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Abstract— A method of blind source separation is proposed 
using genetic algorithm (GA) for separating mixed voices in 
noisy and reverberating environment. Generally, the 
performance of the blind source separation becomes degraded 
when random noise is added to the mixed voices. Moreover, the 
reverberating environment must be considered in separating the 
mixed voices actually obtained. In order to solve the problem of 
blind source separation in such circumstances, a method to 
utilize GA is proposed, in which the system parameters are 
represented as chromosomes and the correlation between the 
output voices is minimized using GA. Computer simulations 
show its high performance in separating voices influenced with 
additive noise and reverberation.  

I. INTRODUCTION 

Recently, blind source separation has been actively researched 
for separating mixed multiple voices obtained from multiple 
microphones. Various methods have been proposed to realize 
the separation, but when actual mixed voices are to be 
separated, additive noise and reverberating environment must 
be considered. Some methods solve the problem of blind 
source separation in reverberating environment [1][2], but 
most of these methods do not consider the additive noise. 
Generally, the performance of blind source separation gets 
degraded when noise is added to the mixed voices, because 
the noise lowers the preciseness in evaluating the 
independency between different voices.  
     In this paper, a new method of blind source separation 
using a genetic algorithm (GA)[3] is proposed in order to 
effectively separate mixed voices in noisy and reverberating 
environment.  

GA is a search technique to find exact or approximate 
solution to an optimization problem. This method expresses 
the system parameters as a binary or real-valued array, 
corresponding to chromosomes, and finds out the optimum 
solution for the system parameters, on the basis of a certain 
evaluation function using evolutionary process. The 
chromosomes also correspond to individuals in a population. 
This method can realize powerful optimization for the system 
parameters.   

Using GA in the blind source separation, the problem of the 
affect by additive noise can be solved. In order to consider the 
reverberation also, GA is introduced into the blind separation 
system for temporally and spatially mixed voices. The 
separating system is composed of nonrecursive linear filters. 
The filter coefficients are concatenated to make a sequence as 

a chromosome. GA is applied to determine the values of the 
filter coefficients, so that the degree of independence between 
the output voices be as large as possible.  

In this paper, first the system model of the blind source 
separation in noisy and reverberating environment is shown 
and then the proposed method introducing GA into the blind 
source separation is presented. Finally in computer 
simulations, the performance of the proposed system is shown 
to be effective for actual voices which are mixed both 
temporally and spatially, contaminated with additive noise. It 
is also shown that the conventional method considering only 
reverberating environment is not effective for noisy input, 
even if noise reduction is performed before separation.  

II. MODEL OF BLIND SOURCE SEPARATION UNDER NOISY 
AND REVERBERATING ENVIRONMENT 

Two microphones located apart are considered here to 
obtain voices from two sources. Here some noise is supposed 
to be mixed to each microphone. The sound acquisition 
system is depicted as shown in Fig.1. In actual environment, 
some reverberation occurs, also. The signal obtained from the 
microphones is expressed as the following equation. 
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Here, xi(n) denotes the mixed signal obtained from the i-th 

microphone at time n where i is equal to 1 or 2, si(n) the j-th  
 
 

 
Fig.1  The system model of sound acquisition. 
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source signal, and ui(n) the additive random noise to the i-th 
input. The reverberation is supposed to be expressed as a 
linear convolutive system express with )(kaij .  

The i-th source signal is supposed to be obtained as yi(n) 
from xi(n-L) and the sequence of  xj(n-k) (k=0, 1, …, M) using 
a linear FIR filter as follows. 
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Here, L denotes the time lag of this separating system. 
The problem of the blind source separation is to determine 

the values of bij(k)’s, so that the output signals y1(n) and y2(n) 
are independent.  

 Several methods have been proposed to solve this problem. 
Typically, they adopt an evaluation function which represents 
the degree of the independency between y1(n) and y2(n), and 
minimize it with a certain method, such as a gradient method.  
Kawamoto et al. showed that multiple voices mixed in 
reverberating environment, which does not include additive 
noise, can be separated with a gradient method minimizing 
the following equation[1]. 
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Where y(n)=(y1(n), y2(n))T, and N is set at 2 for this case. 
When y1(n-L) and y2(n-L) are independent, the value Q is 
close to zero. 

III. INTRODUCTION OF GENETIC ALGORITHM INTO BLIND 
SOURCE SEPARATION 

A. Principle of Genetic Algorithm 
A genetic algorithm (GA) is a technique to obtain the 

optimal or suboptimal solution of a system by maximizing a 
certain evaluation function named as a fitness function. GA 
initially generates a population of individuals, which 
correspond to chromosomes in genetics. The initial 
individuals are generated randomly. Each individual 
represents a system parameter.  Then the fitness function of 
these individuals is evaluated and those with higher fitness 
function are selected as survivors to the next generation. 
Moreover, new individuals are additionally reproduced by 
crossover and mutation using the survivors, and accordingly a 
new population is created. Then the evaluation of the fitness 
function for all individuals, selection, and reproduction are 
performed and this procedure is iterated until the fitness 
function takes a high enough value or gets saturated 
adequately. Finally, the solution of the system parameter is 
obtained from the individual which takes the highest fitness 
function. This procedure is show in Fig.2. 

