate  obtained from the 
subspace-based algorithm. Here we aim to find out channel power 
response on the m th subcarrier by solving the minimization: 

,est mH

1

2
,

*
min || ||
m

P P
est m m−=

−
H S y

H H                                   (12) 

in which all possible data symbol vectors , corresponding to 

channel gain 
mS

mH  as given in (11), have to be considered in the 
minimization problem. Here the choice for the P-th power depends 
on the signal constellation. For BPSK P=2, and for QPSK, P=4. 

P
mH  denotes the 4x1 channel power vector with each component 

being taken to its P-th power. 
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Fig. 3. Channel power response estimation in four-antenna STBC 
OFDM 
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Fig. 4. Phase Direct in four- antenna STBC OFDM 
 
After receiving a total of  data blocks in this algorithm, we can 
have the time-averaged channel power response. The phase 
ambiguity can be solved by  

N

,

21/
, 1, 4,min ( ,..., )[ ]

i m

P P
m est m m m mdiag

λ
λ λ= −Λ H H

2 /
, | 1, 2, ,j k P

i m e k Pπλ ∈ = " m

        (14) 

 where  on the th subcarrier for 

i th antenna. A 4xM spatial-frequency channel response matrix 
becomes: 

{ }
i

 { }1/ 1/

1 1 , ,
P PP

temp M M⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦H Λ H Λ H" P                (15) 

where M is the number of subcarriers. After IFFT, we can perform 

a denoising process by truncating the time domain channel �h . 
With FFT, a new channel frequency response can replace the 
initial subspace-based estimate , which is repeated until ,est mH
� � 2

( 1) ( )|| ||j j+ −h h  converges as shown in Fig. 4. 
 

4. PERFORMANCE ANALYSIS 
 
The theoretical mean square error of channel estimation for the 
subspace-based method [2] can be written as. 

�
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2 / 2
s nσ σ  is SNR. Q is an important information matrix comprising 

singular vectors of the received data symbol y [4]. 

When the diagonal weighting constant k  is larger, the diagonal 

elements of 
~

qΣ  becomes larger and  in (22) will become 
smaller, which will lead to a smaller estimated mean square error 
in (20).  

~
1( q
−)Σ

   However, an increased diagonal weight k also increases the 
transmitted power as well. For same SNR, the noise power 2

nσ at 
the receiver needs to be increased, and bit error rate for symbol 
detection will degrade accordingly. 

From Eq. (3), replacing true h  with � = +h h h+ , we have  

      �* * ( * )= + = + +y S h n S h S h n+                      (23) 

We can see that correct detection of the transmitted symbol s from 
the received data y  depends on the channel error h+  and noise. 

Suppose they are independent, the equivalent overall perturbation 
power can be written as 

total *( ) ( ) ( )P k P k P k= +S h n+                               (24) 
which is a function of the weighting constant k. 

Now we will examine how the increased diagonal weight k 
decreases the channel estimation error h+  but also increases the 
noise n .  In case of BPSK with P=2, we note 

that HE ⎡ ⎤⋅⎣ ⎦S S = ( )2 3k I+ ⋅ , then the equivalent channel 

estimation error power can be shown to be 
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Notice that  decreases as k increases. Assume that all 

channels are normalized and uncorrelated, then the 
average noise power can be shown to be: 

2|| ( ) ||k+Q
*

,*i j i jh h δ=

            
22

2

3( )
4

n

s

kP k
σ
σ

+
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where 2 / 2
s nσ σ  is the signal-to-noise ratio. 

Finally we have 
2 2

2
total 2

|| ( ) || 1( ) ( 3)
4
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s

kP k k
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σ
σ

+⎡ ⎤
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⎣ ⎦

Q
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It is now clear that the choice of the diagonal weighting constant k 
is a tradeoff between channel estimation error in (25) and noise in 
(26). 
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5. COMPUTER SIMULATION 

Our simulation parameters are: the block size N=100, no. of 
subcarriers M=32, and four independent 5-ray Rayleigh fading 
channels. We compare the theoretical and simulated normalized 
mean square channel errors (NMSCE) for BD STBC BPSK system 
using the subspace-based channel estimation in Fig. 5. We can see 
that a large weighting constant k improves channel estimation and 
the simulated curves approach theoretical ones in (20) at high SNR. 

Fig. 6 shows the improved NMSCE performance if the 
subspace-based method is further enhanced by the phase direct 
technique. 
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Fig. 5. Theoretical and simulated NMSCE for subspace-based 
channel estimation 

0 5 10 15 20 25 30 35
10-7

10-6

10-5

10-4

10-3

10-2

               B D (k = 2, B P S K  &  Q P S K )              
                     S ubs pac e &  S ubs pac e +  P D                    

S NR(dB )

N
M

S
C

E

B D, S ubspac e, B P S K
B D, S ubs pac e +  P D, B P S K
B D, S ubspac e, Q P S K
B D, S ubspac e +  P D, Q P S K

 
Fig. 6. Improved performances by the phase-direct technique 
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Fig. 7. Bit error rate comparison when k =0.8, 1, 2. 

                   
Fig. 7 compares bit error rates when k =0.8, 1, 2. If the channel 

state information (CSI) is ideal, a larger  degrades the bit error 

rate. In the case of k=2, again, we can see the phase-direct 
technique approaches the ideal CSI case. 

k

The results of simulated noise power ( )P kn , equivalent channel 

estimation error power * ( )P kS h+ , both simulated and theoretical 

total perturbation powers  with SNR=10, 15dB are shown 
in Fig. 8. We can see that as k increases, the noise curve increases 
too, while the equivalent channel estimation error decreases, and 
the total perturbation power seems to be dominated by the noise 
power. It appears that the weighting constant can fall into (0.1,0.5) 
to have the small total perturbation power. 
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Fig. 8. Theoretical and simulated total perturbation powers 
 

6. CONCLUSIONS 
 
In this paper, we propose a block diagonal non-orthogonal SBTC 
scheme with diagonal weighting to facilitate the phase-direct 
channel estimation. We have derived and simulated its mean 
square channel estimation error and the bit error performances. 
Large weighting constant improves channel estimation accuracy. 
However, to compensate the increased transmitted signal power 
due to an enlarged diagonal weighted signal, the noise power is 
also increased so that the SNR can remain unchanged for purpose 
of fair comparison. In such case BER degrades. Simulation 
indicates a slightly weighting constant with k∈ (0.1,0.5) is proper 
in terms of a better channel estimation and symbol recovery. 
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