B. Application of Genetic Algorithm to Blind Source 
Separation 

GA can be applied to the problem of blind source 
separation by adopting an evaluation function which 
represents the statistical independency as the fitness function. 
Here, an individual is generated as a sequence of the filter 
coefficients bij(k) in (2) as Fig.3. As to the evaluation function, 
the following value C is considered.  
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Here, corr(y1(n), y2(n-m)) denotes the correlation coefficient 
between y1(n) and y2(n) as 
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Where E denotes averaging, and 1y , 2y  are the means, 1σ , 

2σ are the standard deviations of y1(n) and y2(n) respectively. 
The correlation coefficient with time delay m is considered, 
because xj(n) may be added to xi(n) with some time delay up 
to M in (2) and the undesired voice may remain in yi(n) if only 
the value of corr(y1(n), y2(n)) is considered in the evaluation 
function.  Unlike the fitness function, the evaluation function 
(4) is to be minimized for optimization. The new generation is 
generated so that the value C should be smaller. 

 

 
Fig.2  The procedure of the genetic algorithm 

 

 
Fig.3  The structure of an individual. 
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There are some variants in GA, but here real- valued GA is 
adopted for correspondence with signal processing. The 
procedure of this GA is as follows. 

 
(a) Initial setting 

 P individuals as shown in Fig.3 are generated randomly to 
make a population.  
(b) Selection 

Signal processing as (2) is performed for the input mixed 
voices x1(n) and x2(n) using the P sets of parameters b12(k) 
and b21(k). Accordingly P output pairs y1(n) and y2(n) are 
obtained. These output pairs are evaluated with the value C, 
and R of the individuals which give smaller C are selected as 
survivors to the next generation.  
(c) Crossover 

 S pairs of the survived R individuals are randomly selected 
and crossover is performed for them. Here, uniform crossover 
as shown in Fig. 4 is adopted in order to mix the 
characteristics of the parents adequately. In the uniform 
crossover, each bij(k) in the individual of children takes the 
value of the corresponding bij(k) in either of the parents at 
probability of 50%.  In this stage, 2S individuals are newly 
generated. 
(d) Mutation 

(P-R-2S) individuals are newly generated by mutation. 
Totally P individuals are prepared for the next generation. 
There are several methods in mutation, but here in order to  
 

b12(0) b12(1) ・・・ b12(M) b21(1) ・・・ b21(M)

b’12(0) b’12(1) ・・・ b’12(M) b’21(0) ・・・ b’21(M)

b12(0) b’12(1) ・・・ b’12(M) b21(0) ・・・ b’21(M)

b’12(0) b12(1) ・・・ b12(M) b’21(0) ・・・ b21(M)

Parents

Children

 
Fig. 4 An example of the uniform crossover.  

 
 

 
 

Fig.5 An example of the sequence of bij(k) obtained during GA process. 

avoid the trap of the plateau of convergence, every bij(k) is to 
be changed randomly. Here, a random value in a certain range 
is added to every bij(k).        
(e) Termination 

The new population is applied to signal processing (2) and 
the value C is evaluated. If the value C of an individual is less 
than a certain threshold, the individual is obtained as the 
solution and the procedure is terminated. The signal 
separation is performed by (2) using the filter coefficients 
bij(k) obtained as the solution.  

IV. COMPUTER SIMULATION    

A. Parameter Setting in Mixture Model and GA 
11kHz sampled 16-bit male voice and female voice are 

used as source signals si(n). They are mixed with a 
spatiotemporal matrix and noise is added as follows. 
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where X(z)=(X1(z), X2(z))T, S(z)=(S1(z), S2(z))T, U(z)=(U1(z), 
U2(z))T, and Xi(z), Si(z) and Ui(z) (i=1,2) are z-transform of 
xi(n), si(n), and ui(n) respectively. ui(n) is a white gaussian 
noise with SNR 6.25. In (2) M and L are set at 11 and 6 
respectively and M’ in (4) is set at 11. 

In GA, P, R, S are set at 100, 10, and 20, respectively. The 
initial values of bij(k)’s in individuals are set close to those 
obtained by Kawamoto’s method[1] minimizing (3) for the 
input signal (6). Quasi-gaussian white noise ranged from -0.1 
to 0.1 is added to bij(k)’s obtained by Kawamoto’s method, 
and 100 individuals are generated to make the initial 
population.    

As is shown in Fig.8 in the next section, when the input 
signal contains additive noise, the values bij(k)’s obtained by 
Kawamoto’s method have less variation, do not have steep 
gorge, compared with those when the input signal does not 
contain noise. Thus, in order to realize fast and stable 
convergence, the change caused by mutation is biased to be 
negative and the variance of the change is set larger for the 
middle part of k. Moreover, since the reverberating sound 
enters the microphone later than the direct sound, k with the 
minimum bij(k) is searched as k’, and the amount of the 
change caused by mutation is set larger at k=k’, k’+1,…k’+K0. 
For example, suppose that the values bij(k)’s are obtained as 
shown in Fig. 5, quasi-gaussian white noise ranged from -0.3 
to 0.1 is added in the area of T, while that from -0.1 to 0.1 is 
added in the other area of k. Here, K0 is set at 2.  

B. Results of Computer Simulations 
Fig. 6(a)(b) show the source voice signals si(n) for i=1, 2 

respectively. If noise ui(n) is not added, the conventional 
method of blind source separation, such that proposed by 
Kawamoto, is effective enough and the mixed voices are 
almost completely separated. However, if noise is added, this  
 

k 

bij(k) 
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